
1  |   INTRODUCTION

Since its first discovery in the city of Wuhan (China), the 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has been notorious of its high infectivity, and high 
mortality due to respiratory failure causing an escalating 
worldwide health emergency.1

Recently, Vianello and Braccioni have made their early 
notion about the potential correlation between disease sever-
ity and high fatality of SARS-CoV-2 to the pre-existence of 
alpha-1 antitrypsin deficiency (AATD),2 supported by re-
markable matching between the geographic distribution of 
confirmed AATD cases and that reported for SARS-CoV-2 
infection. The proposed association between AATD and 
COVID-19 might reveal subtypes of COVID-19 patients who 
might benefit from alpha1-antitrypsin (AAT) supplementary 
therapy, thus merits further emphasis.

The AAT protein is a serine protease inhibitor that is se-
creted by hepatocytes to perform its major role in the lower 
respiratory tract where it provides most of the tissue defenses 

against injurious proteolytic action of proteases (e.g., neutro-
phil elastase, cathepsin G, and proteinase-3, etc.).3 Moreover, 
the AAT protein is acknowledged for being one of the key 
players in the acute phase anti-inflammatory response.4 
Therefore, individuals with AATD were found to lack control 
over various inflammatory mediators, as interleukin (IL)-6, 
IL-1β, IL-8, and tumor necrosis factor (TNF)-α. On the other 
side, the high mortality in COVID-19 patients is associated 
with respiratory failure (due to acute respiratory distress syn-
drome [ARDS]) and/or multi-organ failure due to the strik-
ing “cytokine storm,”5 where levels of cytokines as IL-1b, 
IL-2, IL-7, IL-8, IL-9, IL-10, IL-17, G-CSF, GMCSF, IFNɣ, 
TNFα, IP10, MCP1, MIP1A, and MIP1B have gone through 
the roof. In addition, excessive infiltration of the inflamma-
tory cells (e.g., monocytes and neutrophils) into the pulmo-
nary interstitial tissue. provoked cytokine-induced apoptosis 
of alveolar lining cells (i.e., pneumocytes).6 In addition, sin-
gle nucleotide polymorphisms (SNPs) of SERPINA1 gene 
which encodes α1-antitrypsin related to increased risk of 
ARDS and mortality.7
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Abstract
In this work, we provide an up-to-date summary of the available molecular- and cell-
related mechanisms by which alpha1-antitrypsin (AAT) protein could be of benefit 
in treating COVID-19 patients. As well, we demonstrate the current status in terms 
of the ongoing clinical trials using AAT in COVID-19 patients. Finally, we touch on 
the potential role gene therapy and stem cell-based gene therapy could have in such 
emerging and serious condition caused by the SARS-CoV-2 virus.
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2  |   MECHANISMS

Even though AATD state as such is not a disease, it is con-
sidered a distinct genetic predisposition to the development 
of several other diseases. Therefore, a common thread seems 
to connect individuals with AATD and the aggressive course 
of SARS-CoV-2 infection. In addition to its prime inhibitory 
function against serine proteinases evading tissue damage, 
AAT is known to abrogate inflammation via both enzyme 

inhibitory and non-inhibitory roles.8 Table 1 summarizes the 
up-to-date proposed mechanisms by which AAT could be 
beneficial in COVID-19 patients.

3  |   CURRENT STATUS

With the mounting evidence of possible association between 
AATD and COVID-19,9 the logic consequence has been to 

T A B L E  1   Potential mechanisms for the proposed therapeutic applications of AAT in COVID-19 patients

Role of AAT protein Relevant role in COVID-19
Potential applications/mechanisms of 
AAT in COVID-19 patients

AAT inhibits neutrophil elastase as a serine proteinase.24 Neutrophil elastase induces the 
release of IL-8 from neutrophil 
vesicles and facilitates conversion 
of pro-IL-1β to IL-1β.25

AAT to mitigate IL-1β-induced acute lung 
injury.8,25

AAT antagonizes thrombin and plasmin.26 Thrombin and plasmin play central 
role in thrombosis, infection and 
host responses. Patients with 
COVID-19 have increased plasma 
thrombin and plasmin potential 
compared with healthy donors.27

AAT to guard against thrombotic 
complications observed in patients with 
COVID-19, including macrothrombi and 
small vessel thrombosis associated with 
disease progression, organ failure, and 
poor outcomes.

