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Introduction: A combined assessment of different parameters of cardiovascular (CV) risk and prognosis
can be supportive and performed with cardiac magnetic resonance (CMR). Aortic stiffness, epicardial
fat volume (EFV), left ventricular (LV) strain and fibrosis were evaluated within a single CMR examination
and results were related to the presence of hypertension (HTN) and diabetes mellitus (DM).
Methods: 20 healthy controls (57.2 ± 8.2 years(y); 26.2 ± 3.9 kg/m2), 31 hypertensive patients without
DM (59.6 ± 6.7 y; 28.4 ± 4.7 kg/m2) and 12 hypertensive patients with DM (58.8 ± 9.9y; 30.7 ± 6.3 kg/m2)
were examined at 1.5Tesla. Aortic stiffness was evaluated by calculation of aortic pulse wave velocity
(PWV), EFVby a3D-Dixon sequence. Longitudinal& circumferential systolicmyocardial strain (LS; CS)were
analyzed and T1-relaxation times (T1) were determined to detect myocardial fibrosis.
Results: EFV was highest in hypertensive patients with diabetes (78.4 ± 28.0 ml/m2) followed by only
hypertensive patients (64.2 ± 27.3 ml/m2) and lowest in controls (50.3 ± 22.7 ml/m2; p < 0.05). PWV was
higher in hypertensive patients with diabetes (9.8 ± 3.3 m/s) compared to only hypertensive patients
(8.6 ± 1.7 m/s; p < 0.05) and to controls (8.1 ± 1.9 m/s; p < 0.05). LS&CS were worse in hypertensive
patients with diabetes (LS:-20.9 ± 5.1% and CS:�24.4 ± 5.7%) compared to both only hypertensive patients
(LS: �24.7 ± 4.6%; CS: �27.1 ± 5.0%; p < 0.05) and to controls (LS: �25.5 ± 3.8; CS: �28.3 ± 4.1%; p < 0.05).
Both hypertensive groups with and without DM had higher T1́s (994.0 ± 43.2 ms; 991.6 ± 35.5 ms) than
controls (964.6 ± 40.3 ms; p < 0.05).
Conclusion: CMR revealed increased aortic stiffness and EFV in hypertensive patients, which were even
higher in the presence of DM. Also signs of LV myocardial fibrosis and a reduced strain were revealed.
These parameters support the assessment of CV risk and prognosis. They can accurately be measured with
CMR within a single examination when normally different techniques are needed.

� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cardiovascular (CV) disease is the number one cause of death.
The assessment of CV risk is often performed by evaluation of tra-
ditional risk factors, which may not always be accurate [1–4]. Up to
date different additional parameters related to CV risk and progno-
sis have been introduced. A well known parameter is aortic pulse
wave velocity (PWV). This is a measure of aortic stiffness and
regarded as an important predictor of CV adverse events [5].

The amount of epicardial fat has also been related to the pres-
ence of CV risk factors, disease and events such as myocardial
infarction. A metabolic and inflammatory role is discussed [6–
15]. Parameters, such as the extent of myocardial fibrosis or
parameters of left ventricular (LV) contractility, e.g. strain parame-
ters, may be pathologic despite a normal ejection fraction and are
both sensitive indicators for sub-clinical cardiac diseases, such as
myocardial ischemia, hypertension, and heart failure [16–19].
While normally different techniques are needed to assess these dif-
ferent parameters [5,6], cardiac magnetic resonance (CMR) allows
for accurate assessment of all within a single examination and
without meaningful harm [20–23]. PWV can accurately be mea-
sured using velocity-encoded MRI sequences. Dixon chemical shift
imaging can measure epicardial fat volumetrically by 3-
dimensional (3D) ECG-triggered sequences. Myocardial fibrosis
can be assessed using myocardial T1-mapping techniques such as
a modified Look-Locker inversion recovery (MOLLI) scheme and
myocardial strain may be evaluated on cine datasets using dedi-
cated softwares.

