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MHC class II genotypes are independent
predictors of anti-PD1 immunotherapy
response in melanoma
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Abstract

Background Immune checkpoint blockade is a highly successful anti-cancer
immunotherapy. Both CTLA4 and PD1 checkpoint blockers are clinically available for
melanoma treatment, with anti-PD1 therapy reaching response rates of 35-40%. These
responses, which are mediated via neoantigen presentation by the polymorphic MHC
complex, are hard to predict and the tumor mutation burden is currently one of the few
available biomarkers. While MHC genotypes are expected to determine therapy responses,
association studies have remained largely elusive.
Methods We developed an overall MHC genotype binding score (MGBS), indicative of a
patient’s MHC class I (MHC-I) and class II (MHC-II) neoantigen binding capacity and solely
based on the germline MHC-I (MGBS-I) and MHC-II (MGBS-II) genotypes. These scores
were then correlated to survival and clinical responses following anti-PD1 immunotherapy in
a previously published dataset of 144 melanoma patients.
Results We demonstrate that MGBS scores are TMB-independent predictors of anti-PD1
immunotherapy responses in melanoma. Opposite outcomes were found for both MHC
classes, with high MGBS-I and MGBS-II predicting good and bad outcomes, respectively.
Interestingly, high MGBS-II is mainly associated with treatment response failure in a
subgroup of anti-CTLA4 pretreated patients.
ConclusionsOur results suggest thatMGBS, calculated solely from theMHCgenotype, has
clinical potential as a non-invasive and tumor-independent biomarker to guide anti-cancer
immunotherapy in melanoma.

Immune checkpoints are regulatory pathways that attenuate anti-tumoral T
cell responses1,2. The first clinical successes with immune checkpoint
blockade (ICB) immunotherapy were achieved with the CTLA4 (cytotoxic
T lymphocyte-associated protein 4) blocking antibody ipilimumab, fol-
lowed by the anti-PD1 (programmed cell death 1) antibody nivolumab in
advanced metastatic melanoma3,4. Response rates of anti-PD1 treatment
(35–40%) are superior to anti-CTLA4 (15%)1, which is likely related to
different mechanisms of action. Anti-CTLA4 interferes with T cells and
antigen presenting dendritic cells during initial activation of anti-tumor
T cells in lymph nodes, while anti-PD1 directly blocks the interaction
between T cells and cancer cells, which express the PD1 ligand (PD-L1)1,2.
Patients failing to respond to ipilimumabhavebeensuccessfully treatedwith
nivolumab, a sequence that has been shown superior to the opposite

approach (first nivolumab)5 and, more recently, combinatorial treatment
was found better than monotherapy (response rates around 50%)6,7.

Despite these successes, ICB responses are hard to predict, and the
TMB is currently one of the few FDA-approved biomarkers in different
cancer types (the other being PD-L1 expression and microsatellite
instability)8–15. Indeed, anti-tumoral responses aremediated byneoantigens,
small, mutated peptides that are presented to CD8+ cytotoxic T cells at the
cancer cell membrane by the class I major histocompatibility complex
(MHC-I). This explains why the best ICB responses are observed in
mutagen-exposed tumors (e.g., melanoma, lung cancer) with a high TMB
andhencehigh expected neoantigen load.As the presentability of amutated
peptide by MHC-I is determined by a patient’s MHC genotype, these
genotypes have the potential to predict ICB responses.However, association
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Plain language summary

