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The dopamine system has been suggested to play a role in social anxiety disorder (SAD), partly based on molecular
imaging studies showing reduced levels of striatal dopaminergic markers in patients compared with control subjects. However,
the dopamine system has not been examined in frontal and limbic brain regions proposed to be central in the pathophysiology
of SAD. In the present study, we hypothesized that extrastriatal dopamine D2-receptor (D2-R) levels measured using
positron emission tomography (PET) would predict symptom reduction after cognitive behavior therapy (CBT). Nine SAD
patients were examined using high-resolution PET and the high-affinity D2-R antagonist radioligand [11C]FLB 457, before and
after 15 weeks of CBT. Symptom levels were assessed using the anxiety subscale of Liebowitz Social Anxiety Scale (LSASanx). At
posttreatment, there was a statistically significant reduction of social anxiety symptoms (Po0.005). Using a repeated
measures analysis of covariance, significant effects for time and time� LSASanx change on D2-R-binding potential (BPND)
were shown (Po0.05). In a subsequent region-by-region analysis, negative correlations between change in D2-R BPND and
LSASanx change were found for medial prefrontal cortex and hippocampus (Po0.05). This is the first study to report a direct
relationship between symptom change after psychological treatment and a marker of brain neurotransmission. Using an intra-
individual comparison design, the study supports a role for the dopamine system in cortical and limbic brain regions in the
pathophysiology of SAD.
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Introduction

The dopamine system is involved in social behavior, learning
and emotional regulation, predicting a role in the pathophy-
siology of social anxiety disorder (SAD). Molecular imaging
studies have provided preliminary support for this hypothesis,
showing reduced levels of striatal dopaminergic markers both
pre- and postsynaptically in patients compared with control
subjects.1–3 However, negative results have also been
reported.4 A possible explanation for this inconsistency may
be that none of the studies performed thus far have examined
the dopamine system in limbic or prefrontal brain regions,
which have shown to be involved in SAD based on brain
activation studies (for a review, see ref. 5). In part, this has
been due to methodological limitations, as the first generation
D2-receptor (D2-R) positron emission tomography (PET)
radioligands such as [11C]raclopride have insufficient affinity
for measurements in low-density extrastriatal brain regions.

PET studies have shown a marked inter-individual variability
in levels of dopaminergic markers in healthy control subjects.6

This constitutes a drawback in studies where patients and
control subjects are compared, as large sample sizes are
needed in order to detect small differences. Furthermore,

group differences in biomarker levels do not directly infer

causal links to disease symptoms. An experimental design

where the biological marker is observed as a function of

change in disease state could be considered a more powerful

strategy in these respects. In psychiatry, the development of

effective forms of psychotherapy offers a unique opportunity to

improve symptoms without directly interfering with brain

biochemistry. For SAD, cognitive behavior therapy (CBT)

leads to clinical improvement in up to 75% of patients.7,8

Although several studies have investigated the effect of

psychotherapy on brain activation as assessed using PET

and functional magnetic resonance imaging (MRI), reports on

changes in neurotransmission have been scarce. Increased

binding to the serotonin transporter in the midbrain after 12

months of psychodynamic therapy was demonstrated in a

subgroup of patients with depression. No change was shown

in dopamine transporter levels.9 In a subsequent study using

PET and [11C]WAY-100635, 5HT1a-receptor binding was

shown to increase in patients with major depressive disorder

after brief psychodynamic psychotherapy.10 However, in

neither of these studies a relationship could be shown

between change in biomarker levels and symptom improve-
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ment. Finally, in a recent study in patients with depression, no
effect of psychodynamic psychotherapy was shown on
dopamine D2-R binding in the striatum.11 To date, no studies
have examined the effect of CBT on markers of brain
neurotransmission. As CBT is an intensive treatment with
emphasis on repeated exposure to feared stimuli in order to
reduce anxiety levels (for example, see ref. 12), this form of
psychotherapy could be a more promising venue for detecting
neurobiological correlates to symptom change.