A combined measurement may support the evaluation of CV
risk and prognosis.
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The purpose of this CMR study was to evaluate aortic stiffness,
epicardial fat volume (EFV), LV myocardial strain and fibrosis, and,
to relate the results to the presence of hypertension (HTN) and dia-
betes mellitus (DM).
2. Materials and methods

The protocol for this retrospectively performed study was
approved by the local ethic committee. All scans were performed
on a 1.5 Tesla (T) MR system (Ingenia, Philips Healthcare, Best,
The Netherlands) with a maximum gradient strength of 45mT/m
and a maximum slew rate of 120mT/m/ms. A 32 channel torso coil
with digital interface was used for signal reception. 20 healthy
non-hypertensive controls without medications or history of CV
disease and coronary artery disease (CAD) were included. They
were assessed by detailed questionnaire, ruling out risk factors,
previous medication or any history of CAD or hypertensive disease
as ruled out by previous check-ups. 43 patients had a well-treated
hypertension without CAD. Written informed consent was
obtained from all study participants prior to CMR. Exclusion crite-
ria included contraindications for CMR, valvular disorders, rhythm
disorders and renal insufficiency.
2.1. MRI acquisition

Functional imaging: ECG-gated SSFP-cine images were
obtained in breath-hold in the horizontal long axis, the vertical
long axis, left ventricular outflow tract, and short axis for wall
motion and functional analysis. Sequence parameters were as fol-
lows: field of view (FOV) = 350 � 350 mm2, slice thickness = 8 mm,
pixel size = 1.7 � 1.7 mm2, reconstructed to 1 � 1 mm2, repetition
time (TR) = 3.1 ms, echo time (TE) = 1.6 ms, flip angle (a) = 60�, par-
allel imaging factor (SENSE) = 2.5, number of cardiac phases
reconstructed = 40.

Aortic stiffness, aortic PWV: ECG-gated SSFP-cine images of
the aorta were acquired in a coronal and an oblique sagittal view,
covering the aortic arch including the aorta ascendens (AA) and the
proximal aorta descendens (AD). Based on these images, a 2D
velocity-encoded MRI sequence was planned perpendicular
through the AA and AD at the level of the bifurcation of the pul-
monary artery with following parameters: FOV = 300 � 225 mm2,
slice thickness = 8 mm, pixel size = 1.7 � 1.7 mm2, reconstructed to
1.2 � 1.2 mm2, TR = 6.5 ms, TE = 2.2 ms, a = 15�, number of heart
phases = 130, velocity encoding was set to a maximum velocity of
1.5 m/s. Scan time was 2–3 min.

Dixon chemical shift imaging: A 3D transversal ECG-triggered
and respiratory navigator gated magnetization prepared mDixon-
sequence was acquired for assessment of EFV. Trigger delay was
set to end-diastole and optimized by means of cine MRI data.
The following sequence parameters were used: FOV = 350 � 302
� 180 mm3, voxel size = 1.5 � 1.5 � 3.0 mm3 (120 overcontiguous
slices), reconstructed voxel size = 1.0 � 1.0 � 1.5 mm3, TR = 5.4 ms,
TE1 / TE2 = 1.8 ms /4.0 ms; a = 20�, parallel imaging factor
(SENSE) = 1.5 in both phase encoding directions, water fat
shift = 0.16 pixel, arrhythmia rejection was applied, T2
preparation = 50 ms, acquisition window = 100–156 ms (selected
based on cine MRI data). Net scan duration was 3–5 min. The aver-
age total scan duration time was about 7.5 min. In-phase (IP),
opposed-phase (OP), water only (W), and fat only (F) images were
reconstructed online at the scanner console [24].

Myocardial T1-mapping: For the assessment of T1 a 3(3)3(3)5
modified Look-Locker inversion recovery (MOLLI) scheme was
used with the following parameters: FOV = 350 � 300 mm2,
acquired voxel size = 2 � 2 � 10 mm3, reconstructed voxel
size = 1.2 � 1.2 � 10 mm3, TR/TE = 2.2 / 1.0 ms, flip angle = 35�,
parallel imaging with SENSE factor 2. End-diastolic short axis slices
(basal, mid-ventricular, and apical) were obtained in breath hold
[25]. T1-MOLLI maps were reconstructed online at the scanner
console and mapping sequences were repeated in case of image
artifacts.

2.2. Image analysis

Cardiac function analysis: Left ventricular end systolic and end
diastolic volume (LVESV and LVEDV), left ventricular function
(LVEF), interventricular septal diameter (IVSD) were determined
offline using dedicated software (IntelliSpace Portal 7, Philips
Healthcare).

Aortic PWV: PWV quantification was performed using a tool
implemented in the software Segment (Segment, version 1.9,
R3918; http://segment.heiberg.se) [26]. First, the path length of
the aortic arch (aortic length [AL]), i.e. the distance between the
section through the AA and through the proximal AD, was mea-
sured between the center of the cross-sections of AA and proximal
AD. The time interval between the arrival of the velocity waveform
at the section AA and at the section of the proximal AD is called the
transit time (TT) and was determined by contour-drawing in the
aortic velocity maps. TT is measured as the time between the inter-
cept of the two calculated tangents with the time axis. PWV was
finally calculated by PWV = AL / TT [20] (Fig. 1). The post-
processing time for the determination of aortic PWV was about
5 min.

