
Vol.:(0123456789)1 3

Acta Neuropathologica (2021) 141:809–822 
https://doi.org/10.1007/s00401-021-02314-2

REVIEW

The olfactory nerve is not a likely route to brain infection in COVID‑19: 
a critical review of data from humans and animal models

Rafal Butowt1  · Nicolas Meunier2 · Bertrand Bryche2 · Christopher S. von Bartheld3

Received: 5 March 2021 / Revised: 15 April 2021 / Accepted: 15 April 2021 / Published online: 26 April 2021 
© The Author(s) 2021

Abstract
One of the most frequent symptoms of COVID-19 is the loss of smell and taste. Based on the lack of expression of the virus 
entry proteins in olfactory receptor neurons, it was originally assumed that the new coronavirus (severe acute respiratory 
syndrome coronavirus 2, SARS-CoV-2) does not infect olfactory neurons. Recent studies have reported otherwise, opening 
the possibility that the virus can directly infect the brain by traveling along the olfactory nerve. Multiple animal models 
have been employed to assess mechanisms and routes of brain infection of SARS-CoV-2, often with conflicting results. We 
here review the current evidence for an olfactory route to brain infection and conclude that the case for infection of olfac-
tory neurons is weak, based on animal and human studies. Consistent brain infection after SARS-CoV-2 inoculation in 
mouse models is only seen when the virus entry proteins are expressed abnormally, and the timeline and progression of rare 
neuro-invasion in these and in other animal models points to alternative routes to the brain, other than along the olfactory 
projections. COVID-19 patients can be assured that loss of smell does not necessarily mean that the SARS-CoV-2 virus has 
gained access to and has infected their brains.
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Introduction

It is now well established that nearly half of all patients with 
COVID-19 have a reduction or loss of smell as one of their 
symptoms [97], resulting in tens of millions of cases of—
for the most part transiently—reduced smell. Since some 
viruses can be “neuro-invasive,” meaning that they can enter 
the nervous system, there has been a concern that the new 

coronavirus, SARS-CoV-2, may reach the brain, using the 
nose as a portal, as is known or suspected for a subset of 
other viruses [33, 73, 95]. Is there convincing evidence that 
SARS-CoV-2 can infect olfactory neurons and can travel 
along their axons from the nose to the brain? It is known 
that—in rare cases—SARS-CoV-2 is present in the human 
brain [34, 65, 66, 68, 75, 86, 88], and it was suggested that 
infection of respiratory centers in the brainstem may contrib-
ute to fatal outcomes in COVID-19 [5, 31, 40, 54, 58, 63, 
64, 89]. Since a large number of patients with COVID-19 
lose their sense of smell, do all these people have to live in 
fear about a subsequent brain infection, as recent provocative 
titles of publications would suggest: “Olfactory transmu-
cosal SARS-CoV-2 invasion as a port of central nervous sys-
tem entry in individuals with COVID-19” [66] and “SARS-
CoV-2 invades the central nervous system via the olfactory 
route in Rhesus monkeys” [51]? In this review, we critically 
evaluate the current evidence whether SARS-CoV-2 may 
utilize olfactory neurons as a route to brain infection.
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Can olfactory neurons become infected 
by SARS‑CoV‑2?

Because of the high viral load in the nasal epithelium [48, 
66, 83, 100, 107] and because of the proximity of the nasal 
cavity to the skull and brain, many investigators have con-
sidered the possibility that SARS-CoV-2 travels from the 
nose to the brain along the olfactory nerve [10, 14–16, 18, 
19, 59, 66, 72, 81, 108], similar to some of the other neuro-
invasive viruses [29, 50, 89]. The cellular and molecular 
consequences of SARS-CoV-2 infection in the olfactory 
epithelium have now been examined in increasing detail, 
in multiple animal models as well as in human cell and tis-
sue samples obtained by brush sampling, through biopsy, 
and post-mortem analysis (Tables 1, 2 and 3).