Manycancerpatientsaresuccessfully treated
with immunotherapy, which boosts the
immune system to eliminate cancer cells.
While this therapy is successful in around half
of skin cancer melanoma patients, it is
currently hard to determine in advance which
patients respond well. Immune cells react to
tumor proteins that are presented at the
cancer cell surfacebymolecules calledMHC.
These are unique for every patient. We aimed
to determine whether the ability of MHC to
bind to tumor proteins determines how well
therapy works and developed a new way to
quantify this interaction. Surprisingly, less
ability for tumor proteins to bind to the
unconventional class IIMHCresulted inbetter
clinical outcome in patients with melanoma.
Our results provide new understanding of
tumor-immune interaction and the new
method may help determine which patients
with melanoma will respond to therapy.
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studies remained largely elusive, which is likely related to the low allele
frequency in combination with the complexity of the MHC genotype.
Indeed, each MHC-I genotype is determined by a rather unique combi-
nation of 6 highly polymorphic alleles (2 HLA-A, HLA-B and HLA-C
alleles). While some associations have been described between more fre-
quent MHC-I allele groups (e.g., B44 and B62) and ICB responses16, sta-
tistical power is lacking for the majority of (infrequent) alleles. Indeed, a
simple power calculation indicates that more than 10,000 samples would be
required to detect a hazard ratio (HR) of 2 (or lower) for alleles with a 0.1%
allele frequency (Supplementary Fig. 1). Furthermore, even if the required
data sizes would be reached, these studies only focus on the presence (or
absence) of 1 allele, ignoring how the combined effectwith the other 5 alleles
of the MHC-I genome affects treatment responses.

Even less is known about putative associations between ICB responses
and the more complex MHC class II (MHC-II) genotype, which is deter-
mined by 10 different alleles (HLA-DPA1, HLA-DPB1,HLA-DQA1, HLA-
DQB1 and HLA-DRB1 genes). While MHC-II is generally expressed by
antigen presenting cells (e.g., dendritic cells) and responsible for neoantigen
presentation to CD4+ helper T cells, recent evidence suggests that cancer
cells canexpressMHC-II directly17,18. Interestingly, highMHC-II expression
has been associated with positive responses to ICB19.

Here, we developed a simple quantitative indicator of a patient’s
germline-determined overall MHC-I and MHC-II presentability, referred
to asMGBS-I (MHC-IGenotypeBinding Score) andMGBS-II, respectively.
These scores were then correlated to anti-PD1 outcomes in 144 melanoma
patients of a previously published study. Weak positive correlations were
found between outcome andMHC-I presentability, but, strikingly, opposite
and strong negative correlationswere observedwithMHC-II presentability,
particularly in a subgroup of anti-CTLA4 pretreated patients. Our results
shed new light on the immunomodulatory role ofMHC-II and suggest that
MHC genotypes have potential as a tumor-agnostic response biomarker in
anti-PD1 treated melanoma.

Methods
Data download and processing
The analysis presented in the current publication is based on genomic and
clinical data derived from144melanoma patients as published in a previous
study19. TheWholeExomeSequencing (WES)andRNA-SeqFASTQfiles of
this study were derived from dbGaP (https://www.ncbi.nlm.nih.gov/gap/),
under phs000452.v3.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000452.v3.p1). Clinical response data were
downloaded fromsupplementary table 4, accessible athttps://static-content.
springer.com/esm/art%3A10.1038%2Fs41591-019-0654-5/MediaObjects/
41591_2019_654_MOESM4_ESM.xlsx19.

AdditionalWES and RNA-Seq datasets, as reported in Supplementary
Fig. 4 and Supplementary Fig. 8, were obtained from the European
Nucleotide Archive (https://www.ebi.ac.uk/ena; accession numbers
PRJNA307199/PRJNA34378920, PRJEB2370921 and PRJNA359359/
PRJNA35676122) and dbGaP (accession numbers phs000452.v3.p110,
phs000980.v1.p18, and phs001041.v1.p19). Clinical data were obtained from
the published supplementary information from the corresponding studies.

All datawere accessed andused in strict accordancewith dbGaP’sData
Use Certification (DUC) requirements. The data in dbGaP were originally
collected and submitted by the primary investigators of the source studies,
who certified that appropriate informed consent was obtained from all
participants and ethical oversight and approval were provided by the
respective Institutional Review Boards (IRBs) of the contributing
institutions.

Consensus HLA allele frequencies for a Caucasian American and
African American population were constructed based on 18 different
datasets from the Allele Frequency Net Database (http://www.
allelefrequencies.net/)23. Results from different datasets were combined
into a single consensus frequency by first mapping all listed alleles to the
corresponding G-groups, trimming them at second-field resolution and

subsequently calculating the average frequency per allele, weighted by each
study’s sample size.