Epicardial fat volume: Dixon images were analyzed offline on a
personal computer using dedicated software written in MATLAB
(The MathWorks, Inc., Natick, MA) with an analysis time of about
7–10 min per subject. The epicardial fat volume was measured
between the bifurcation of the pulmonary artery and the most
inferior transversal slice of the myocardium [6]. A 3D region of
interest (ROI) was defined by manually contouring the epicardial
border in each slice. Fat-fraction maps were computed based on
the fat- and water-only images with an appropriate noise thresh-
old and correction for relaxation effects to identify voxels predom-
inantly containing fat (Fig. 2). EFV was determined by multiplying
the number of fat voxels inside the three-dimensional ROIs by the
voxel size and normalized to the BSA [24].

Myocardial T1-mapping: T1 values were assessed using freely
available software (Segment, version 1.9, R2783; http://segment.
heiberg.se) and extracted from the relaxation maps using a seg-
mental approach [27]. To exclude epicardial fat, blood pool and
pericardial effusion from the analysis, endo- and epicardial borders
were carefully contoured.

Myocardial strain analysis: LV strain analysis was performed
by longitudinal strain measurements (LS) in 4-chamber long axis
view cine datasets and circumferential strain measurements (CS)
in short axis cine datasets using dedicated feature tracking soft-
ware (2D Cardiac Performance Analysis MR, TomTec, Unterschleis-
sheim, Germany) [21]. LV short axis circumferential strain was
derived from a mid-ventricular short-axis slice. The LV endocardial
borders were identified based on a manually drawn contour and
then ‘‘tracked” automatically over the entire RR cycle from frame
to frame. Peak segmental values were averaged resulting in a glo-
bal longitudinal and circumferential LV peak systolic strain [21].

2.3. Statistical analysis

All statistical analyses were performed using SPSS, (IBM SPSS
Statistics 22.0, Armonk, New York). Patients characteristics are pre-
sented as mean ± standard deviation or as absolute frequency. For
comparison all subjects were grouped into controls, hypertensive
patients without DM and hypertensive patients with DM. Continu-
ous variables were tested for normal distribution. The independent
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Fig. 1. PWV quantification using a tool implemented in the software Segment (Segment, version 1.9, R3918; http://segment.heiberg.se). A: path length of the aortic arch
(aortic length = AL) which is the distance between the section through the Aorta ascendens (AA) and through the proximal Aorta descendens (AD) B: Region of interest (ROI)
in the AA and in the AD in the aortic velocity maps C: Flow curves along with their respective calculated tangents. The transit time (TT) is the time between the two tangents.
PWV = AL/TT.

Fig. 2. Dixon images. A: Fat only image. B: Fat only Image with the epicardial outlines. C: Segmented fat voxels with the transferred region of interest.
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2-sample Student t test or the Mann-Whitney-U test was used for
comparison of continuous variables between different groups. The
level of significance was set to 0.05.
3. Results

A total of 63 subjects were enrolled in this study. 31 hyperten-
sive patients had no diabetes mellitus (HTN; 14 men, mean age:
59.6 ± 6.7 years; BMI 28.4 ± 4.7 kg/m2) and 12 hypertensive
patients had diabetes mellitus (HTN + DM; 7 men, mean age:
58.8 ± 9.9 years; BMI 30.7 ± 6.3 kg/m2). 20 persons served as
non-hypertensive controls (11 men, mean age: 57.2 ± 8.2 years;
BMI 26.2 ± 3.9 kg/m2).

There was no significant difference regarding age or gender
between these groups. BMI was higher in HTN + DM patients com-
pared to controls. Results were adjusted for BMI. EFVwas highest in
HTN + DM patients (78.4 ± 28.0 ml/m2) followed by HTN patients
(64.2 ± 27.3 ml/m2) and lowest in controls (50.3 ± 22.7 ml/m2).
PWV was also higher in hypertensive patients with DM
(9.8 ± 3.3 m/s) compared to hypertensive patients without DM
(8.6 ± 1.7 m/s; p < 0.05) and to controls (8.1 ± 1.9 m/s; p < 0.05).