To assess whether olfactory receptor neurons may be 
susceptible to infection by SARS-CoV-2, investigators 
have determined which cell types in the olfactory epi-
thelium express the obligatory entry proteins for the new 
coronavirus, angiotensin-converting enzyme 2 (ACE2) and 
transmembrane protease, serine 2 (TMPRSS2). These gene 
and protein expression studies were performed by RNAseq 
of identified cell types, or using markers for distinct cell 
types within the olfactory epithelium combined with gene 
or protein expression for ACE2 and TMPRSS2 [6, 8, 11, 
23, 38, 42, 52, 66, 98, 103, 106]. The large majority of 
these studies concluded that sustentacular cells (the pri-
mary support cells in the olfactory epithelium) and cells 
in Bowman’s glands express the virus entry proteins, 
while all human studies and the majority of animal stud-
ies reported that olfactory receptor neurons do not express 
ACE2, or express ACE2 only very rarely (Tables 1, 2 and 
3).

Another series of studies examined where in the olfac-
tory epithelium the new coronavirus accumulates, by 
employing in situ hybridization or antibodies against viral 
proteins in histological sections [15, 20, 28, 66, 87, 98, 
102, 103] or by brush sampling [28]. Some of these studies 
conducted double-labeling with antibodies against viral 
proteins as well as antibodies for specific cell types in the 
olfactory epithelium [15, 20, 28, 66, 87, 98, 103]. While 
the data of most of these studies show that the sustentacu-
lar cells are the main type of cells accumulating the virus, 
consistent with the predictions of the virus entry protein 
studies, some investigators reported that the virus can also 
be found in olfactory receptor neurons [28, 35, 66, 87, 98, 
103]. Whether olfactory neurons become infected is an 
important question because of the possibility of axonal 
transport of the virus from the nose into the brain. Neuro-
invasive viruses that use the olfactory route are known to 
bind with high affinity to olfactory receptor neurons [33, 
56, 95].

Explanations for contradictory reports 
on neuron infection and neuro‑invasion

How can the contradictory findings between studies on the 
expression of entry virus proteins and several of the virus-
localization studies be reconciled? Does the virus indeed 
accumulate in olfactory receptor neurons (and their axons), 
and not only in the sustentacular cells and gland cells? 
Important peculiarities of the olfactory system may explain 
why different studies have arrived at different conclusions.

1. The olfactory epithelium contains millions of olfac-
tory receptor neurons and sustentacular cells. Most of 
the studies reporting an infection of olfactory neurons 
by SARS-CoV-2 do not provide a quantitative analy-
sis. They describe few examples of putative olfactory 
neurons containing SARS-CoV-2 and display high 
magnification images of the olfactory epithelium show-
ing isolated olfactory neurons possibly co-labeled for 
SARS-CoV-2. Studies that examined SARS-CoV-2 
distribution semi-quantitatively showed that the virus 
mostly localizes to sustentacular cells and Bowman’s 
gland cells [15, 57, 98], while olfactory neurons do not 
contain SARS-CoV-2 or contain it only rarely [15, 98, 
103, 104]. The only proper quantification so far was 
made in human ACE2 transgenic mice [98], and the 
authors found only 0.03% of mature olfactory receptor 
neurons to be infected.

2. Virus-infected olfactory epithelium has been shown to 
contain dying neurons. Some of these dying neurons 
are phagocytosed by immune cells [28], but they can 
also be phagocytosed by sustentacular cells [85, 92], 
ensuring the removal of receptor neurons that die due to 
constant turnover [53]. Accordingly, some sustentacular 
cells will contain phagocytosed proteins that are nor-
mally found only in olfactory neurons, possibly includ-
ing neuronal markers. This can create false positives, 
because the viral protein of an infected sustentacular 
cell that phagocytosed a neuron or neuronal debris may 
appear as an example of a cell containing viral protein 
co-localized with a neuronal marker protein, even when 
the dying neuron downregulates such marker proteins. 
Indeed, virus-infected olfactory epithelium has been 
shown to contain dying neurons (recognized by their 
fragmented nuclei and chromatin condensation), some 
of which were being phagocytosed [28]. Accordingly, 
occasional co-localization of neuronal and viral proteins 
may generate false positives.