MHC genotyping
MHC genotyping was performed on normal control blood-derived WES
files using Optitype v1.3.5 for MHC-I (HLA-A, HLA-B and HLA-C) and
HLA-HD v1.3 for MHC-II (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DQB1 and HLA-DRB1), following previously published
recommendations24. Both tools were run using default parameters. For one
of the validation datasets (Gide et al.21), no WES files from normal control
samples were available and arcasHLA v.0.2.0 was applied on tumor derived
RNA-Seq files.

Calculation of MGBS-I and MGBS-II
Onemillion random 9-meric and 15-meric peptides were first generated by
randomly sampling 9×/15× from all 20 amino acids with repetition. HLA
affinities of thesepeptideswere calculatedusingNetMHCpan-4.0 forMHC-
I (9-mers) and NetMHCIIpan-3.2 for MHC-II (15-mers)25,26. MGBS-I was
defined as the average proportion ofMHCbinders (definedas peptideswith
Kd <500 nM) for the 6 patient-specific germline MHC-I alleles (2 copies of
HLA-A, HLA-B andHLA-C genes). Similarly, MGBS-II was defined as the
average proportion of peptides binding to the specific HLA-DP, HLA-DQ
and HLA-DR heterodimers in a patient, given the patient’s 10 germline
MHC-II alleles (2 copies of HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DQB1 and HLA-DRB1 genes). MGBS-d was defined as the difference
between MGBS-I and MGBS-II after rank normalizing both scores. This
normalization was performed to account for different scales of both scores.

Gene expression quantification
Gene expression was quantified using RSEM (v1.3.3) with the STAR
(v2.7.10b) aligner. First, a STAR-compatible reference transcriptome was
prepared from the GRCh38.d1.vd1 human genome assembly and GEN-
CODE v39 annotation using rsem-prepare-reference. Next, reads were
aligned to the reference transcriptome with STAR and expression was
quantified at the gene level using rsem-calculate-expression. Downstream
analyses were based on the resulting TPM counts.

When data from different studies were directly compared (i.e., in
Supplementary Fig. 8) batch effects were first corrected using the ComBat-
seq method from the sva R package (v3.50), without including any addi-
tional covariates. Combat-Seq was applied to raw RNA-Seq counts.
Resulting counts were then converted to TPM (transcripts per million)
values using the convertCounts function from the DGEobj.utils R pack-
age (v1.0.6).

Survival analysis
Survival analysis was performed using the R packages survminer and sur-
vival in default settings.Kaplan-Meier analyseswereplottedusing the survfit
and ggsurv functions with calculation of P values using a log rank test.
Univariate and multivariate Cox regression analyses were performed using
the coxph function.

Survival power analysis was performed using the ssizeCT.default
function from the powerSurvEpi R package.

Multivariate analyses
The following variables were obtained from the supplementary information
of the respective studies (when available): TMB (defined as the total number
of non-synonymous mutations), HLA and B2M LOH, LDH serum con-
centration, ploidy, purity, tumor heterogeneity (defined as the proportion of
subclonal mutations, i.e., mutations with a cancer cell fraction <0.8) and
lymph node metastatic status. PD-L1 (CD274) was derived from the gene
expression data and cytolytic activity was defined as the geometric mean of
GZMA and PRF127. MHC-I andMHC-II expression values were calculated
using the ssGSEA method from the R package GSVA on the MHC-I and
MHC-II gene sets, as definedby Liu et al. 19. Additionally, we calculated total
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MHC-I andMHC-II zygosity, definedas the total number of different alleles
(maximal 6 and 10 for MHC-I and MHC-II respectively) from the MHC
genotypes.

To associate these variables with clinical responses (defined as non-
progressive patients, RECIST criteria), all variables were z-normalized and
fed in a feed-forward multivariate logistic regression model in a stepwise
manner using the R stats package (step function). Variables that did not
contribute significantly to the resulting model (P > 0.05) were iteratively
excluded until all remaining variables contributed significantly. Predicted
responders were defined based on a probability cut-off of 0.5 from the
respective logistic regression model. A similar feed-forward approach was
implemented to determine the variables contributing to a Cox
regression model.