There was no significant difference regarding PWV between
controls and hypertensive patients without DM. Similarly LS and
CS were worse in hypertensive patients with DM (LS: �20.9 ± 5.1%
and CS: �24.4 ± 5.7%) compared to hypertensive patients without
DM (LS: �24.7 ± 4.6% and CS: �27.1 ± 5.0%; p < 0.05) and to con-
trols (LS: �25.5 ± 3.8% and CS: �28.3 ± 4.1%; p < 0.05). There
was no significant difference regarding LS or CS between controls
and hypertensive patients without DM. There was no differences
regarding T1 between hypertensive patients with and without
DM (994.0 ± 43.2 vs. 991.6 ± 35.5 ms), however, both had signifi-
cantly higher T1 values as a sign of myocardial fibrosis compared
to controls (964.6 ± 40.3 ms; p < 0.05).

The detailed characteristics of study participants and CMR-
derived parameters are summarized in Table 1.
4. Discussion

Atherosclerosis is the leading cause of death in the Western
world [1]. However, there are possibilities to prevent CV events.
Therefore it is important to assess individual CV risk early which
is often performed by scoring systems [28–30]. Such calculated
risk scores are not always accurate and sometimes may under-
or overestimate individual CV risk [2–4]. Therefore the identifica-
tion and exploration parameters related to CV risk and prognosis
independent of the classical risk factors, and, which can easily be
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Table 1
Results in dependency of the presence of hypertension resp. diabetes mellitus.

Parameter 1 Controls (N = 20) 2 HTN (N = 31) 3 HTN + DM (N = 12) P 1 vs 2 P 1 vs 3 P 2 vs 3

Men 11 14 7 0.96 0.86 0.9
Age (years) 57.2 ± 8.2 59.6 ± 6.7 58.8 ± 9.9 0.34 0.62 0.8
BMI [kg/m2] 26.2 ± 3.9 28.4 ± 4.7 30.7 ± 6.3 0,12 <0.05 0.2
LVEF [%] 64.8 ± 5.3 61.3 ± 6.6 63.0 ± 7.7 0.11 0.43 0.50
LVEDVi [ml/m2] 67.7 ± 12.9 70.7 ± 15.6 67.8 ± 12.0 0.59 0.98 0.60
IVSD [mm] 8.8 ± 1.6 10.3 ± 2.0 10.0 ± 2.1 <0.05 <0.05 0.7
EFV [ml/m2] 50.3 ± 22.7 64.2 ± 27.3 78.4 ± 28.0 <0.05 <0.05 <0.05
PWV (m/s) 8.1 ± 1.9 8.6 ± 1.7 9.8 ± 3.3 0.14 <0.05 <0.05
LS [%] �25.5 ± 3.8 �24.7 ± 4.6 �20.9 ± 5.1 0.45 <0.05 <0.05
CS [%] �28.3 ± 4.1 �27.1 ± 5.0 �24.4 ± 5.7 0.24 <0.05 <0.05
T1 [ms] 964.6 ± 40.3 991.6 ± 35.5 994.0 ± 43.2 <0.05 <0.05 0.74

LVEF: left ventricular ejection fraction; LVEDVi: left ventricular end diastolic volume index; IVSD: interventricular septal diameter; EFV: epicardial fat volume; PWV: aortic
pulse wave velocity; LS: longitudinal strain; CS: circumferential strain; T1: T1-relaxation times.
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integrated into a routine imaging examination, is desirable. CMR is
not widely used for the evaluation of parameter related to CV risk
parameters and prognosis, though it has advantages. E.g., the 3D-
Dixon technique measures, in contrast to echocardiography, the
whole epicardial fat volume without ionizing radiation (as in com-
puter tomography) [6,24]. CMR can also determine PWV by flow
measurements [20,31] in particular aortic segments, whereas
tonometric devices only measure a general arterial stiffness includ-
ing different superficial locations such as between the carotid or
brachial artery and the femoral artery. However, these vessels also
involve muscular stiffening with a consecutively greater variance
of PWV and also the real path length can only be estimated
[5,20,32–33]. The presence of myocardial fibrosis can be evaluated
using T1 mapping techniques without the need for myocardial
biopsy. LV strain analysis can detect subtle LV contractility
disturbances even when LV ejection fraction may still be normal
[16,34–39]. In the present study EFV was increased in patients
with hypertension and even more increased in patients with
hypertension and additional diabetes mellitus. PWV was increased
and longitudinal and circumferential strain was worse in hyperten-
sive patients with diabetes mellitus compared to hypertensive and
non-hypertensive subjects, despite a preserved LV ejection
fraction. Additionally signs of myocardial fibrosis were found in
hypertensive patients (higher T1 values) compared to the non-
hypertensive controls.