3. Sustentacular support cells tightly wrap olfactory recep-
tor neurons, and especially their dendrites extending 
towards the nasal cavity [13, 60, 61]. This makes it 
difficult to distinguish between protein content within 
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the neuronal compartment and protein content within 
the support cell compartment [98]. Accordingly, at a 
superficial glance and by merging confocal images at 
the light-microscopic level, the two labels may appear 
to overlap, when they actually are in distinct spaces, just 
very close together. This is illustrated in Fig. 1 adapted 
from the work of Bryche et al. [15] where it can be seen 
that only one cell, a sustentacular cell, contains the virus 
(Fig. 1a, red label), and not the adjacent neuron, but 
this is apparent only when the top of the labeled sus-
tentacular cell is visible within the same tissue section 
(Fig. 1a)—if the section had been cut too thin or any-
thing less than perfectly perpendicular to the plane of 
the epithelium, the virus would have been deemed to be 
located within the neuron (Fig. 1b). The entwinement 
of olfactory neurons with their support cell may explain 
why some studies reported viral protein in olfactory 
neurons, when the viral protein in fact may have been 
present in the tight wrappings of sustentacular cells [28, 
35, 66, 87, 98, 103].

4. Examination at the electron microscopic level presents 
an alternative approach to avoid the false positive evalu-
ation that may arise from fluorescent-based localization 
of cell type-specific markers. Only two studies have 
explored the cellular localization of the virus in the 
olfactory epithelium with this technique [28, 66]. How-
ever, both studies may have misinterpreted their images. 
Ciliated respiratory cells differ from ciliated dendritic 
knobs of olfactory receptor neurons at the ultrastruc-
tural level (see, e.g., [36], their Fig. 3a, c). Fig. 3c–f in 
Meinhardt et al. [66] shows virus protein in such a cili-
ated cell, not in an olfactory neuron’s ciliated dendritic 
knob. Furthermore, the arrows in Fig. 3a in [66] may 
indicate the luminal portions of sustentacular cells, not a 
dendritic knob, because the size of one of these “knobs” 
is incompatible with the known size of knobs (they are 
about 1–3 µm in diameter [37, 52]), as we and others 
have previously pointed out [7, 19, 24]. Accordingly, 
current evidence for SARS-CoV-2 or viral protein in 
the dendrites of olfactory receptor neurons is question-
able. Similarly, some error seems to have been made in 
the interpretation of respiratory and olfactory epithelium 
[28]. Their Fig. 4b and e display respiratory ciliated cells 
which are interpreted as belonging to the olfactory epi-
thelium.

5. In the few studies that describe SARS-CoV-2 localized 
in olfactory receptor neurons, the virus appears to be 
more often localized in immature rather than mature 
olfactory receptor neurons, consistent with the lack of 
ACE2 expression in mature olfactory neurons [5, 24] 
(Tables 1, 2 and 3). However, as explained in detail 
below, the immature neurons do not yet have axons that 
extend to their target glomerulus in the olfactory bulb AC
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[53, 61, 62, 85]. Therefore, when their cell bodies were 
infected in the olfactory epithelium, they would not be 
able to carry the virus to the olfactory bulb. Even if 
SARS-CoV-2 persists in such neurons until they are 
mature, the time required for maturation far exceeds the 
time at which the virus arrives in the brain in animal 
models.

6. It is interesting that most of the virus-containing axons 
shown by de Melo et al. [28] in the olfactory nerve (their 
Fig. 5e) do not express olfactory marker protein (OMP), 
and therefore either are axons of olfactory neurons that 
have ceased to express OMP, (possibly because they are 
dying due to the infection [67, 103]), or these axons are 
not olfactory axons. It is rarely appreciated that some 
axons in the olfactory nerve are not derived from first-

order olfactory neurons that project to the glomeruli in 
the olfactory bulb but are axons of nervus terminalis 
neurons that bypass the glomeruli in the olfactory bulb 
and project to various targets in the forebrain [29, 55, 
96], and many of these neurons express ACE2 [9]. The 
nervus terminalis is a heterogeneous complex of nerve 
fibers and ganglia that connects the olfactory epithelium 
with targets in the forebrain caudal to the olfactory bulb 
[29].