Differential gene expression and gene set enrichment analysis
Differential gene expression analysis was performed using Limma version
3.54, with gene-level counts imported from RSEM output files using the
tximport (v1.26) package Mean-variance relationship was modeled using
voom precision weights. P values were calculated using a moderated
t-statistic as reported by Limma. Gene set enrichment analysis (GSEA) was
performed using the R fgsea package (fgseaMultilevel function, default
parameters) with ranking based on the P values. Hallmark gene sets were
downloaded from the Molecular Signatures Database (MSigDB) v7.5.1.

Statistics and reproducibility
The R statistical package (v4.0) was used for all data processing and sta-
tistical analysis. Details on the statistical tests used in this study are reported
in the respective sections. P values less than 0.05were considered significant
for individual tests. For multiple comparisons, false discovery rate (FDR)
corrections were performed using the Benjamini-Hochberg method.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results and discussion
MHC-II bindingcapacity isadversely associatedwithoutcome to
anti-PD1 immunotherapy in melanoma patients
Previous association studies betweenMHCgenotypes and ICBoutcome are
limited by their single allele focus and the lack of statistical power (Sup-
plementary Fig. 1). To circumvent both problems, we developed a simple
indicator of a patient’s germline-determined overall MHC-I presentability,
called MGBS-I (MHC-I Genotype Binding Score). MGBS-I is the prob-
ability of a patient-specific MHC-I complex to bind a random 9-meric
peptide, as calculated for 1 million different peptides and considering all 6
HLA alleles (Fig. 1a). We then evaluated MGBS-I as an ICB predictor in a
previously published dataset of 144 melanoma patients that were treated
with the anti-PD1 ICBnivolumab, which is currently, to our knowledge, the
largest single-study ICB melanoma dataset with available genomic and
clinical follow-up data19. As expected, the 72 (50%) patients with the highest
TMB (>250mutations,median value)had better overall survival than the 72
patients with the lowest TMB (P = 0.0012, log rank test; Fig. 1b). Interest-
ingly, when patientswere stratified based on theirMGBS-I, the 50%patients
with the strongest binding scores (MGBS-I > 0.016) showeda trend towards
better survival than patients with the weakest binding scores (P = 0.055;
Fig. 1c, d).Notably, responses became strongerwhenmore stringent criteria
were used to define strong binders (i.e., based on 75th, 90th or 95th per-
centiles; Fig. 1d, Supplementary Fig. 2). These findings are in agreement
with a previously suggested association between poor ICB therapy outcome
andweakerMHC-I presentability of peptides translated froma set of cancer
driver mutations28.

We then extended our methodology to the more complex MHC-II
genotype, which is determinedby 10different alleles (Fig. 1a). Strikingly, the
50% patients with the highest MGBS-II scores (MGBS-II > 0.12) had sig-
nificantlyworse survival after ICB as compared to the groupof patientswith

the lowest MGBS-II scores (P = 0.0067; Fig. 1d, e). As for MGBS-I, survival
differences were more pronounced whenmore stringent criteria were used
to define strong binders (Fig. 1d, Supplementary Fig. 2). Interestingly, no
correlation was found between TMB, MGBS-I and MGBS-II, suggesting
these are independent biomarkers (Supplementary Fig. 3). This was con-
firmed by a Cox proportional hazard regression analysis, which indicated
TMB-independent associations with survival for both MGBS-I (HR = 0.64,
P = 0.065) and MGBS-II (HR = 1.7, P = 0.032; Fig. 1f). Given the opposite
survival associations, we then focused on the difference between MGBS-I
andMGBS-II (after normalizing both scores, seeMethods) and defined this
difference as MGBS-d. A strong survival difference was observed when
comparing the 50% patients with the highestMGBS-d scores to the patients
with the lowest scores (P = 6.4e-4; Fig. 1g), a finding that was again inde-
pendent of TMB (HR = 0.50, P = 0.0048; multivariate analysis considering
TMB; Fig. 1f). Interestingly, patients that responded to therapy (i.e., clas-
sified as non-progressive following RECIST criteria) had significantly lower
MGBS-II scores (P = 0.037) and MGBS-d scores (P = 0.0067) as compared
to non-responding patients (Fig. 1h, i).

