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ABSTRACT The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone re-
sistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element.
Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history
of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been
acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-
sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly
expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single,
well-defined clade nested within H30-R, which was named H30-Rx due to its more extensive resistance. Despite its tight clonal
relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the
H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of
H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P < 0.001). Together, these results suggest
that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly vir-
ulent subclone, H30-Rx.

IMPORTANCE We applied an advanced genomic approach to study the recent evolutionary history of one of the most important
Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder,
kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these
infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains
gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-
spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature
of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain impor-
tance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics.
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Horizontal gene transfer is one of the most powerful forces
in bacterial evolution. The transformative potential of this

process is perhaps best exemplified by the acquisition of anti-
microbial resistance determinants: in a single genetic event, an
antimicrobial-susceptible bacterium can acquire a complex suite
of resistance determinants and become resistant to multiple anti-
microbials. Thus, frequent horizontal transfer between different

strains can potentially drive the spread of antibiotic resistance
within the bacterial population, without any change in the distri-
bution of strains. However, when virulent bacterial clones acquire
such elements, they can emerge rapidly within the population
through clonal expansion and thereby gain local or even global
predominance (1–3). Quantifying the relative contribution of
horizontal (gene transfer) and vertical (clonal expansion) mech-
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anisms to the emergence of multidrug-
resistant bacterial pathogens will provide
important insights into the evolution of
these pathogens and inform novel inter-
vention strategies.

In 2008, a previously unrecognized
Escherichia coli clonal group, sequence
type 131 (ST131), was identified in nine
countries, spanning three continents (4,
5). Today, ST131 is the dominant ex-
traintestinal pathogenic E. coli (ExPEC)
strain worldwide, but retrospective anal-
yses suggest that the pandemic emergence
of ST131 took place over a period of fewer
than 10 years (6, 7). ST131 is part of the
virulent phylogenetic group B2 and has
been reported to cause a wide range of
infections, including meningitis, osteo-
myelitis, myositis, epididymo-orchitis,
and peritonitis (6, 8–10). However,
ST131 is most commonly associated with
urinary tract infection (UTI) and is a ma-
jor etiologic agent of bladder infections,
kidney infections, and urosepsis in the
United States and internationally (11–
14). Population genetics analysis of
ST131 isolates indicated that the recent
epidemic spread of this group is driven by
descendants of a single strain, named
subclone H30, that differ from the mem-
bers of other, less prevalent ST131 sub-
clones by carriage of fimH30, an allele of
the gene encoding the mannose-specific
type 1 fimbrial adhesin, FimH (15).

Over the last decade, the emergence
of multidrug-resistant ExPEC strains has
made UTI treatment more problematic,
leading to discordant antimicrobial ther-
apy and increased morbidity and mortal-
ity (16–19). This increase in multidrug-
resistant UTIs has in large part been
due to the rapid rise in prevalence of
ExPEC strains—particularly from
ST131— harboring determinants for
extended-spectrum �-lactamases (ESBLs)
and resistance to trimethoprim-
sulfamethoxazole and fluoroquinolones
(FQ) (16, 20–27).

The CTX-M-15 �-lactamase is the
dominant ESBL in ST131 and is increas-
ingly found in isolates causing both UTI
and bacteremia (13, 28–31). The CTX-M
gene phylogeny suggests that these en-
zymes arose through mobilization of
chromosomal �-lactamase (bla) genes
from the gut commensal organism Kluy-
vera (32). A number of CTX-M enzymes
have risen to prevalence since the 1990s,
with a new CTX-M type frequently ap-
pearing in multiple distant countries si-
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FIG 1 PFGE dendrogram and whole-genome SNP-based phylogeny of E. coli ST131. (A) PFGE-based
dendrogram of E. coli ST131 isolates (n � 524), as inferred within BioNumerics according to the
unweighted pair group method based on Dice similarity coefficients. (B) Whole-genome SNP-based
phylogeny of selected ST131 isolates (n � 105) and the NA114 reference genome. SNPs were identified
from genomic regions equivalent to approximately 44.7% of the reference genome that was shared
among all isolates and sequenced at �10� coverage. Analysis of these shared genomic regions revealed
2,531 parsimony-informative and 4,000 total SNPs from the core genome (excluding horizontally
acquired regions) that were used to construct the phylogeny presented here. Homoplasy index (HI) �
0.012. The purple block highlights the H30 subclone.
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multaneously, suggesting independent transfer events (33). This,
together with the substantial diversity in transferable resistance
elements in ST131, has led some to conclude that horizontal trans-
fer must be the dominant mechanism whereby ESBLs have gained
prominence among strains of the ST131 clone (7, 34, 35). How-

