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Summary

Targeted gene regulation is indispensable for repro-
gramming a cellular network to modulate a microbial
phenotype. Here, we adopted the type II CRISPR
interference (CRISPRi) system for simple and effi-
cient regulation of target genes in Pseudomonas
putida KT2440. A single CRISPRi plasmid was gener-
ated to express a nuclease-deficient Cas9 gene and
a designed single guide RNA, under control of L-
rhamnose-inducible PrhaBAD and the constitutive Bio-
brick J23119 promoter respectively. Two target
genes were selected to probe the CRISPRi-mediated
gene regulation: exogenous green fluorescent pro-
tein on the multicopy plasmid and endogenous glpR
on the P. putida KT2440 chromosome, encoding
GlpR, a transcriptional regulator that represses
expression of the glpFKRD gene cluster for glycerol
utilization. The CRISPRi system successfully
repressed the two target genes, as evidenced by a
reduction in the fluorescence intensity and the lag
phase of P. putida KT2440 cell growth on glycerol.

Furthermore, CRISPRi-mediated repression of glpR
improved both the cell growth and glycerol utiliza-
tion, resulting in the enhanced production of meval-
onate in an engineered P. putida KT2440 harbouring
heterologous genes for the mevalonate pathway.
CRISPRi is expected to become a robust tool to
reprogram P. putida KT2440 for the development of
microbial cell factories producing industrially valu-
able products.

Introduction

Pseudomonas putida KT2440 is a Gram-negative soil
bacterium that is classified as a generally regarded as
safe (GRAS)-certified strain (Loeschcke and Thies,
2015; Nikel and de Lorenzo, 2018). This strain has
attracted substantial attention for industrial applications
owing to its fast growth, native metabolic versatility and
high robustness in harsh environmental conditions,
which are particularly suitable traits for bio-remediation
of environmental contamination and metabolic engineer-
ing (Nikel et al., 2016; Nikel and de Lorenzo, 2018). In
addition, genome-scale metabolic models of P. putida
KT2440 were developed to better understand the versa-
tile metabolism of the strain at the systems level, which
were applied to reprogram the phenotype for biotechno-
logical implementations (Nogales et al., 2008; Sohn
et al., 2010; Hintermayer and Weuster-Botz, 2017).
Indeed, well-established molecular biological tools,
including systems for gene expression and genome
engineering, have been harnessed in P. putida KT2440
to produce biofuels and pharmaceuticals by metabolic
engineering (Mart�ınez-Garc�ıa and de Lorenzo, 2011;
Cook et al., 2018).
Although P. putida KT2440 has been widely used as

a chassis for metabolic engineering, synthetic biology
and bio-remediation, there is no reliable and standard-
ized method for the sequence-specific regulation of
genes of interest. Recently, clustered regularly inter-
spaced palindromic repeats (CRISPR) and CRISPR-
associated (Cas) protein have emerged as versatile gen-
ome editing tools for diverse organisms, including bacte-
ria (Cho et al., 2018), mammalian cells (Komor et al.,
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2017) and plants (Ma et al., 2016). Besides genome
editing, the CRISPR-Cas system was repurposed to con-
trol gene expression in a method referred to as CRISPR
interference (CRISPRi) (Qi et al., 2013). Like CRISPR-
Cas systems, CRISPRi also requires a nuclease-defi-
cient Cas9 (dCas9) protein and a specifically designed
single guide RNA (sgRNA) comprising a 20-nucleotide
(nt) spacer sequence complementary to the target DNA
sequence. The dCas9-sgRNA complex then binds to the
strand of target DNA, which interferes with transcription
initiation or elongation by blocking RNA polymerase
binding (Qi et al., 2013). The CRISPRi system has also
been widely used as an exceptionally simple and effi-
cient tool for sequence-specific regulation of target
genes in a number of organisms, including Escherichia
coli (Qi et al., 2013), Bacillus subtilis (Peters et al.,
2016) and mammalian cells (Gilbert et al., 2013).
CRISPRi-based gene regulation has also been

reported for some Pseudomonas spp. Tan et al. (2018)
developed a tunable CRISPRi system for realizing
dynamic gene repression in Pseudomonas aeruginosa
using the type II dCas9 homologue of Streptococcus pas-
teurianus. Specifically, they constructed two plasmids to
express the dCas9 gene and sgRNA from a Plac and Ptet