We then aimed to validate our findings on 3 independent anti-PD1
treated melanoma datasets with available clinical and molecular data from
Hugo et al.20 (n = 37), Gide et al.21 (n = 36) and Riaz et al.22 (n = 68). The
first 2 studies confirmed the association between lower-than-median
MGBS-II andbetter survival, although thiswas only significant for theHugo
study (P = 0.014) and not the Gide study (P = 0.10; Supplementary Fig. 4).
Interestingly, RECIST clinical responses were significantly worse
(P = 0.0076, Chi-square test) for patients with higher MGBS scores for the
latter study.While similar, thoughnon-significantpatternswereobserved in
anti-PD1 lung cancer patients8, no correlation was observed between out-
come and MGBS in the Riaz study nor in 2 studies of anti-CTLA4 treated
patients9,10 (Supplementary Fig. 4).

As an alternative strategy toMGBS, we explored the predictive value of
absolute MHC-I and MHC-II neoantigen burden (NeoAgB). Both metrics
showed a strongpositive associationwith survival (P = 3.9e-3 andP = 1.3e-3
for MHC-I and MHC-II respectively), in line with the findings from pre-
vious studies29, but opposite to what we observed using MGBS-II (Supple-
mentary Fig. 5). The strong correlation with TMB (Supplementary Fig. 3)
suggests that these associations are secondary to TMB, resulting in a
masking of the negative MHC-II association. Indeed, after normalizing
NeoAgB to TMB (referred to as the normalized NeoAgB), similar but
weaker, non-significant associations with survival were observed as for
MGBS (Supplementary Fig. 5). We speculate that the reason for these
weaker signals is related to the relatively few mutations (median 250) that
are used to calculate NeoAgB on the one hand (i.e., relatively high statistical
uncertainty) and the tumor evolutionary selection processes that could have
shaped the mutational landscape on the other hand.

MHC-II genotypes andMHC-II expression independently predict
clinical response to anti-PD1 therapy in anti-CTLA4 pretreated
melanoma patients
A subgroup of 60 patients received prior ipilimumab ICB immunotherapy
and this prior treatment has been recently associated with differences in the
tumor microenvironment, affecting the predictive features of anti-PD1
responses30. Therefore, we hypothesized that the MHC genotypes could
underlie these differences. As expected, survival probability was lower for
ipilimumab-pretreated patients compared to treatment naive patients
(P = 0.028, Fig. 2a). Interestingly, the TMB effect was restricted to pre-
treatment naive patients (P = 0.0061), while the MGBS-II association was
only observed in patients that received prior ipilimumab treatment
(P = 0.0024; Fig. 2b). A Cox multivariate analysis confirmed these results,
with TMB and MGBS-II being independently associated with survival in
treatment naive patients (P = 0.0073) and ipilimumab patients (P = 0.0089),
respectively (Fig. 2c).

Our findings shed new light on previous studies suggesting an influ-
ence of prior anti-CTLA4 treatment on the predictive features of anti-PD1
responses19,30. In this regard, Liu et al. developed a logistic regressionmodel
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that predicted clinical responses in patients that received prior anti-CTLA4
therapy based on MHC-II expression, serum LDH levels and lymph node
metastases19. As MHC genotypes were not directly considered in the Liu
study, we redeveloped this regression model, using an unbiased feed-
forward-selection approach (seeMethods) that included several previously
described biomarkers (e.g., PD-L1 expression, B2M LOH, MHC zygosity)
and the 3 MGBS metrics (Fig. 3 and Supplementary Fig. 6). Strikingly,
responses of the pretreated patient group were predicted highly accurately
(mean AUC = 0.87, calculated from 100 repetitions of a 5-fold cross-vali-
dation approach) by a combination of high MHC-II expression

(P = 0.0070), low MGBS-II scores (P = 0.013), B2M LOH (P = 0.028) and
tumor heterogeneity (P = 0.028; Fig. 3a, b and Supplementary Fig. 6).
Notably, MGBS-II had the highest predictive value of all variables in a
univariate setting (mean AUC = 0.76) and exclusion of MGBS-II from the
multivariate model reduced the mean AUC from 0.87 to 0.79, similar to
what was reported by Liu et al. whenMHCgenotypeswere not considered19