In the present study, the primary objective was to
investigate the role of the dopamine system in SAD using an
inter-individual comparison design, by examining the relation-
ship between change in symptom levels after CBT and
change in dopamine D2-R binding. We predicted that
increased binding potential (BPND) would be associated
specifically with reduced anxiety levels in social situations.
The study was performed using the high-affinity D2-R
antagonist radioligand [11C]FLB 457,13 which enables mea-
surements in extrastriatal brain regions of particular interest
for SAD, and examinations were conducted on an high-
resolution research tomograph PET system for increased
anatomical precision.14

Materials and methods

Subjects. Nine patients with SAD were recruited from a
study comparing CBT administered via the Internet versus
group therapy, the results of which have been reported
elsewhere.15 As part of the treatment study, all subjects were
interviewed by a senior psychiatrist and were found to fulfill
DSM IV criteria for SAD16 using the Structured Clinical
Interview for DSM-IV axis I disorders. Comorbidity, including
drug addiction and abuse, was assessed using the Mini-
International Neuropsychiatric Interview.17 After inclusion in
the PET study, patients were randomized to treatment either
in group format or treatment via the Internet. Subjects were
healthy as determined by a physical examination and routine
blood tests as well as a brain MRI examination. Three
subjects had previously been treated with serotonin or
serotonin and noradrenaline reuptake inhibitors, but none
had received pharmacological treatment for SAD during the 2
months preceding the study. None were nicotine users. One
patient fulfilled criteria for concurrent panic disorder with
agoraphobia, otherwise no comorbidity was present. For
additional subject characteristics, see Table 1. The study
was approved by the Regional Ethics Review Board as well
as the Radiation Safety Committee at the Karolinska
Hospital, Stockholm. Subjects were included only after
giving informed consent in writing.

Symptom ratings. At inclusion in the treatment study and
after treatment, patients were assessed with the clinician-
administered Liebowitz Social Anxiety Scale (LSAS).18 A
self-rating version of the same scale (LSAS-SR)19 was
completed via the Internet directly before and after treatment.
LSAS is composed of two subscales, one measuring anxiety
in a range of different situations (LSASanx), and the other
assessing the degree of avoidance in the same situations
(LSASavoid). As we hypothesized that D2-R binding would be

related primarily to anxiety levels, LSASanx was the outcome
variable of main interest. In several cases, the time between
clinical rating and PET examinations was extended up to
several months, and in some instances the rating was per-
formed by different psychiatrists before and after treatment.
Therefore, only LSAS-SR scores were included in the analysis.
PET1 was performed on average 13±14 (mean±s.d.) days
before pre-treatment ratings, and the time between post-
treatment ratings and PET 2 was 17±15 days.

Treatment. Three patients received cognitive behavioral
group therapy12 and six patients Internet-based CBT.20 The
duration of treatment was 15 weeks in both conditions. The
treatment employed in the study, in both delivery formats,
followed a CBT-model stressing the importance of avoidance
and safety behaviors as well as misinterpretations of social
events and internal focus as maintaining factors of SAD.21,22

The theoretical basis and proposed mechanisms were the
same and the main finding from the treatment study, from
which the present sample was recruited, was that Internet-
based CBT and group CBT yield equivalent treatment
effects.15 The median number of completed sessions or
modules for both delivery formats was 13 of 15 (mean¼ 11.5;
s.d.¼ 3.5). All participants were exposed to the main
components of the treatment.

MR examinations. As part of the inclusion process, all
patients performed a T1- and T2-weighted MRI examination
using a 1.5T GE Signa Scanner (Milwaukee, WI, USA). The
T2 image was inspected for macroscopic pathology, and the
T1 image was used for the subsequent image analysis.

Radiochemistry. The radioligand [11C]FLB457 is a
substituted benzamide with the affinity of 0.02 nmol l�1 for
D2 and D3 dopamine receptors in vitro, which is significantly
higher than that of [11C]raclopride (1–2 nmol l�1).13 This
characteristic allows for examination of extrastriatal brain
regions where D2-R densities are low. [11C]FLB457 was
synthesized as described previously.23 The injected dose
for PET1 and PET2 was 468±16 and 465±19 MBq, respec-
tively. For technical reasons, information on specific activity
and total mass injected was lost for one PET1 and one PET2,
respectively. For the remaining examinations, the average

Table 1 Patient demographics

Patient Age
(years)

Sex Duration of
disorder
(years)

Family
history

Pre LSAS
score

1 23 F 7 � 41
2 38 M 31 + 71
3 23 M 15 � 63
4 58 F 45 � 72
5 37 F 31 + 84
6 30 F 19 + 43
7 26 F 3 � 41
8 35 F 28 � 76
9 25 M 10 + 44

Abbreviations: F, female; +, indicates at least one of parents affected; LSAS,
Liebowitz Social Anxiety Scale; M, male.
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specific activity was 1436±2348 and 658±583 GBq mmol�1

for PET1 and PET2, and the mass of injected FLB 457 was
0.41±0.3 and 0.58±0.6mg, respectively. The injected dose,
specific activity and mass did not differ between pre- and
posttreatment (P40.5, paired t-test), and importantly, there
was no correlation between injected mass and either BPND or
symptom change.