promoter respectively. However, the developed two-plas-
mid CRISPRi system showed leaky expression of the
dCas9 gene in P. aeruginosa, which resulted in repres-
sion of the target gene in the absence of the inducer.
Moreover, the type I CRISPR-dCas system was adopted
as a transcriptional repressor in P. aeruginosa PA14,
which requires deletion of the Cas3 gene from P. aerugi-
nosa or expression of anti-CRISPR proteins from a
prophage (Bondy-Denomy et al., 2015). More recently, a
CRISPRi technique was developed using dCas9 of Strep-
tococcus pyogenes (SpdCas9), which demonstrated func-
tionality using enhanced green fluorescent protein
(eGFP) in P. putida KT2440 (Sun et al., 2018). However,
this study lacked CRISPRi applications to metabolic engi-
neering or synthetic biology of P. putida KT2440.
Here, we present an L-rhamnose-inducible single-plas-

mid CRISPRi system for achieving the simple and effi-
cient regulation of target genes in P. putida KT2440.
This regulatable CRISPRi system was able to control the
expression of exogenous and endogenous genes in
P. putida KT2440. We further provide examples of its
application for metabolic flux alteration to enhance the
production of mevalonate (MVA), a key intermediate
metabolite for the biosynthesis of a myriad of terpenoids.
Pseudomonas putida KT2440 shows a prolonged lag
phase on glycerol as the sole carbon source; thus,
strategies to reduce this lag phase could help to over-
come this limitation of the strain in using a cost-effective
renewable resource for the microbial production of ter-
penoids. Using a key regulator involved in glycerol

metabolism of P. putida KT2440 as a target gene for the
single-plasmid CRISPRi system proved to be a robust
platform for modulation of endogenous gene expression.
This system can therefore accelerate the metabolic engi-
neering of P. putida KT2440 for the development of
microbial cell factories that can produce industrially valu-
able products in the future.

Protocol

Overview of the CRISPRi system

To develop a CRISPRi system in P. putida KT2440, we
first created a single pSECRi plasmid that expresses cat-
alytically inactive SpdCas9 and a target-specific sgRNA
(Fig. 1A). By designing a 20 bp spacer sequence to bind
the target sequence (N20 spacer sequence, Fig. 1B), the
SpdCas9-sgRNA complex can be recruited to the gene of
interest, leading to transcriptional repression. For expres-
sion of the SpdCas9 protein and sgRNA, the low copy
number pSEVA221 plasmid (Kues and Stahl, 1989) was
used as the backbone plasmid for generating pSECRi,
which minimized metabolic burden and allowed other
antibiotic-resistance genes and replication origins to be
swapped for use in applications with other bacterial hosts
(Silva-Rocha et al., 2013). To enable tunable control of
gene repression in P. putida KT2440, the SpdCas9 gene
was first placed under control of the L-rhamnose-inducible
promoter (PrhaBAD) including RhaR and RhaS regulators,
whereas sgRNA expression was driven by a constitutive
BBa_J23119 promoter (http://parts.igem.org/Part:BBa_
J23119, hereafter named as J23119) on a pSEVA221-
derived plasmid. PrhaBAD is a tightly regulated promoter
among various inducible promoters including isopropyl b-
D-1-thiogalactopyranoside (IPTG)-inducible (PlacUV5, PT7)
and XylS/Pm promoters that have been widely used in
P. putida KT2440 for the expression of heterologous
genes in metabolic engineering efforts (Calero et al.,
2016). In E. coli, the RhaS and RhaR activators of the
PrhaBAD promoter in the CRISPRi plasmid can be removed
to reduce the plasmid size without changing functionality
(Wegerer et al., 2008). However, RhaS and RhaR activa-
tors are essential to the functionality of the PrhaBAD pro-
moter in P. putida KT2440 (Jeske and Altenbuchner,
2010). Therefore, we chose the L-rhamnose-inducible and
J23119 promoters as an orthogonal control for transcrip-
tion of the SpdCas9 gene and sgRNA, respectively, in the
present CRISPRi system.

General workflow for CRISPRi

To implement CRISPRi for repression of target genes,
sgRNA design, cloning and expression are carried out.
The general CRISPRi steps for P. putida KT2440 using
the pSECRi harbouring the SpdCas9 are summarized as
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follows: (i) choose the target DNA sequence to be
repressed using available Pseudomonas genome data-
bases (http://www.pseudomonas.com) or National Center
for Biotechnology Information (NCBI, https://www.ncbi.
nlm.nih.gov); (ii) determine the DNA loci to be targeted.
For efficient repression, the non-template DNA strand of
the 5ʹ region, the 5ʹ UTR (untranslated region), or both
DNA strand of the promoter region (-35 and -10 boxes)
can be chosen; (iii) select the base-pairing sequence of
the sgRNA (C20, the complementary sequence of N20
in Fig. 1B). To bind the non-template strand of the target
DNA sequence, search the transcribed sequence for
5ʹ-CCN-C20-3ʹ. CCN (5ʹ-NGG-3ʹ on the template strand)
is the proto-spacer adjacent motif (PAM) sequence of
SpdCas9 in the pSECRi plasmid (Fig. 1C). The reverse
complementary sequence of C20 should be used as the
spacer sequence of the sgRNA; (iv) If necessary, check
for off-targets using ARTEMIS Software (https://www.sange
r.ac.uk/science/tools/artemis). Using the 12 bp seed
sequence and PAM sequence, perform a ‘base pattern’
search against the whole Pseudomonas genome. Use
only sgRNA sequences without any predicted off-targets
(see sgRNA design for CRISPRi section); and (v) clone
the sgRNA into the pSECRi plasmid under the synthetic
J23119 constitutive promoter (see Construction of the
CRISPRi plasmid section).