(Fig. 3b). When patients were subsequently stratified using model predic-
tions, large survival differenceswere observedbetweenpredicted responders
and non-responders in the ipilimumab pretreated subgroup (P < 1.0e-4;
Fig. 3c). Interestingly, following the same statistical approach in the
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Fig. 1 | A quantitativeMHCgenotyping approach to predictmelanoma anti-PD1
immunotherapy responses. a An MHC Genotype Binding Score (MGBS) was
developed to quantify the germline-specific Major Histocompatibility Complex
(MHC) peptide binding capacity. MGBS is the HLA binding probability of all 6 class
I alleles (MGBS-I) or 10 class II alleles (MGBS-II), calculated for 1 million random
peptides. b–g Survival analysis of a set of previously published melanoma patients
that were treatedwith nivolumab (n = 144). Patientswere stratified in 2 groups based
on the median Tumor Mutation Burden (TMB), MGBS-I, MGBS-II and MGBS-d
(representing the difference between MGBS-I and MGBS-II, seeMethods). Kaplan-
Meier analysis with log rank test P values shown in (b, c, e and g). d Forest plots
indicating hazard ratio ±95% confidence intervals as determined from a univariate

Cox regression analysis using different threshold to grouppatients in top and bottom
percentiles (y-axis labels) and taking the interpercentile group of patients as a
reference. See Supplementary Fig. 2 for corresponding Kaplan-Meier plots. f Forest
plots indicating hazard ratio ±95% confidence intervals as determined from a
multivariate Cox regression analysis as indicated. h Stacked bar plots indicating
clinical response (as determined using RECIST criteria) for the 4 variables as indi-
cated. P values calculated using two-sided Chi-squared test. i, Boxplots comparing
TMB/MGBS scores between responders (R) and non-responders (NR). Boxplots
represent median values and lower or upper quartiles with whiskers extending to 1.5
times the interquartile range. P values calculated using two-sided Wilcoxon rank
sum test.
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pretreatment-naive group of patients resulted in the best predictions
(AUC = 0.78) using a combination of tumor heterogeneity (P = 0.0087),
ploidy (P = 0.011) and MGBS-I (P = 0.024). A similar feed-forward multi-
variate Cox regression approach resulted in the selection of tumor purity
(HR = 2.7, P = 0.010) and heterogeneity (HR = 4.8, P = 1.0e-4) in the
pretreatment-naive patientsand MGBS-II (HR = 4.3, P = 9.6e-4) in the
pretreated patients (Supplementary Fig. 7).

The independent association between MHC-II expression and the
MHC-II genotype (quantified using MGBS-II) with patient responses
suggests an important role of the MHC-II complex in modulating
responses to anti-PD1 immunotherapy. While MHC-II expression has
been suggested as a biomarker for anti-PD1 outcome previously19,29,31, our
study is, to our knowledge, the first to demonstrate a role of the MHC-II
genotype-determined HLA binding potential. In light of this putative
MHC-II immunomodulatory role, we evaluated the predictive capacity of
the combined MGBS-II and MHC-II expression values, using a logistic
regression model developed on the Liu ipilimumab pretreated patient
data. As expected, predicted responders had better survival than predicted
progressors in the Liu data (P = 9.7e-04 and P = 0.0098 in the overall and
pretreated groups, respectively). Interestingly, when this model was
applied on the 3 independent anti-PD1 melanoma validation studies,
significant survival differences were now observed in the Gide data
(P = 0.043; 22/35 predicted responders). A similar trend was observed in

theHugo data (P = 0.19; 14/26 predicted responders)while the differences
between predicted responders and progressors were rather marginally in
the Riaz data (P = 0.52; Supplementary Fig. 8a). To better understand
these differences, we compared the Cox HRs of the evaluated biomarkers
between all 4 studies. A remarkable difference was noted between the
pretreated patients of the Liu and the Riaz data (Supplementary
Fig. 4b and 8b). Indeed, while the HRs in the treatment naive groups were
strongly correlated (Pearson’s r = 0.87, P = 1.1e-04), no correlation was
observed in the ipilimumab pretreated group. Most remarkable, a lack of
survival association was observed with MHC-II expression, PD-L1
expression and TMB, with the latter even trending towards an opposite
association than what is generally expected (HR = 2.3, P = 0.10). These
results suggest that the Riaz patients lack the MHC-II immunomodula-
tion seen in the other studies. The discrepancies between the ipilimumab
pretreated cohorts from both studies point towards differences in patient
selection procedures. This is further supported by a remarkable difference
in tumor heterogeneity between the Liu and the Riaz study (P = 1.1e-07,
Kruskal-Wallis rank sum test; Supplementary 8c).