PET examinations. PET examinations were performed on a
high-resolution research tomograph system (Siemens Molecular
Imaging, Knoxville, TN, USA). Before the first PET examina-
tion, a plaster helmet was manufactured for each subject
individually to reduce head movement during measurements.
The time between PET1 and PET2 was 146±23 days.
Average time for injection was 12:24 for PET 1 and 11:53 for
PET2. Before the emission, a 5-min transmission scan was
performed to correct for attenuation and scatter. [11C]FLB
457 was injected in the antecubital vein as a bolus dose and
radioactivity was measured for 87 min. For two subjects, the
second examination was interrupted between 910 and 1416 s
and 3361 and 3623 s, respectively. These intervals were
excluded from the subsequent kinetic analysis. Images were
reconstructed using the ordinary Poisson three-dimensional
ordered subset expectation maximization including the point
spread function algorithm, yielding in an in-plane resolution of
1.5 mm at half-maximum at the center of field-of-view.14

Image analysis. PET images were corrected for head
movement using a frame-by-frame realignment procedure,24

with each frame of the image serving as a reference to the next.

T1 MR images were realigned to the anterior commissure –
posterior commissure plane. Regions of interest (ROIs) were
manually defined on the MRI for each subject individually,
using Human Brain Atlas software25 (Figure 1). Regions
chosen were amygdala, hippocampus and prefrontal cortices,
based on their proposed role in SAD,5 and ROIs were
defined using previously published guidelines.26,27 The
prefrontal cortex was divided into dorsolateral, medial and
orbitofrontal regions.27 Striatal regions were not evaluated, as
the high affinity of [11C]FLB 457 does not allow for equilibrium
within the frame of a PET experiment, thus preventing
meaningful calculations of radioligand binding.28 MRIs were
segmented into gray matter, white matter and cerebrospinal
fluid, and coregistered to each of the two PET images using
SPM5. The transformation parameters obtained were used
to subsequently apply the ROIs on the dynamic PET images to
generate time activity curves (TACs). For frontal cortical
regions, only voxels belonging to the gray matter segment
was included in the ROI. Also, partial volume effect correction
using the Meltzer method was applied for these regions to avoid
smearing effects from neighboring CSF voxels.29 Image
processing was performed on SPM5 operating on Matlab
R2007b (MathWorks, Natick, MA, USA).

BPND was calculated from the TACs using the simplified
reference tissue model (SRTM), with cerebellum as refer-
ence. In this context, BPND represents the ratio at equilibrium
of specifically bound radioligand to that of nondisplaceable
radioligand in tissue.30 The SRTM has previously been
validated for [11C]FLB 457.28 Since we had no hypothesis of
side differences in the involvement of dopaminergic neuro-
transmission in SAD, BPND for all regions was calculated

Figure 1 (a–c) Magnetic resonance images with regions of interests for amygdala (red), hippocampus (yellow), dorsolateral prefrontal cortex (cyan), medial prefrontal
cortex (blue) and orbitofrontal cortex (green). (d–f) Summed images of [11C]FLB 457 binding from the same patient, in corresponding coronal, sagittal and horizontal
projections.
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using spatially averaged TACs for right and left sides in order
to improve TAC statistics.

Statistical analysis. Changes in LSAS scores and D2-R
BPND were assessed using a paired t-test. Associations
between D2-R BPND and LSAS scores at baseline were
calculated using partial correlations, controlling for age. The
relationship between changes in regional D2-R binding and
changes in LSASanx scores was assessed using a repeated
measures analysis of covariance, with time and region as
within-subject factors and LSASanx percent change as a
covariate. Secondary analyses were performed for LSASavoid

and the two subscales combined. Subsequently, correlation
coefficients were calculated between percent change in D2
BPND and percent change in LSASanx scores. In a post-hoc
analysis, individuals were divided into responders (X50%
symptom reduction) and non-responders, and group differ-
ences in change in BPND values were explored using a one-
way analysis of variance. For all tests, results were considered
significant at Po0.05. Statistical analysis was performed
using PASW 18 (SPSS, Chicago, IL, USA).