sgRNA design for CRISPRi

For the application of CRISPRi, the first step is design-
ing the spacer sequence of sgRNA to regulate the gene
of interest. If information regarding the promoter location
is available, it is possible to design the sgRNA-binding
site to prevent transcription initiation, but in general, it is
easier to select the sgRNA-binding site in the coding
sequence (CDS) of the target gene to block transcrip-
tional elongation. For SpdCas9, the 30 end of the target
region should contain a PAM sequence (50-NGG-30) and
a 20 bp spacer is adequate for efficient repression of the
target gene expression (Fig. 1C) (Qi et al., 2013). For
CRISPRi, a critical point is that the sgRNA should bind
to the non-template DNA strand proximal to the ATG
translational start codon of the target gene for high
repression efficiency (Qi et al., 2013; Kim et al., 2017).
Although off-target effects are less concerning for CRIS-
PRi, a genome-wide search for matching sequences with
the PAM-proximal 12 bp ‘seed’ region including 50-NGG-
30 PAM might be helpful for improving the specific
repression of target genes (Bikard et al., 2013). For this
purpose, we used ARTEMIS Software to analyse potential
off-target sites against the P. putida KT2440 genome
sequence (NCBI number: NC_002947) by searching
genes that contain the 15 bp sequence (i.e. 12 bp seed
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Fig. 1. A single-plasmid-based CRISPRi system in Pseudomonas putida KT2440. (A) The CRISPRi expression plasmid, pSECRi. The CRISPRi
system consists of an L-rhamnose-inducible SpdCas9 protein and a designed sgRNA chimera encompassing a J23119 constitutive promoter in
a low copy (RK2 origin) pSEVA221 plasmid. (B) The architecture of customized sgRNAs with the constitutive J23119 promoter. The sgRNA
consists of base-pairing nucleotides for specific target DNA sequence binding (N20 spacer sequence, 20 bp), a 42 bp SpdCas9-binding handle
and 40 bp Streptococcus pyogenes terminator. A plasmid-borne green fluorescent protein (GFP) and endogenous GlpR were chosen as target
sites. (C) Schematic representation of CRISPRi targeting the gene of interest. A 20 bp sgRNA spacer sequence targeting the gene was
designed according to the following criteria; (i) the 30 end of the target region should contain a proto-spacer adjacent motif (PAM) sequence (50-
NGG-30), (ii) the sgRNA should bind to the non-template DNA strand proximal to the ATG translational start codon of the target gene for high
repression efficiency.
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sequence of the sgRNA and 3 bp of the 50-NGG-30 PAM
sequence).

Bacterial strains, media and culture conditions

Escherichia coli DH5a was used for cloning experiments
and gene expression analysis at the single-cell level of
the PrhaBAD promoter. Pseudomonas putida KT2440 was
used for all CRISPRi experiments. Bacteria were cul-
tured in lysogeny broth (LB, 10 g l�1 tryptone, 5 g l�1

yeast extract and 10 g l�1 NaCl) at 30°C. For glpR gene
repression, P. putida KT2440 was grown on M9 minimal
medium (6.78 g l�1 Na2HPO4, 3 g l�1 KH2PO4, 0.5 g l�1

NaCl, 1 g l�1 NH4Cl, 0.241 g l�1 MgSO4 and 2.5 ml l�1

A9 solution) (Abril et al., 1989) with 4 g l�1 glycerol as
the carbon source and appropriate antibiotics at 30°C.
For CRISPRi-based gene repression, 1 mM L-rhamnose
was added to the culture medium. IPTG was added to
the culture medium at 0.1 mM unless otherwise noted.
All chemicals were purchased from Sigma-Aldrich (St
Louis, MO, USA).