7. Some of the studies localizing SARS-CoV-2 in the brain 
used antibodies against the spike protein to document 
virus localization [21, 41, 54, 66, 91]. However, it is 
now known that the S1 subunit of the spike protein can 
be shed from the virus during cell entry, and neurons 
in the brain can take up such cleaved and systemically 
circulating spike proteins [75, 82]. Accordingly, cells in 
the brain may contain spike proteins without necessar-
ily containing SARS-CoV-2 virus. When localization of 
virus RNA was directly compared with localization of 
spike protein in human autopsy tissues, the large major-
ity of the blood vessels in the brain containing spike 
protein did not contain any viral RNA [75].

8. Proponents of an olfactory route of SARS-CoV-2 to 
achieve brain infection often allude to “neuron-hopping” 
as the mechanism for travel into and within the brain 
[10, 14, 16, 28, 54, 63, 66, 72, 108]: virus transfer from 
olfactory receptor neurons to mitral cells  (2nd order neu-
rons) in the olfactory bulb, and then transfer to  3rd order 
neuronal targets in the brain. The time course of virus 
internalization and subsequent axonal transport by neu-
rons is well established—it takes approximately 24 h for 
each virus transfer from one neuron to the next-order 
neuron [4, 33, 73], presumably due to the velocity of 
kinesin-mediated axonal transport [93]. Previous work 
established also that neuro-invasive viruses typically 
infect only structures neuroanatomically linked to the 
site of inoculation [90]. However, the time course of 
SARS-CoV-1 and SARS-CoV-2 invasion from the olfac-
tory epithelium to distant targets in the brain, even those 
that are not 2nd or 3rd order olfactory targets, is much 
more rapid: the arrival of the virus is approximately 
simultaneous in the olfactory bulb and in distant brain 
targets [28, 73, 104], or even “skips” the olfactory bulb 
[21, 101, 105] or the glomerular layer containing the 
olfactory axons [104]. These findings do not support 
the hypothesis that SARS-CoV-2 invades the brain by 
multiple transfers from neuron to neuron, with the first 
transfer from olfactory receptor neurons to mitral cells 
in the olfactory bulb. The observed time course is more 
consistent with alternative routes of neuro-invasion [5, 
39, 81]. Such alternative routes include a pathway that 
reaches cerebrospinal fluid (CSF)-containing spaces, 
uses the vasculature, or the virus may travel along a 

Fig. 1  SARS-CoV-2 nucleocapsid protein (red) immunolabeled in 
the olfactory epithelium, double-labeled for olfactory marker pro-
tein (OMP, green) and stained with Hoechst nuclear stain (blue). a 
The SARS-CoV-2 (red) is present in a sustentacular cell that par-
tially overlaps with an OMP-labeled olfactory receptor neuron. b 
When in the same image the sustentacular cell body is invisible 
(black ellipsoid shadow with white arrows), as it would be when the 
plane of section is not entirely perpendicular to the epithelium, then 
the SARS-CoV-2 protein would be erroneously interpreted to be co-
localized within the OMP-expressing olfactory receptor neuron. Scale 
bar = 10 µm. Image is adapted from Bryche et al. [15]



816 Acta Neuropathologica (2021) 141:809–822

1 3

peripheral nerve such as the nervus terminalis that 
directly innervates the forebrain, including the hypo-
thalamus [96].

Taken together, there are multiple explanations for the 
seemingly contradictory findings of whether or not olfac-
tory receptor neurons can be infected by SARS-CoV-2 and 
can carry the virus into the brain. Virus localization within 
olfactory receptor neurons is ambiguous at best, and there is 
currently no convincing evidence that the virus travels from 
the nose to the brain along the axons of olfactory receptor 
neurons.