PWV is an important predictors of CV adverse events [5,33]. A
reduced aortic elasticity (higher aortic stiffness) leads to a higher
aortic PWV and unfavorable effects on the heart and other organs.
A pathologically increased PWV can eventually be detected before
arterial hypertension is measured with conventional methods
[5,40]. Underlying mechanisms are an intima media hypertrophy,
sclerosis and changes of the extracellular matrix with replacement
of elastin by collagen. Metabolic and inflammatory mechanisms
also play a role [5,40,41]. In hypertension an increased aortic stiff-
ness occurs earlier in age as a result of structural changes due to
aortic wall stretching and an accelerated development of
atherosclerosis with consecutive arterial wall thickening [5,33].
Diabetes mellitus may have an additive effect with dyslipidemia,
disturbances in insulin sensitivity and endothelial function as pos-
sibly mechanisms, which may lead to vascular changes and vessel
wall damage. An increased inflammatory burden may also play a
role [42,43]. A relationship between EFV and PWV has been
described [44] and may be attributed to metabolic and inflamma-
tory mechanisms [44,45]. Normally, epicardial fat has beneficial
effects through anti-atherogenic and anti-inflammatory adipokines
[7,46]. However, when it is pathologically increased it can unfavor-
ably change because the hypertrophied epicardial fat becomes
hypoxic and dysfunctional and also inflammatory factors invade
it. Altogether such mechanisms contribute to vascular wall
inflammation and atherogenesis [7,46,47]. Also an increased insu-
lin resistance has been observed with an higher epicardial fat
amounts and with increased visceral fat in general eventually con-
tributing to the development of aortic stiffness [48–53]. Local
mechanisms may also play a role through the above explained,
as epicardial fat has direct contact with the aorta as well as with
the myocardium sharing the same blood supply [47,54]. In concor-
dance to previous studies hypertensive patients in general had
higher T1-relaxation times than non-hypertensive controls - as a
sign of myocardial fibrosis - and worse LV strain values with addi-
tional diabetes mellitus, despite a normal LV ejection fraction
[16,34–36,38,39]. Such changes occur physiologically as a result
of aging, but are accelerated in the presence of CV risk factors such
as hypertension or diabetes mellitus [23,55] and may relate cardiac
remodeling (e.g. increased mechanical stress, disturbed micro-
vascular circulation, myocardial inflammation and oxidative
stress). Eventually this may lead to an impaired regeneration of
cardiomyocytes, to damaged myocardial fibers and to an increased
interstitial collagen deposition. Also, the higher LV afterload and LV
hypertrophy increases myocardial oxygen demand and impairs
coronary artery perfusion which may worsen the situation and
predisposing to myocardial dysfunction and fibrosis [35,38,56–
59]. The additional presence of a diabetes mellitus can augment
these changes [19]. However, increased amounts of epicardial fat
may also lead to myocardial fibrosis and contractility impairment
through metabolically and inflammatory mechanisms such as car-
diac steathosis and lipotoxicity [11,14,17].

To evaluate the above described parameters MR-sequences
were acquired that can easily be integrated into the routine work-
flow of a CMR study and with a reasonable additional scan time.
This is a clear advantage of CMR, because all measurements can
be performed in a single examination, in contrast to other
approaches which necessitate the application of different modali-
ties [5,6,20]. CMR therefore should be used to support the assess-
ment of CV risk and prognosis.

The low number of subjects examined in this study is a limita-
tion. Therefore, the results cannot be generalized and further stud-
ies with higher numbers of patients in these different groups are
needed. The observational and explorative study design did not
allow for the determination of the exact causality or pathogenesis
of the described findings. A further limitation is that hypertensive
patients used anti-hypertensive medication. These are known to
reduce PWV, which may explain the lack of difference between
patients with only hypertension and non-hypertensive controls
[5,60]. Another limitation is that the patients of the study were
somewhat obese, although the differences did not reach a statisti-
cal significance. However, as obesity may also independently
induce a cardiomyopathie, this may have been of influence. Further
studies in non-obese hypertensive and diabetic patients are
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warranted. Furthermore there is a lack of data concerning duration
of hypertension or diabetes, medical treatment of hypertension
and diabetes and the presence of other cardiovascular risk factors
like hypercholesterolemia. This may have an impact over results
interpretation.
5. Conclusion

CMR evaluation revealed an increased aortic stiffness and epi-
cardial fat volume in hypertensive patients. Both parameters were
even higher in the presence of an additional diabetes mellitus.
Hypertensive patients also had signs of LV myocardial fibrosis
and a reduced strain, in spite of a normal LV ejection fraction.
CMR can determine these different parameters of CV risk and
prognosis within a single examination, when normally different
techniques are needed. It can therefore be used to support the
assessment of CV risk and prognosis.
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