Construction of reporter and MVA plasmids

The plasmids and primers used in this study are listed
in Table 1 and Table 2 respectively. All restriction
enzymes, T4 DNA ligase, T4 polynucleotide kinase and
Gibson Assembly Master Mix were purchased from
New England Biolabs (Ipswich, MA, USA). KOD-Plus-
Neo polymerase (Toyobo, Osaka, Japan) was used for
high-fidelity polymerase chain reaction (PCR), and col-
ony PCR was performed using AccuPower� PCR Pre-
Mix (Bioneer, Daejeon, Korea). The plasmid miniprep
and DNA purification kits were obtained from Promega
(Madison, WI, USA). Oligonucleotides were synthe-
sized by Macrogen (Seoul, Korea). All experiments

were conducted according to the manufacturer’s
instructions.

pSR-GFP plasmid. To construct the L-rhamnose-inducible
GFP expression plasmid, the sfgfp gene was amplified
from the pK7-sfGFP plasmid using the GFP-IF and GFP-IR
primers (Lee et al., 2016). The vector backbone was
amplified from the pSECRi plasmid using the GFP-VF and
GFP-VR primers (Kim et al., 2016; Lee et al., 2016). The
two fragments were assembled by the Gibson assembly
method, resulting in a pSR-GFP plasmid.

pST-GFP plasmid. To generate the IPTG-inducible GFP
expression plasmid, pST-GFP, we first created a pT-
GFP plasmid as follows. The vector backbone was
amplified from the pSNA-MrBBS-IspA plasmid using the
primers TG-VF and TG-VR (Han et al., 2016; Kim et al.,
2016), and the sfgfp gene was amplified from the pK7-
sfGFP plasmid using the primers TG-IF and TG-IR (Lee
et al., 2016). The two fragments were assembled by the
Gibson assembly method, resulting in the pT-GFP
plasmid. Using this plasmid as a template, the gfp
cassette, including the lacIq, Ptrc promoter, gfp gene and
rrnB terminator, was amplified using the primers STG-IF
and STG-IR. The amplified fragment was assembled into
the pSEVA631 plasmid prepared by digestion with
EcoRI and HindIII using the Gibson assembly method,
which resulted in the pST-GFP plasmid.

pST-MVA plasmid. To construct the MVA production
plasmid, all MVA pathway genes (mvaK1-mvaD-mvaK2-
idi-mvaE-mvaS) were amplified from the pSNA-MrBBS-
IspA plasmid using the primers STB-IF and STB-IR (Kim
et al., 2016). The vector backbone was amplified from
the pSEVA231 plasmid using the primers STB-VF and
STB-VR. Two fragments were assembled by the Gibson

Table 1. Plasmids used in this study.

Plasmid Description Reference

pSEVA221 RK2 ori, KmR Silva-Rocha et al. (2013)
pSEVA231 pBBR1 ori, KmR Silva-Rocha et al. (2013)
pSEVA631 pBBR1 ori, GmR Silva-Rocha et al. (2013)
pK7-sfGFP sfGFP expressing plasmid in pK7 Lee et al. (2016)
pSNA-MrBBS-IspA lacIq-Ptrc-MrBBS-ispA-Plac-mvaK1-mvaK2-mvaD-idi-mvaE-mvaS in pTrc99a Han et al. (2016)
pSECRi rhaRS-PrhaBAD-cas9(D10A, H840A) and constitutive sgRNA expression

cassette in pSEVA221
Kim et al. (2016)

pSR-GFP rhaRS-PrhaBAD-gfp in pSEVA221, RK2 ori, KmR This study
pT-GFP lacIq-Ptrc-gfp in pTrc99a This study
pST-GFP lacIq-Ptrc-gfp in pSEVA631, pBBR1 ori, GmR This study
pST-BISA lacIq- Ptrc-MrBBS-ispA-Plac-mvaK1-mvaK2-mvaD-idi-mvaE-mvaS in pSEVA231,

pBBR1 ori, KmR
This study

pST-MVA lacIq-Ptrc-mvaE-mvaS in pSEVA231, pBBR1 ori, KmR This study
pSECRi(GFP) pSECRi plasmid targeting a gfp gene, RK2 ori, KmR This study
pSECRi(GlpR) pSECRi plasmid targeting a glpR gene, RK2 ori, KmR This study
pSECRi(GlpR)-Gen pSECRi plasmid targeting a glpR gene, RK2 ori, GmR This study
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assembly method, resulting in the pST-BISA plasmid. To
remove unnecessary genes (mvaK1-mvaD-mvaK2-idi)
from the pST-BISA plasmid, we amplified the DNA
fragment using the pST-BISA plasmid and primers
(MVA-FYI and MVA-R). The amplified linear DNA was
gel-purified, 50-phosphorylated with T4 polynucleotide
kinase, and ligated with T4 DNA ligase, which yielded
the pST-MVA plasmid.