TMB and MHC-II binding properties are inversely correlated to
gamma interferon activity
To better understand the mechanism underlying these genotype-
dependent responses, we searched for enriched gene sets following a
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Fig. 2 | Ipilimumab pretreatment-dependent survival analysis. aA subgroup of 60
patients was pretreated with ipilimumab before receiving nivolumab treatment as
indicated. Kaplan-Meier plot compares survival between pretreated (n = 60; dashed
curve) with treatment naive (n = 84; solid curve) patients. b Kaplan-Meier plots
comparing patients with high to low TMB/MGBS-I/MGBS-II/MGBS-d for treat-
ment naive (left, solid curves) and pretreated (right, dashed curves) patients, as

indicated. P values calculated using log rank test. c, Forest plots indicating hazard
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differential gene expression analysis between patients with low and high
TMB/MGBS-I/MGBS-II/MGBS-d. Interestingly, the strongest enrich-
ments were found for the Hallmark interferon (IFN) gamma response
gene set in tumors characterized by a high TMB (Padj = 1.1e-21) as well
as a low MGBS-II (Padj = 6.4e-30; Fig. 4), in line with the well-
established role of IFN gamma in modulating ICB responses32. To
determine whether TMB and MGBS resulted in differential responses of
the tumor microenvironment during prior ipilimumab treatment, we
compared the gene set enrichment results between patients with and
without pretreatment. While we did not observe any clear differences in
IFN gamma response enrichment between pretreatment groups, a strik-
ing difference was noted for cell cycle-related pathways such as E2F
targets and G2M checkpoint (Supplementary Fig. 9). Indeed, while these
pathways were always strongly enriched in patients with high TMB
(Padj < 1e-5 in all conditions), they were only enriched in pretreatment
naive patients with high MGBS-I scores (Padj = 3.7e-24 for E2F targets;
Padj = 3.3e-16 for G2M checkpoint) and pretreated patients with high
MGBS-II scores (Padj = 6.7e-11 for E2F targets; Padj = 2.4e-10 for G2M
checkpoint). This was also evident when focusing onMGBS-d, which was
mainly associated with an enrichment of these pathways in treatment-
naive patients (Supplementary Fig. 9). These results suggest that differ-
ential modulations of the TME by theMHC class I and class II genotypes
are responsible for the observed treatment responses.

Conclusion
Our study demonstrates that the HLA binding capacity of the MHC
genotype, quantified using a simple metric, has potential as a new

biomarker in anti-PD1 treated melanoma. The value of this putative
biomarker remains to be determined in larger clinical studies and other
cancer types where ICB has been proven successful. Given the strong
association we observed between the MHC class II genotype and
responses to sequential ICB therapy, our metric could have clinical rele-
vance in patients receiving combined anti-CTLA4 and anti-PD1 treat-
ment. An important advantage for such studies and future clinical
applications is that MHC genotyping does not require a tumor biopsy but
could be performed on a simple blood sample. Additionally, contrary to
the TMB and related neoantigen burden, the MHC genotype is a static
variable that is not influenced by prior mutational selection or immu-
noediting processes, which can differently affect clinical responses to ICB
therapy.

Data availability
This study is completely based onpreviously published genomic and clinical
data, available via dbGAP (https://www.ncbi.nlm.nih.gov/gap/; accession
numbers phs000452.v3.p1 phs000452.v3.p1, phs000980.v1.p1 and
phs001041.v1.p1) and the European Nucleotide Archive (https://www.ebi.
ac.uk/ena; accession numbers PRJNA307199, PRJNA343789, PRJEB23709,
PRJNA359359 and PRJNA356761). Downstream data are provided in
SupplementaryData 1. Sourcedata for thefigures are available at https://doi.
org/10.5281/zenodo.12517305 (data/MHC_immunotherapy.RData)33.

Code availability
The code used to produce the results described in this manuscript is
available at https://doi.org/10.5281/zenodo.1251730533.
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