AAT decreases the levels and activity of IL-6.28 •	 IL-6 drives immune 
dysregulation and respiratory 
failure in COVID-cytokine 
storm syndrome.29

•	 IL-6 elevation might have a role 
in endothelial activation and 
precipitation of a pulmonary 
immune-mediated thrombosis.28

•	 The higher ratio of IL-6: AAT is 
seen in patients with the severe/
critical COVID-19 disease.

•	 AAT to limit the “cytokine storm”.
•	 AAT augmentation as an immune 

modulator to reduce the pro-
inflammatory cytokines, as IL-6.28

AAT binds to IL-8, preventing from binding to its 
receptor CXCR1 and activating Akt signaling pathway.30

Increased score of IL-8 is linked 
to a lethal cytokine storm and 
pathological phenotypes in 
COVID-19 patients.31

AAT to sequester IL-8, to limit both 
neutrophil influx and acute lung injury.

AAT inhibits host cell transmembrane protease serine 2 
(TMPRSS2) receptors.32

TMPRSS2 receptors processes 
the SARS-CoV-2 spoke (S) 
protein, allowing protein–ACE2 
interaction inducing SARS-CoV-2 
virus uptake.33

AAT to limit the uptake of SARS-CoV-2 
by inhibiting extracellular proteases on 
the host cells.

AAT inhibits disintegrin/metalloproteinase 17 
(ADAM17).32

ADAM17 is a protease causing 
shedding of ACE2 (to hamper 
viral entry).34

AAT to limit the uptake of SARS-CoV-2 
virus particles.

ADAM17, as a cell surface 
metalloprotease, cleaves 
membrane-bound TNF-α to 
soluble TNF-α.

AAT to harness the level of TNF-α and 
guard against diffuse inflammatory tissue 
damage.36

Increased serum levels of soluble 
TNF-α receptor is associated 
with mortality of ICU COVID-19 
patients.35

(Continues)
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validate if COVID-19 patients could benefit from AAT sup-
plementary therapy. Being an FDA-approved drug with a re-
markable clinical safety record,10 AAT is currently tested in 
three registered interventional clinical trials as summarized 
in Table 2. In addition to the AAT, several other serine pro-
tease inhibitors might be of benefit in COVID-19 patients 
since host proteases could facilitate viral entry, replication 
and eventually mediate the pathogenesis of viral infections, 
such as SARS-CoV-2. Therefore, protease inactivators are 
being recently considered as potential antiviral drugs for 

treatment of COVID-19.11 Ulinastatin, another intrinsic 
trypsin inhibitor, has significant anti-inflammatory action 
through decreasing the plasma levels of TNF-α, IL-6, and C-
reactive protein. Moreover, it has significant anti-oxidative 
effects through lowering the level of superoxide dismutase, 
malondialdehyde, justifying its clinical use in several disor-
ders as the ARDS as it improves lung function, oxygenation, 
and eventually shortens the period of mechanical ventilations 
and total hospital stay. Interestingly, high doses of ulinastatin 
were recently administered via intravenous infusion and are 

Role of AAT protein Relevant role in COVID-19
Potential applications/mechanisms of 
AAT in COVID-19 patients

AAT increases macrophage cells polarization toward the 
M2 phenotype.37

While M1-like macrophages 
secrete of pro-inflammatory 
cytokines (e.g., IL-6, TNF-α, and 
IL-1β) that cause the “cytokine 
storm,” M2-like macrophages are 
critical to heal tissue damage at 
the aftermath of SARS-CoV-2 
infection.38

AAT, as an immune modulator, to induce 
balanced antiviral immune response that 
leads to successful pathogen clearance 
without tissue damage.