Construction of the CRISPRi plasmid

To determine the capability of the established CRISPRi
system for the regulation of heterologous genes in
P. putida KT2440, we first selected the gfp gene, which
is controlled by the IPTG-inducible Ptrc promoter from
the multicopy plasmid. Next, we designed a 20-nt
sgRNA spacer sequence (50-CCATCCAGTTCCACCAGA
AT-30) targeting the non-template strand of the gfp gene
and a 50-CGG-30 PAM sequence that was located only
33 bp away from the start codon of the gene (Fig. 3A).
Then, we constructed a CRISPRi plasmid targeting the
gfp gene of the pST-GFP plasmid with Primer 1 (50-
CCATCCAGTTCCACCAGAATGTTTTAGAGCTAGAAAT
AGC-30) and Primer 2 (50-ACTAGTATTATACCTAGGA
C-30) synthesized from a commercial vendor. Using
these primers, inverse PCR from the pSECRi plasmid
template was performed using high-fidelity DNA poly-
merase (Larson et al., 2013).
To explain the construction process of the pSECRi

(GFP) plasmid in detail, we used the primers CRI(GFP)-F
and CRI-R (Table 2) for amplification of the whole

pSECRi plasmid (Lee et al., 2016) with high-fidelity
KOD-Plus-Neo polymerase under the following thermal
cycling conditions: 94°C for 2 min; 35 cycles of 98°C for
10 s, 55°C for 30 s and 68°C for 10 min; and 68°C for
5 min. After PCR amplification, the amplified DNA frag-
ment of 10.6 kb was gel-purified using the Wizard� SV
Gel and PCR Clean-Up System and the eluate was
treated with DpnI at 37°C for 1 h to remove any trace of
the template plasmid. The reaction mixture was further
treated with T4 polynucleotide kinase and T4 DNA
ligase to phosphorylate and ligate the PCR product
respectively. The ligated plasmid was transformed into
highly competent E. coli DH5a cells, and transformants
were selected on LB plates containing 25 lg ml�1 kana-
mycin. The colonies were used for PCR analysis using
the primers CRIout-F and CRIout-R with AccuPower�

PCR PreMix to identify positive colonies showing the
435 bp amplicon. Plasmids of the positive colonies were
then prepared with the Wizard� Plus SV Minipreps DNA
Purification System, and Sanger sequencing was per-
formed using the Seq-R primer to confirm the sgRNA
sequence. The pSECRi(GlpR) plasmid was constructed
in the same manner using the primers CRI(GlpR)-F and
CRI-R.

Electroporation of plasmids into Pseudomonas putida
KT2440

Preparation of electro-competent cells and transforma-
tion of plasmids into P. putida KT2440 was performed
according to a previous method with some modification

Table 2. Primers used in this study.

Primer Oligonucleotide sequence (5ʹ to 3ʹ) Plasmid construction

GFP-VF ctttgctcatatggtgatcctgctgaattt pSR-GFP
GFP-VR cgaaaaataagcggccgcctcgaggaagct
GFP-IF aggcggccgcttatttttcgaactgcggat
GFP-IR ggatcaccatatgagcaaaggtgaagaact
TG-VF cgaaaaataatctagagtcgacctgcaggc pST-GFP
TG-VR ctttgctcatggtttaacctcctgtgtgaa
TG-IF aggttaaaccatgagcaaaggtgaagaact
TG-IR cgactctagattatttttcgaactgcggat
STG-IF gcctaggccgcggccgcgcggaaggcgaagcggcatgcat
STG-IR ccagtcacgacgcggccgcaaagagtttgtagaaacgcaa
STB-VF ttgcgtttctacaaactcttgtcgtgactgggaaaaccct pST-MVA
STB-VR cgtaaatgcatgccgcttcgtcctgtgtgaaattgttatc
STB-IF gataacaatttcacacaggacgaagcggcatgcatttacg
STB-IR agggttttcccagtcacgacaagagtttgtagaaacgcaa
MVA-F cctcctgtgtgaaattgttatccgctcacaattcc
MVA-R ttaaaccatgaaaacagtagttattattgatgc
CRI(GFP)-F ccatccagttccaccagaatgttttagagctagaaatagc pSECRi(GFP)
CRI-R actagtattatacctaggac
CRI(GlpR)-F gggcggtcctttggggctgcgttttagagctagaaatagc pSECRi(GlpR)
CRIout-F acgcattgatttgagtcagc Validation primers for colony PCR
CRIout-R acggcgctattcagatcct
Seq-R ttttatcagaccgcttctgc Validation primer for Sanger sequencing
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(Luo et al., 2016). In order to prepare competent cells,
a single colony of P. putida KT2440 was inoculated
into 3 ml of LB media and grown overnight at 30°C
and 200 rpm. A total of 1 ml of cultured cells was
transferred to fresh 50 ml of LB media and cultured to
OD600 ~0.6. The cells were harvested by centrifuga-
tion at 4°C and 5000 9 g for 10 min. After washing
the cells three times with ice-cold 3 mM 4-(2-hydro-
xyethyl)-1-piperazineethanesulphonic acid (HEPES),
they were resuspended in 250 lL of 3 mM HEPES.
Electroporation was carried out in a 2 mm cuvette
after adding plasmids to a 50 lL aliquot of the electro-
competent cells using the Bio-Rad Gene Pulser XcellTM

(Bio-Rad, Hercules, CA, USA) with settings at 2.5 kV
and 200 Ω. The transformants were cultured in LB
media at 30°C and 200 rpm for 2 h and then spread
on LB plates with appropriate antibiotics.