Results

Changes in social anxiety levels and D2-R BPND. All
patients improved after treatment, and the change in total
LSAS scores as well as anxiety and avoidance subscales was
statistically significant (Table 2). There was no difference in
LSAS change between patients receiving group therapy and
patients treated via the internet, either for the whole scale or
for subscales (P40.74). At posttreatment, four (44%)
participants no longer met diagnostic criteria for SAD. On a
group level, the difference in D2-R-binding pre- and
posttreatment did not reach statistical significance for any of
the regions, as assessed using a paired t-test (Table 2).
However, the direction and degree of change showed a consi-
derable interindividual variability, which enabled computation
of meaningful correlations with symptom change.

Associations between D2-R BPND change and social
anxiety change. In the repeated measures analysis of
covariance, significant effects for time and time� symptom
score change were shown for LSASanx (F¼ 7.61, P¼ 0.028
and F¼ 7.77, P¼ 0.027). In a subsequent region-by-region

analysis, negative correlations between change in D2-R
BPND and LSASanx change were shown for dorsolateral
prefrontal cortex (r¼�0.78, P¼ 0.013), medial prefrontal cortex
(r¼�0.82, P¼ 0.007) as well as for hippocampus (r¼�0.81,
P¼ 0.008; Figure 2). The correlations in medial prefrontal cortex
and hippocampus survived Bonferroni correction (adjusted
P-value o0.01). In these regions, responders showed an
increase in binding (5.0% and 9.5%, respectively, n¼ 4),
whereas non-responders on average showed a decrease
(�8.6% and �8.3%, n¼ 5). Despite few individuals in each
group, this difference was significant for MFC (P¼ 0.003)
and trend-level significant for hippocampus (P¼ 0.097).
There was no significant effect of time or time� symptom
change on the avoidance subscale. This difference of effects
between subscales was also reflected in that when com-
bining the two scales as covariate, trend-level effects were
observed for time (F¼ 3.93, P¼ 0.088) and the interaction
term for time� change (F¼ 3.74, P¼ 0.095).

Pre- and posttreatment correlations between D2-R BPND

and social anxiety. There was no correlation between D2-R
BPND and LSASanx or LSASavoid scores pre- or posttreat-
ment, after controlling for age.

Discussion

In this study, we assessed the role of the extrastriatal
dopamine system in SAD, by examining changes in dopamine
D2-R binding as a function of symptom change after CBT.
Importantly, the aim of this study was not to examine the
effects of psychological treatment on D2-R binding in SAD, as
this would entail the use of a control condition. Instead, CBT
was used as a tool to alter the disease state non-
pharmacologically. Consequently, the association between
change in symptom scores and changes in receptor binding
was the primary outcome, rather than changes pre- and
posttreatment on a group level. Accordingly, whereas the
average difference between PET1 and PET2 was within
the test-retest variability shown previously for [11C]FLB 457,31

the interindividual variability in change was sufficient for
correlative analyses. Using a similar design, changes in
D1-receptor binding was recently shown to be related to
improvement in working memory capacity after working
memory training,32 and we now the first time demonstrate
a direct relationship between symptom reduction after

Table 2 D2-receptor-binding potential and symptom scores pre- and posttreatment

Pre Post % Change Paired t-test

m s.d. m s.d. m s.d. t P

Dorsolateral PFC BPND 1.34 0.39 1.28 0.31 �3.6 8.7 1.45 0.186
Medial PFC BPND 1.17 0.30 1.13 0.27 �2.6 8.3 0.91 0.388
Orbitofrontal cortex BPND 1.43 0.38 1.39 0.33 �1.5 8.3 1.20 0.266
Amygdala BPND 3.51 0.49 3.55 0.51 2.3 16.6 �0.21 0.842
Hippocampus BPND 1.21 0.22 1.20 0.27 �0.4 15.9 0.18 0.861

LSAS total 59.4 17.2 31.7 11.2 �45.6 15.7 5.85 0.000
LSAS anxiety 32.3 9.5 19.3 6.7 �38.5 19.0 4.74 0.001
LSAS avoidance 27.1 8.2 12.3 5.3 �52.5 21.7 5.48 0.001

Abbreviations: BP, binding potential; LSAS, Liebowitz Social Anxiety Scale; m, mean; PFC, prefrontal cortex; s.d., standard deviation.
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psychotherapy and change in a marker of brain neurotrans-
mission.