AAT favors the differentiation of T lymphocytes toward 
the Treg phenotype.8,39

Tregs might play a direct pro-
inflammatory role during the 
severe phase of COVID-19.40

AAT as an immunomodulator to limit 
the “cytokine storm” and inflammation-
mediated severe lung damage.41

AAT depicts an intracellular antiproteolytic activity by 
binding and inactivating active caspase-3, circumventing 
alveolar cell (i.e., pneumocytes, endothelial, or 
myofibroblast) injury/death.42

Activated caspase-3 is a marker of 
caspase-dependent apoptosis seen 
in tissues of severe COVID-19 
patients due to various SARS-
CoV-2-encoded accessory protein 
(e.g., ORF3a, ORF-3b, ORF-6 
and ORF-7a).43,44

AAT to protect against caspase-3-induced 
alveolar wall destruction and oxidative 
stress.42,45

AAT suppresses TGF-β/Smad3 signaling.46 SARS-CoV-2 spike binds to 
its receptor and activates the 
TGF-β pathways, triggering 
inflammation, apoptosis, and 
fibrosis, which led to severely 
damaging effects in lungs and 
other tissues of COVID-19 
patients.21

AAT to mitigate TGF-β-induced 
immediate and long-term damaging 
effects of COVID-19.21

AAT controls ATP-induced IL-1β release from human 
mononuclear white blood cells by a triple-membrane-
passing signaling pathway involving CD36, iPLA2β, and 
nAChR.47

IL-1β induces generation of other 
cytokines, including IL-6 and 
TNF-α, thereby contributing to 
the “cytokine storm.”48

AAT to mitigate the hyperinflammatory 
nature “cytokine storm” of COVID-19.25

AAT suppresses superoxide production by activated 
neutrophils.49

SARS-CoV-2 infection 
pathogenesis is related to 
oxidative stress that perpetuates 
the cytokine storm cycle, 
blood clotting mechanism, and 
exacerbates hypoxia and organ 
failure.50

AAT to reduce oxidant-driven 
amplification of inflammation.

AAT reduces neutrophil chemotaxis which may well 
reflect its ability to inhibit cellular cathepsin G activity.30

Neutrophil recruitment and 
related activity might exacerbate 
COVID-19 immunopathology.51

AAT to modulate the recruitment of 
neutrophils and hence the downstream 
inflammatory response driven them and 
their products.

T A B L E  1   (Continued)
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being suggested to have a beneficial impact on patients with 
COVID-19.12-14

4  |   FUTURE PERSPECTIVES

The better understanding of specific infection pathways of 
SARS-CoV-2 virus into the host cells, as well as mechanisms 
in the development of a fatal “cytokine storm” has encour-
aged several research groups to investigate the potential use 
of mesenchymal stem cells (MSCs) to control such exces-
sive immune reaction thanks to their side-effect free immu-
nomodulatory effect.15-17

Moreover, MSC engineering appears to be a promis-
ing strategy to overexpress AAT that could be used to treat 
AATD, or to augment AAT in patients with normal AAT 
plasma levels.18 This approach is quite flexible as patients 
might benefit from the versatile secretome of MSCs, in addi-
tion to the AAT expression.19

Other than AAT gene transfection, MSCs could be also 
co-transfected with other genes that could be of benefit to 
COVID-19 patients, such as the bone morphogenetic protein 
(BMP) 7 gene.20 BMP7 is a secreted protein that belongs to 
the TGF-β superfamily and regulates cell proliferation, dif-
ferentiation, apoptosis, and antagonizes TGF-β signaling 
and its actions which may be of benefit in the treatment of 
COVID-19-related multiorgan injuries.21

If fact, myriad virus-based gene delivery trials were con-
ducted using various virus carriers. Nevertheless, results ob-
tained did not achieve protective levels of AAT expressed in 
the lung interstitium.22 Moreover, the nonspecific targeting of 
viral/non-viral gene carriers and their systemic administration 
were found to bring about unsought off-target adverse effects. 
Therefore, MSC-based gene therapy could be a promising 
therapeutic strategy to circumvent the problem of targeted 
delivery and sufficient level of gene expression,15 especially 
when we know that most of the intravenously administered 
MSCs seem to be trapped in the lungs during the first pass.23
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