FACS-based assay

The cultured cells were diluted with phosphate-buffered
saline (PBS) to approximately 5 9 106 cells ml�1. Then,
single-cell fluorescence was measured using a FACScal-
iburTM flow cytometer (BD Biosciences, San Jose, CA,
USA) equipped with a blue laser (excitation: 488 nm)
and FL1 (emission: 530/30 nm) photomultiplier tube
detector. To exclude debris and dead cells, correct cell
populations were acquired using an FSC-A/SSC-A gate
with 10,000 gated events recorded. BD CELLQUEST

TM
PRO

software (BD Biosciences, San Jose, CA, USA) was
used for acquisition flow cytometry, and the acquired

data were analysed using the FLOWJO software package
(FlowJo, Ashland, OR, USA).

Examples

Evaluation of PrhaBAD promoter function

We first examined the functionality of the L-rhamnose-indu-
cible promoter PrhaBAD that drives SpdCas9 expression for
the controlled regulation of the target gene. For this pur-
pose, we replaced the SpdCas9 gene on the pSECRi plas-
mid with gfp, which created the reporter plasmid pSR-GFP
to analyse the response of the PrhaBAD promoter at the sin-
gle-cell level (Fig. 2A). The pSR-GFP plasmid was intro-
duced into P. putida KT2440 or E. coli DH5a, and the
transformants were grown on LB medium supplemented
with various concentrations of L-rhamnose ranging from 0–
10 mM. Single-cell fluorescence was measured by flow
cytometry after growth for 12 h at 30°C. As expected, the
PrhaBAD promoter showed tight regulation, with no leaky
expression of GFP observed in the absence of L-rhamnose
in both P. putida KT2440 and E. coli DH5a (Fig. 2B). How-
ever, the P. putida KT2440 cells were mainly divided into
two populations: non-fluorescent (37%) or fluorescent
(54%) cells in the presence of 0.05 mM L-rhamnose
(Fig. 2B). In addition, the majority of the P. putida KT2440
cells showed maximal green fluorescence in the presence
of more than 0.25 mM L-rhamnose, whereas the GFP fluo-
rescence of the E. coli DH5a cells increased gradually and
uniformly with increasing concentrations of L-rhamnose
(Fig. 2B). Based on these results, we concluded that the
PrhaBAD promoter showed an all-or-none induction
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phenomenon in P. putida KT2440. In E. coli, it was
reported that the inability to degrade L-rhamnose leads to
the disappearance of the dose-dependent response for
PrhaBAD promoter-controlled GFP expression (Hjelm et al.,
2017). Similarly, the response of the PrhaBAD promoter was
not homogenous on intermediate L-rhamnose concentra-
tions in P. putida KT2440 because L-rhamnose might not
be consumed after being imported by non-specific sugar
transporters (Jeske and Altenbuchner, 2010; Calero et al.,
2016). Thus, the PrhaBAD promoter is considered to be opti-
mal for the on/off regulation of target genes, but not suitable
for homogenous and tunable gene repression by adjusting
the amount of SpdCas9 through L-rhamnose concentra-
tions, as observed for E. coli (Lee et al., 2016). However,
design of the sgRNA-binding target region far from the
ATG start codon or mismatches in the 50 region of the
spacer sequence can be employed to achieve CRISPRi-
based controllable repression (Bikard et al., 2013; Qi et al.,
2013).

CRISPRi-mediated repression of a heterologous gene
on a multicopy plasmid

To determine the capability of the established CRISPRi
system for regulation of heterologous genes encoded by
a multicopy plasmid in P. putida KT2440, we constructed
the GFP reporter plasmid (pST-GFP) that was derived
from the pBBR1-based pSEVA plasmid. We chose the
pBBR1 replicon because it is a broad-host-range plas-
mid and has been widely used for the production of vari-
ous biochemicals in P. putida (Wang et al., 2011; Nikel
and de Lorenzo, 2014; Kuepper et al., 2015; Yu et al.,
2016). Then, the pST-GFP and pSECRi(GFP) plasmids
(Fig. 3A) were co-transformed into P. putida KT2440,
and the transformants were selected on LB plates con-
taining both 50 lg ml�1 kanamycin and 20 lg ml�1 gen-
tamicin at 30°C. Three single colonies were then
individually inoculated into 3 ml of LB medium containing
50 lg ml�1 kanamycin, 20 lg ml�1 gentamicin and
1 mM L-rhamnose (for SpdCas9 induction), and incu-
bated for 18 h at 30°C. Finally, 2 lL of the culture broth
was inoculated into 200 lL of LB medium containing
50 lg ml�1 kanamycin, 20 lg ml�1 gentamicin, 1 mM L-
rhamnose and 0.1 mM IPTG (for GFP induction). Cell
growth and GFP fluorescence were monitored simultane-
ously using an Infinite 200 PRO reader for 23 h at 30°C.
In the absence of IPTG, GFP fluorescence slightly
increased after 10 h of growth due to the leaky expres-
sion of GFP by the Ptrc promoter. This GFP fluorescence
was decreased by up to 1.6-fold between the L-rham-
nose-induced and uninduced CRISPRi (Fig. 3B). In the
presence of 0.1 mM IPTG, the GFP fluorescence
decreased by 11-fold, nearly reaching the basal level of
GFP expression (Fig. 3C).