ever, other evidence suggests that clonal expansion contributes
significantly to the spread of antimicrobial resistance within E. coli
(36–39).

Until recently, our knowledge of the epidemiology and disper-
sal of bacterial strains, including of ST131 origin, has been based
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largely on multilocus sequence typing (MLST), which has limited
resolution at the subclone level, and on pulsed-field gel electro-
phoresis (PFGE) analysis, which is highly vulnerable to distortions
from horizontal gene transfer events and subjective interpreta-
tion. In the current study, we used whole-genome single-
nucleotide polymorphism (SNP) analysis to reconstruct the
ST131 phylogeny and then overlaid resistance determinants and
phenotypic susceptibility on this phylogeny to elucidate the evo-
lutionary history of fluoroquinolone resistance and ESBL produc-
tion within this prominent pathogen.

RESULTS
PFGE analyses. A collection of 524 ST131 isolates cultured from
humans and animals between 1967 and 2011 was analyzed using
PFGE, which yielded a complex dendrogram (Fig. 1A). Within the
PFGE-based dendrogram, the isolates that were fluoroquinolone
resistant and/or blaCTX-M-15 positive, although exhibiting some
clustering, were intermingled extensively with those that were flu-
oroquinolone susceptible and/or blaCTX-M-15 negative. As such,
the PFGE analysis supported previous reports suggesting frequent
horizontal acquisition of fluoroquinolone resistance determi-
nants and blaCTX-M-15 among different ST131 subclones.

Whole-genome SNP-based phylogenetic reconstruction of
ST131. From the total collection that underwent PFGE analysis,
105 ST131 isolates were systematically selected for genome se-
quencing according to prespecified criteria that emphasized diver-
sity of genetic backgrounds according to PFGE. The 105 isolates,
which derived from five countries and 23 states and provinces in
Canada and the United States, included 22 CTX-M-15-producing
isolates, which were widely distributed across the PFGE dendro-
gram (Fig. 1A).

Genomic comparisons identified SNP loci that were present in
all isolates and, therefore, informative for phylogenetic recon-
struction. The first phylogenetic tree included non-ST131 strain
AA86 (group B2; ST1876) (40) as an outgroup, to root the tree and
to identify the basal clones within the ST131 phylogeny (see Fig. S1
in the supplemental material). Next, strain AA86 was excluded,
and a new SNP matrix and phylogenetic tree were generated (see
Fig. S2 in the supplemental material). Since (distant) strain AA86
lacks some of the genomic regions found within the ST131 clone,
exclusion of AA86 increased the number of shared genomic re-
gions in the sequence alignment and, therefore, increased the
number of informative SNPs with which to resolve the ST131
phylogeny.

The homoplasy index (HI) for these two initial trees (see
Fig. S1 and S2) was exceedingly high (�0.33), indicating substan-
tial recombination. Phylogenetic reconstructions that include
genomic regions acquired by horizontal gene transfer will not ac-
curately represent the evolutionary history of clonal organisms.
However, such phylogenies can be used to identify the regions
acquired horizontally. This was accomplished here by mapping to
the reference genome the HI values for individual SNPs, which
revealed four large recombinant regions representing nearly 31%
of the genome.

Exclusion of SNPs from the four horizontally acquired regions
resulted in trees with minimal homoplasy (homoplasy index [HI]
� 0.012) (see Fig. S3 in the supplemental material), suggestive of
highly accurate phylogenies (41). Figure 1B shows the resultant
whole-genome SNP phylogeny for the 105 ST131 isolates, plus the
strain NA114 reference ST131 genome (42).