When and how does the virus reach 
the brain?

Brain infection by SARS-CoV-2 has been studied and veri-
fied in animal models, primarily in mouse and hamster, in 
addition to more limited data on humans and non-human pri-
mates. Due to species differences of the ACE2 protein [25], 
SARS-CoV-2 infectivity varies between species. Wild-type 
mice have low infectivity for SARS-CoV-2, and to study 
infectivity and virus spread in this species, the SARS-CoV-2 
virus has to be mouse-adapted [57, 69], or mice have to be 
engineered to express human ACE2 instead of, or in addition 
to, murine ACE2 (Table 1). Multiple such mouse models 
with different promoters have been developed (reviewed in 
[19, 43, 69, 76, 80]). Hamsters express an ACE2 protein 
that results in medium-to-high infectivity of SARS-CoV-2, 
more similar to the infectivity in humans, and hamsters are 
therefore deemed to be a more physiological animal model 
to study neuro-invasion in COVID-19 [24, 25, 28, 103]. In 
this context, it is important to understand the advantages and 
limitations of the methods that have been used to provide 
evidence for the presence of SARS-CoV-2 in tissues, as sum-
marized in Table 4. Plaque formation provides evidence of 

replicating virus but does not inform about cellular localiza-
tion. PCR gives evidence of viral RNA but does not inform 
about virus replication or cellular localization, and it is still 
uncertain whether subgenomic RNA is indeed an indicator 
of active replication [1]. In situ hybridization gives evidence 
of viral RNA and tissue localization. Antibodies against 
either the spike protein or the nucleocapsid of the virus 
provide cellular localization but do not distinguish whole 
virus from cleaved proteins that can circulate systemically in 
the brain [75]. Evidence at the ultrastructural level is rarely 
attempted and fraught with uncertainty [47].

In mice that express human ACE2 (hACE2), SARS-
CoV-2 infects the olfactory epithelium. Brain infection 
after intranasal infection seems to depend on the type of 
promoter used to control the expression of hACE2, as com-
piled in Table 1 and summarized in Fig. 2. Mouse models 
that express hACE2 under the control of the endogenous or 
exogenous murine ACE2 promoter or the cytomegalovirus 
(CMV) promoter showed mild disease symptoms and only 
occasionally had SARS-CoV-2 in the brain [2, 45, 80, 89, 
98, 105]. In these animals, evidence for virus presence was 
based mostly on PCR [91, 105], but was not detected by 

Table 4  Advantages and limitations of the methods that have been used to prove SARS-CoV-2 in brain tissues

Method What is detected? Advantages Limitations

Plaque formation (PF) Replicating virus Evidence for replication of virus No cellular localization
RT-qPCR (PCR) Virus mRNA Highly sensitive for virus mRNA Contamination may give false positives, no cellu-

lar localization, significance of subgenomic vs. 
genomic RNA for replication still uncertain

In situ hybridization (ISH) Virus mRNA Sensitive for virus mRNA
Immunocytochemistry Virus protein (antigen) Cellular localization
 For nucleocapsid protein (ICn) Nucleocapsid protein Cellular localization No distinction between shed protein and entire 

virus
 For spike protein (ICs) Spike protein Cellular localization No distinction between shed protein and entire 

virus
Electron microscopy Virus Precise tissue localization Very difficult identification of virus even with 