CRISPRi-mediated repression of an endogenous gene

The GlpR is a transcriptional regulator that represses the
expression of glycerol kinase (GlpK) and glycerol 3-
phosphate dehydrogenase (GlpD) that are responsible
for the utilization of glycerol as a carbon source in
P. putida KT2440 (Nikel et al., 2015). For this reason,
P. putida KT2440 shows a prolonged lag phase on glyc-
erol as the sole carbon source unless the glpR gene is
deleted. To rewire the regulation of glycerol metabolism
by the GlpR regulator in P. putida KT2440, a 20-nt
spacer sequence targeting glpR (50-GGGCGGTCCTTTG
GGGCTGC-30) was designed and the pSECRi(GlpR)
plasmid was constructed as described above using Pri-
mer 3 (50-GGGCGGTCCTTTGGGGCTGCGTTTTAGAG
CTAGAAATAGC-30) and Primer 4 (50-ACTAGTATTATA
CCTAGGAC-30) (Fig. 4A). The constructed pSECRi
(GlpR) plasmid was transformed into P. putida KT2440,
and the transformants were selected on LB plates con-
taining 50 lg ml�1 kanamycin at 30°C. Three single
colonies were separately inoculated into 3 ml of LB med-
ium containing 50 lg ml�1 kanamycin and 1 mM L-rham-
nose, and incubated for 18 h at 30°C. The cultured cells
were washed twice with M9 minimal medium without car-
bon source by centrifugation and resuspended. Two
microlitres of the resuspended cells were inoculated into
200 lL of M9 minimal medium containing 4 g l�1 glyc-
erol, 50 lg ml�1 kanamycin and 1 mM L-rhamnose, and
cell growth was monitored by an Infinite 200 PRO micro-
plate reader for 40 h at 30°C. Similar to previous reports
(Escapa et al., 2012; Nikel et al., 2015), a prolonged lag
phase (19 h) was observed in P. putida KT2440 har-
bouring the pSEVA221 plasmid (uninduced CRISPRi) on
glycerol-M9 minimal medium. However, the lag phase
was significantly reduced from 19 h to 9 h and cell
growth was accelerated when the glpR gene was
repressed by CRISPRi (induced CRISPRi, Fig. 4B).

Enhanced production of MVA under CRISPRi repression
of glpR

Inspired by the success of glpR repression with our sys-
tem, we next attempted to produce MVA, a precursor for
sustainable biopolymers (Xiong et al., 2014) and ter-
penoids (Liao et al., 2016), from glycerol in P. putida
KT2440. To this end, we constructed an MVA production
plasmid (pST-MVA), which encodes mvaE and mvaS to
convert acetyl-coA into MVA (Fig. 5A). We also gener-
ated the pSECRi(GlpR)-Gen plasmid containing a
gentamicin-resistance gene instead of a kanamycin-
resistance gene. Both the pST-MVA and pSECRi(GlpR)-
Gen plasmids were co-transformed into P. putida
KT2440, and the transformants were selected on LB
plates containing 50 lg ml�1 kanamycin and 20 lg ml�1
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gentamicin at 30°C. Three single colonies were sepa-
rately inoculated into 3 ml of LB medium containing
50 lg ml�1 kanamycin, 20 lg ml�1 gentamicin and
1 mM L-rhamnose, and the inoculated cells were culti-
vated for 18 h at 30°C. The cultured cells were washed
twice in M9 minimal medium without carbon source, and
250 lL of the resuspended cells were inoculated into