Whole-genome-based clustering of resistant subclones. The
whole-genome SNP-based phylogeny showed distinct clustering
of strains carrying specific fimH alleles (Fig. 1B), as well as gyrA
and parC alleles and O type (see Dataset S1 and Table S1 in the
supplemental material). In particular, strains carrying the fimH30
allele clustered as a single low-diversity clade, designated H30,
which included 58 (95%) of the 61 fluoroquinolone-resistant iso-
lates. Moreover, nearly all of the CTX-M-15-producing isolates,
despite appearing to have diverse genetic backgrounds according
to the PFGE-based dendrogram (Fig. 1A), collapsed into a distinct
subclade within the H30 clade (Fig. 1B).

To further resolve the evolutionary history of the H30 sub-
clone, genomic sequences from the 64 H30 isolates and their three
nearest neighbors were analyzed separately from the rest of the
isolates (Fig. 2). Aligning these sequences to the finished NA114
reference genome increased the number of shared nucleotides and
revealed additional informative SNPs that were used to generate
the high-resolution and highly accurate (HI � 0.000) phyloge-
netic tree shown in Fig. 2. This tree suggested that acquisition of
the fimH30 allele preceded the acquisition of fluoroquinolone re-
sistance by a single ancestor within the H30 subclone, which was
followed by a large clonal expansion of fluoroquinolone-resistant
H30 strains. To distinguish the clonally related fluoroquinolone-
resistant H30 isolates from the ancestral fluoroquinolone-
susceptible H30 isolates, the resistant subclone within H30 was
designated H30-R.

In this high-resolution phylogeny, 20 (91%) of the 22 ST131
isolates that carried blaCTX-M-15—including isolates from Austra-
lia, South Korea, Portugal, Canada, and the United States—
formed a distinct, single-ancestor subclone within H30-R. Be-
cause of its more extensive resistance characteristics, this blaCTX-

M-15-associated subclone was designated H30-Rx (Fig. 2). Three
canonical SNPs distinguished H30-Rx from the rest of H30-R with
100% fidelity.

Genomic location of the CTX-M-15 element. Multiple previ-
ous studies have reported that blaCTX-M-15 is positioned on a con-
jugative IncFII-type plasmid as part of a Tn3-like ISEcp1-blaCTX-

M-15-orf477 mobile element. Here, we performed an in silico
analysis to characterize the structure and genomic location of the
CTX-M-15 mobile element among the 22 blaCTX-M-15-positive
ST131 isolates. In each instance, blaCTX-M-15 was part of a typical
Tn3-like ISEcp1-blaCTX-M-15-orf477 transposable element. While
no SNPs were identified among the different CTX-M-15 elements,
the regions flanking blaCTX-M-15 were frequently degraded by in-
sertion/deletion (not shown). The Illumina short-read sequences
were sufficient to reliably identify the element’s insertion site for
all but three of the 22 CTX-M-15-positive isolates sequenced in
the current study (Table 1). The insertion site varied among the
isolates: 13 carried a single copy on an IncFII-type plasmid, four
carried a single copy on the chromosome, and two carried one
copy on the chromosome and another copy on an IncFII-type
plasmid (Table 1). Moreover, among the strains with a chromo-
somally located element, five distinct chromosomal insertion sites
were identified; only two strains, JJ1886 and JJ1887, which are the
nearest neighbors in the SNP phylogeny (Fig. 2), carried the ele-
ment in the same chromosomal location (Table 1).

Association of ESBL production and blaCTX-M-15 with the
H30-Rx ST131 subclone. Because most of the isolates in the phy-
logenetic trees were of historic (i.e., pre-2009) origin, we assessed
the generalizability of the observed association of the H30-Rx sub-
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clone with ESBL production and blaCTX-M-15 by analyzing more
recent clinical isolates, i.e., from 2011 to 2013. For this, a total of
261 ST131 isolates from Seattle, WA, Minneapolis, MN, and
Münster, Germany, were assessed for fimH allele type, H30-Rx
subclone membership, ESBL production, and possession of
blaCTX-M-15 (Table 2).