good morphology

Fig. 2  Probability of brain infection after nasal inoculation in animal 
models or in SARS-CoV-2 infected patients. Note that the probability 
of brain infection in humans resembles that in non-transgenic animal 
models and in the newer human ACE2 (hACE2) mouse models, but 
not the infection probability in the older transgenic mouse models 
that use the K18 cytokeratin promoter
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immunocytochemistry or in situ hybridization (Table 1). 
These “newer” mouse models were generated by CRISPR/
cas9 and knock-in approaches, thus the endogenous ACE2 
expression is replaced by human ACE2 expression; such 
mouse models are considered to be more physiologically 
relevant than the “older” mouse models, although the 
sometimes-used adenoviral vector may by itself elicit host 
responses separate from responses to the SARS-CoV-2 
infection [43]. The “older” mouse models were generated 
several years ago for SARS-CoV-1 studies; they have con-
stitutive hACE2 expression controlled by exogenous pro-
moters such as K18 cytokeratin or forkhead box protein 
J1 (FOXJ1). These mouse models are more often lethal, 
presumably due to brain infection [21, 41, 50, 54, 76, 80, 
89, 101, 104], while the “newer” mouse models and mice 
infected with mouse-adapted SARS-CoV-2 typically do not 
show neuro-invasion [57] (Table 1). Other viruses, such as 
human coronavirus OC43 (HCoV-OC43), mouse hepatitis 
virus, or herpes simplex virus, readily infect olfactory neu-
rons and move effectively by anterograde axonal transport 
to secondary and tertiary olfactory centers in the brain [3, 4, 
17, 33, 56, 95]. The reason why SARS-CoV-2 rarely infects 
olfactory circuits in the newer mouse models or in wild-type 
animals appears to be the lack of expression of the virus 
entry proteins in olfactory neurons. The viruses that are 
highly effective neuro-invaders have in common that their 
entry proteins are abundantly expressed in the neurons that 
become infected [3, 17, 33, 56, 95].

In some of the mouse models expressing human ACE2, 
the timing of arrival of the virus in various brain structures 
was monitored, and it was described that olfactory bulbs 
were infected not more than other parts of the brain, espe-
cially the hypothalamus and other thalamic nuclei, and the 
brainstem [21, 101, 104]—similar to some of the human 
neuropathological findings [66, 86], as described below. The 
need to engineer human ACE2 expression is a limitation 
of the mouse animal model, because hACE2 may not be 
expressed in the same cell types and at the same levels as 
it is expressed in humans; this may enable neuro-invasion 
of SARS-CoV-2 that would not occur with normal expres-
sion of ACE2. Data from such mice, therefore, need to be 
interpreted with caution [24]. On the other hand, transgenic 
mouse models inform about which types of neuro-invasion 
by SARS-CoV-2 are possible when certain cell types express 
certain levels of virus entry proteins, and these mice are 
an important animal model to test mechanisms of neuro-
invasion as well as antiviral strategies [21, 104].

In hamsters, seven studies explored if the virus was pre-
sent in the brain following SARS-CoV-2 nasal inoculation 
[15, 22, 28, 49, 87, 103]. Four of them found no evidence 
for brain infection with antibodies (Table 2). Three studies 
found either viral RNA or virus (by plaque formation) in 
the olfactory bulb or brain at 1 to 14 days post infection 

(dpi) [28, 46, 49], with 2 logs lower than in nasal turbinates 
and with similar levels in the brainstem, cerebral cortex and 
cerebellum [28]. In cases with positive PCR, virus presence 
could rarely be confirmed by plaque formation [46], indicat-
ing that the large majority of viral RNA was not replicat-
ing virus. Using immunohistochemistry or in situ hybridi-
zation, five studies reported the absence of viral antigens 
in the brain or olfactory nerve [15, 49, 87, 102, 103]. One 
study observed only a few infected (non-neuronal) cells in 
the olfactory bulb [28]. These discrepancies between stud-
ies could be related to the viral titer used during infection. 
Indeed, the virus titer varies up to 10,000-fold between stud-
ies, from 10 plaque-forming units (pfu) [46] to 1 ×  105 pfu 
[103], and the virus was rarely observed in the brain when 
lower virus titers were used for infection [77]. Similar obser-
vations were made in monkeys as described below.

In ferrets, ACE2 has a low virus-binding score, but these 
animals are susceptible to SARS-CoV-2 infection [25, 35, 
84]. As shown in Table 2, SARS-CoV-2 localizes to pre-
sumptive sustentacular cells in ferrets [35], similar to ham-
sters. Only very few animals had virus in the brain clearly 
above the threshold of detection by PCR [84], and neuro-
invasion could not be verified by other methods.