25 ml M9 minimal medium containing 4 g l�1 glycerol,
50 lg ml�1 kanamycin, 20 lg ml�1 gentamicin and
1 mM L-rhamnose in a 250-ml baffled Erlenmeyer flask
and cultivated for 72 h at 30°C. The culture broth was
centrifuged at 3,000 rpm for 20 min at 4°C, and the
supernatant was filtered through a 0.45-lm filter. The fil-
trate was then used for quantifying the glycerol and MVA
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concentrations by high-performance liquid chromatogra-
phy (HPLC; Shimadzu, Kyoto, Japan) equipped with a
refractive index detector at 454 nm using an Aminex
HPX-87H column (1300 mm 9 7.8 mm, Bio-Rad, Her-
cules, CA, USA). The mobile phase was sulphuric acid
(0.4 mM) at a flow rate of 0.3 ml min�1 at 50°C. Cell
growth was determined by spectrophotometry according
to the optical density at 600 nm (OD600). Control
P. putida KT2440 harbouring the pSEVA221 plasmid
reached an OD600 value of 1.14, and the MVA titre was
72 mg l�1 on glycerol-M9 minimal medium (Fig. 5B).
However, CRISPRi-mediated GlpR repression enhanced
the cell growth by 1.9-fold (OD600, 2.22) and the MVA
production by 3.3-fold (237 mg l�1). In addition, glycerol
consumption increased from 0.96 g l�1 to 3.14 g l�1.

Discussion

In E. coli, the PrhaBAD promoter is capable of homogenous
and L-rhamnose-dependent control of the transcription of
heterologous genes and shows undetectable background
expression in the absence of L-rhamnose (Giacalone
et al., 2006; Wegerer et al., 2008). Although the PrhaBAD

promoter was previously used for gene expression in
P. putida KT2440 (Jeske and Altenbuchner, 2010), there
was no report on whether or not the PrhaBAD promoter is
subject to a dose-dependent homogenous expression or
all-or-none induction phenotype under various concentra-
tions of L-rhamnose in P. putida KT2440. We found an all-
or-none induction mode of the promoter in P. putida
KT2440 in contrast to its effects in E. coli, indicating that it
is not suitable for the tunable regulation of a target gene
by adjusting L-rhamnose concentrations.
In a previous report, basal expression of dCas9 due to

leakiness from the inducible promoters (Ptet, Plac, Para)
caused up to 50% repression in Pseudomonas spp. in
the absence of inducers, which limited the basal repres-
sion of target genes (Tan et al., 2018). In this study, we
employed the L-rhamnose-inducible promoter to control
SpdCas9 expression, which showed no leaky expression
of SpdCas9 gene (Fig. 2B). Therefore, our single-plas-
mid CRISPRi system may be more effective and control-
lable to repress target genes without CRISPRi basal
repression (Fig. 3C).
Glycerol has been used as a cost-effective renewable

resource for the production of biofuels and biochemicals,
including terpenoids, because it is produced as a major
by-product of the biodiesel industry. However, the appli-
cation of P. putida KT2440 for glycerol utilization has
been limited due to the endogenous GlpR regulator that
represses metabolic enzymes involved in glycerol cata-
bolism (Nikel et al., 2015). Therefore, we chose the glpR
regulator gene to be repressed by our newly developed
CRISPRi system. In a previous report, P. putida KT2440

grown on glycerol showed a bistable growth phenotype
(non-growing and growing population), which resulted in
an unexpectedly long lag phase on glycerol. GlpR
knockout eliminated this bistable growth phenotype,
leading to unimodal behaviour (i.e. single growing popu-
lation) and reduced the lag time significantly (Nikel et al.,
2015). In the current study, CRISPRi-mediated glpR
repression also reduced the lag time on glycerol remark-
ably, indicating that repression of an endogenous regula-
tor gene by CRISPRi reduced phenotypic cell-to-cell
variations, allowing P. putida KT2440 to better utilize
glycerol as a carbon source. Compared with the conven-
tional methods for gene knockout, the CRISPRi system
has advantages as follows: (i) it is simple and easy to
repress the glpR gene because it requires only coex-
pression of a SpdCas9 protein and an sgRNA; (ii) it is
able to repress multiple genes simultaneously including
the glpR gene, even genes that are essential for cell
growth; (iii) knockdown effects of the glpR gene in vari-
ous P. putida strains can be simultaneously examined
by simply introducing the single CRISPRi plasmid; and
(iv) a metabolic flux towards glycerol metabolism is tem-
porally controlled by CRISPRi-based glpR repression.
Thus, this system could overcome the hurdle of using
P. putida KT2440 as microbial cell factories to produce
valuable products from glycerol.
Taken together, our single-plasmid-based CRISPRi

system developed for P. putida KT2440 demonstrates
simplicity and efficiency for regulation of exogenous and
endogenous genes. Using this system, enhanced MVA
production was achieved by rewiring glycerol metabolism
through CRISPRi-mediated repression of the P. putida
KT2440 glpR gene. Therefore, the CRISPRi system is a
robust tool for expanding the metabolic engineering
capabilities of P. putida KT2440, which can lead to the
development of microbial cell factories.
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