A role for the dopamine system in social behavior has been
demonstrated in both animal research and human studies.
Molecular imaging studies have shown negative correlations
between striatal DA markers and the personality trait
detachment as well as different measures of social conformity
and low social status.33–39 Recently, we extended this line of
research by demonstrating a relationship between social
desirability and D2-R binding in the medial temporal lobe as
measured using [11C]FLB 457.40 In the interpersonal domain,
these personality traits can be viewed to indicate social
submission as opposed to social dominance,40 and the results
thus mirror research on rodents and non-human primates
where dopaminergic neurotransmission has been linked to
the dimension of dominance-submissive behavior.41–44 Of
particular interest is the study by Morgan et al.,44 where D2-R
binding in monkeys was shown to change as a function of
hierarchical rank as the animals moved from individual to
social housing. The observation of a relationship between
change in D2-R binding and social anxiety symptoms is
congruent with these lines of research and can be viewed as
support for a suggested link between the dominant-submis-
sive dimension of interpersonal behavior and SAD.45 The
correlation was not significant for LSASavoid, which may be
explained by the more heterogeneous nature of avoidant
behavior. For instance, reduced avoidance with maintained
safety behaviors is not expected to yield less anxiety.21

SPECT studies have previously shown reduced dopamine
D2-R binding in the striatum in 10 patients with SAD, as well as
in a sample of 7 with comorbid OCD in comparison to control
subjects.1,2 On the presynaptic side, lower dopamine trans-
porter binding was demonstrated in 11 patients.3 In a more
recent study using PET, no difference was shown in D2-R
availability, either at baseline or after an amphetamine
challenge, and there was also no difference in binding to the
dopamine transporter (n¼ 15, 12 and 12, respectively).4

However, none of these studies assessed dopamine recep-
tors in extrastriatal brain regions.

In brain activation studies, one of the most replicated
findings is increased activation in amygdala in response to
fearful social stimuli46–48 but notably, negative findings have
also been reported.49,50 Other regions showing altered
activation in SAD include hippocampal and prefrontal cor-

tices.5,46,47,51–53 For the medial prefrontal cortex, a role
specifically for monitoring social evaluation has been shown
in SAD patients51,52 and this region is also implicated in fear
extinction.54,55 Dopaminergic transmission in the hippocam-
pus has shown to be involved in memory function in animal
research as well as in molecular imaging studies.56–59 Taken
together, the present findings of a correlation between
dopaminergic function in hippocampus and prefrontal cortical
regions may be related to the role of these regions in learning
and social evaluation.

The primary limitation of this study is the small sample size.
Although a total of 126 patients were included in the treatment
study,15 for the present study we applied more strict inclusion
criteria in order to avoid confounding effects on D2-R
availability, for instance by the use of concomitant pharma-
cological treatment or nicotine. Furthermore, some patients
were lost due to time constraints. Second, we cannot
determine whether the changes in BPND are due to changes
in receptor density or apparent affinity, as these parameters
cannot be dissociated based on a single PET measurement.30

Among the factors influencing apparent affinity, endogenous
dopamine levels have shown to affect [11C]FLB 457 bind-
ing,60–62 however, other studies have been negative.63,64 In
rodents, where neurotransmitter levels are more accessible,
increased DA release has been observed in response to
stressful stimuli.65,66 Although studies employing multiple
PET examinations with different specific activity of [11C]FLB
457 have shown that receptor density accounts for most of the
variance in BPND,67 it cannot be excluded that differences in
endogenous dopamine levels could partly account for the
associations observed, for instance reflecting higher DA
reactivity during the examination procedure in patients with
lesser improvement after treatment.

In conclusion, the results from this preliminary study
indicate that plastic changes in the dopamine system may
underlie reduced anxiety symptoms in SAD patients after
treatment with CBT. The study supports a role for the
dopamine system in SAD, and shows that intra-individual
comparisons can be a promising approach in identifying brain
biomarkers for psychiatric disorders.
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