In the physiological animal models (hamster, ferret), 
the virus was found in the brain only by quantitative PCR 
or plaque formation, but not by immunocytochemistry 
(Table 2). This raises the question of the cellular source of 
the virus. Indeed, if the virus is present only in blood vessels 
or in circulating immune cells in the brain, virus presence 
may not be related to neuronal infection. Overall, the studies 
in hamsters and ferrets do not support brain infection by an 
olfactory route.

In non-human primates (macaques and African green 
monkeys), six studies examined SARS-CoV-2 in the brain 
after nasal or upper respiratory tract inoculation. The first 
three studies did not find evidence of the virus in the brain 
using PCR at 3, 4, 7, and 21 days after infection [27, 70, 83] 
(Table 3). A fourth and fifth study [44, 78] found viral RNA 
in multiple brain regions at 28 or 35 days post infection, but 
in one of these studies, the PCR findings could not be veri-
fied by antibodies against the nuclear capsid antigen [78]. A 
sixth study [51] found evidence of virus RNA and nuclear 
capsid antigen in the brain, including the olfactory bulb, at 
1, 4 and 7 days after nasal inoculation. However, this study 
applied an extremely high dose of virus  (107 pfu), about 20 
times higher than the other monkey studies (0.7 ×  105 and 
3 ×  105), and more than 100 times the dose of most other 
animal studies (5 ×  103 to  105 pfu). Jiao et al. [51] found viral 
RNA in the blood and in the CSF already at day 1 after nasal 
infection. Such a fast appearance of the virus in the CSF 
essentially precludes neuronal transfer along the olfactory 
nerve as the sole or primary pathway and instead points to 
alternative routes of SARS-CoV-2 to achieve brain infection.
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In humans, there are no time course studies of neuro-
invasion, only reports on the “final outcome.” The virus was 
found to be abundant in the olfactory epithelium, mostly, if 
not exclusively, in sustentacular cells [20, 28, 66]. In some 
patients, the virus was also documented in the brain, with the 
brainstem, thalamus and hypothalamus more often infected 
than the olfactory bulb [66]. Virus was also documented in 
some cases in the cerebral cortex and in the CSF or choroid 
plexus [16, 26, 34, 63, 65, 66, 71, 75, 86, 89], but it was not 
detectable in the CSF in other studies [74, 79].

Could the small number of potentially infected olfactory 
receptor neurons contribute to neuro-invasion of the brain 
in animals and humans? Most of the reported examples are 
immature neurons. Immature olfactory receptor neurons can-
not transmit the virus to the brain, because they do not have 
the peripheral and central connections: after the 7–14 days 
required for the generation of neurons [53], it takes another 
several day for the immature olfactory neurons to develop 
cilia [61], and it is thought to take up to 1 week for the 
immature neurons to grow axons to the appropriate target 
glomerulus in the olfactory bulb of larger animals or humans 
[85, 92], although this may occur faster in mice, because of 
the shorter distances [62].

Taken together, the animal studies examining neuro-inva-
sion via the olfactory nerve and olfactory bulb are incon-
clusive and rather point to alternative routes. Alternative 
mechanisms of transfer of SARS-CoV-2 from the nose to the 
brain include the crossing of the blood–brain-barrier after 
uptake in leukocytes [5, 14, 77, 108], or entering through 
the endothelial cells of blood vessels [16, 75, 108], reaching 
CSF-containing spaces associated with the olfactory nerve 
[14, 19], or by infecting peripheral processes of nervus ter-
minalis neurons that innervate Bowman’s glands, have free 
nerve endings in the olfactory epithelium, and innervate 
blood vessels below the olfactory epithelium [9, 19, 55].

Consequences of brain infection: current 
controversy

What are the consequences of brain infection with SARS-
CoV-2? It is now well established that SARS-CoV-2 can 
be present—albeit rarely—in the brain of human patients 
[34, 65, 66, 68, 75, 86, 88], although it needs to be kept in 
mind that there is an inherent bias because only the most 
severe (fatal) cases are examined (by autopsy [68, 86]). 
Not only the route of infection is unclear (as discussed 
above), but also the consequences of brain infection are 
currently uncertain, and opinions differ drastically. On 
the one extreme, it has been proposed that neuro-invasion 
of the brain may be acutely lethal—animals and patients 
may die as soon as the brainstem becomes infected, pos-
sibly due to shut down of respiratory centers [5, 21, 31, 

40, 54, 58, 63, 64, 89]. On the other extreme, it has been 
noted that brain infection may have little consequence, 
since there does not seem to be any correlation between 
the severity of the disease and evidence of the virus in the 
cerebrospinal fluid (CSF) or brain tissues [65, 74, 86, 88]. 
An intermediate position is that, as with other viral brain 
infections, there may be “merely” an increased long-term 
risk of neurodegenerative diseases due to chronic virus-
induced inflammation [30, 32, 39]. It is important to keep 
in mind that the presence of spike protein or viral RNA 
does not necessarily mean that the virus actually replicates 
[1, 82]. It is not yet clear whether the virus or some of 
the cleaved and circulating viral proteins (spike proteins) 
typically provoke immune reactions and endothelial cell 
damage [75] or whether the virus can be present in brains 
without eliciting any inflammatory or immune reaction 
(e.g., [89]) or other serious effects such as increased cell 
death [51]. It is yet uncertain to what extent neurological 
symptoms in COVID-19 patients are due to a direct viral 
effect on the brain, or whether neurological symptoms 
may be primarily due to inflammatory processes, vascular 
insults, circulating cleaved spike proteins, and other effects 
of systemic infection in COVID-19 [10, 46, 74–76, 78, 
79, 86, 88, 108]. Without a doubt, new insights into these 
controversies will emerge as the pandemic continues.

Conclusions

We question an olfactory neuron route of SARS-CoV-2 to 
the brain for multiple reasons:

• There is a wide consensus that the large majority of 
mature olfactory receptor neurons do not express the 
obligatory virus entry proteins.

• Many reports of the virus within olfactory receptor neu-
rons neglect the fact that sustentacular cells tightly wrap 
these neurons, making it possible to observe false posi-
tives even when cell-type-specific markers are used.

• The few infected olfactory receptor neurons reported in 
some studies are mostly immature cells, but they lack 
axonal projections to transport the virus into the brain.

• The timeline of neuro-invasion in animal models indi-
cates that the virus uses alternative routes rather than 
neuron-hopping and virus transfer between olfactory 
neurons.

• Neuro-invasion of SARS-CoV-2 has consistently been 
described for a non-physiological mouse model (with 
transgenic expression of human ACE2 via the K18 
promoter), but reports of such neuro-invasion are rare 
in physiological animal models using the endogenous 
ACE2 promoter.
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Taken together, the current evidence from animal models 
and human tissues supports the notion that the lack of entry 
protein expression in olfactory neurons creates a formida-
ble barrier that makes it unlikely for SARS-CoV-2 to gain 
access to the olfactory bulb along the olfactory nerve axons. 
It should be noted that this does not rule out a pathway from 
the nose to the brain by other mechanisms: a vascular route 
[5, 14, 16, 75, 77, 108], a route through CSF spaces [14, 
19], and a route along with the nervus terminalis system [9, 
19] or the Grueneberg ganglion [12]. The current evidence 
favors alternative routes from the nose to the brain, at least 
in the acute phase (first two weeks) of infection. Since the 
viral load typically reduces rapidly within the first week of 
infection [94], the brain appears to be protected in the vast 
majority of cases with SARS-CoV-2 infection. We are con-
cerned that studies advocating an olfactory route for SARS-
CoV-2 to infect the brain may unnecessarily alarm a large 
number of patients suffering from anosmia. The COVID-19 
pandemic is intimidating; our critical review of the evidence 
indicates that, contrary to several attention-grabbing publi-
cations, infection of the olfactory epithelium causing loss of 
smell in COVID-19 is rarely followed by a brain infection.
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