Among the 261 recent ST131 isolates, 174 (67%) belonged to
the H30 subclone, whereas the remaining 87 (33%) carried one of
several other ST131-associated fimH alleles, as described recently
(15). Among the 174 H30 isolates, the 163 (94%) that were fluo-
roquinolone resistant were defined as H30-R. Detection of H30-
Rx-specific SNPs showed that H30-Rx comprised 44 (27%) of 163
H30-R strains (Table 2).

Among the 44 H30-Rx isolates, 34 (77%) were ESBL produc-
ing, and 33 of these carried blaCTX-M-15. This was very similar to

the 74% carriage of blaCTX-M-15 observed among the genome-
sequenced historic H30-Rx isolates (Fig. 2) but significantly
higher than the low prevalence of either ESBL production or
blaCTX-M-15 carriage observed among the recent non-H30 ST131
isolates (3% for each trait), H30 but not H30-R isolates (9% for
each trait), and H30-R but not H30-Rx isolates (6% and 2% for
the two traits, respectively) (Table 2). Thus, blaCTX-M-15 accounted
for nearly all ESBL-producing isolates within the H30-Rx sub-
clone; conversely, within ST131 overall, the H30-Rx subclone ac-
counted for the vast majority of ESBL production and, especially,
blaCTX-M-15 carriage. Moreover, this tight association between
H30-Rx and blaCTX-M-15 held true across the different laboratories
that supplied the recent clinical isolates (data not shown).

Demographic, geographic, and clinical prevalence of H30-
Rx. We also assessed the relative prevalence of the H30-R and
H30-Rx subclones within the total ST131 population in relation to
patient population and locale by comparing urine isolates from
Group Health Cooperative in Seattle, WA, which serves an almost
exclusively outpatient population, with urine isolates from hospi-
tal laboratories in the United States and Germany that serve mixed
inpatient and outpatient populations. The relative prevalence of
H30-Rx was highest among the German Hospital isolates (where
it exceeded the prevalence even of other H30-R isolates), interme-
diate among United States-based hospital isolates, and lowest
among the Group Health outpatient isolates (Table 3).

Data regarding presence/absence of clinically diagnosed sepsis
were available for 162 of the recent United States ST131 clinical
isolates, among which 12 source patients (7%) overall were diag-
nosed with sepsis (Table 4), a value similar to the 5.2% overall
prevalence of diagnosed sepsis among the 1,133 extraintestinal
clinical isolates from which the 162 ST131 strains were derived (P
� 0.26) (15). However, sepsis was diagnosed in 28% of the pa-
tients with an H30-Rx isolate (Table 4), a significantly greater
proportion than among patients with a non-H30-Rx, H30-R iso-
late (6%; P � 0.02), a non-H30, ST131 isolate (4%; P � 0.01), any
non-H30-Rx, ST131 isolate (5%; P � 0.005), or a non-ST131 iso-
late (5.6%; P � 0.003). For H30-Rx isolates compared to other
ST131 isolates, the relative risk of associated sepsis was 7.5 (95%
confidence interval, 2.3 to 23.8).

DISCUSSION

The results of this study provide compelling evidence that clonal
expansion is the dominant mechanism for the proliferation of

TABLE 1 CTX-M-15 element locations among the 22 Escherichia coli
ST131 isolates

Isolate
name Subclone Genomic locationa

Chromosomal
insertion siteb

JJ2444 H30-Rx Chromosome 2,037,134
JJ2038 H30-Rx Chromosome 2,127,735
JJ1886 H30-Rx Chromosome 1,473,842
JJ1887 H30-Rx Chromosome 1,473,842
JJ2434 H30-Rx Plasmid and chromosome 4,493,369
MH5800 H30-Rx Plasmid and chromosome 4,191,808
JJ2547 H30-Rx Plasmid NA
JJ2555 H30-Rx Plasmid NA
JJ2008 H30-Rx Plasmid NA
JJ1914 H30-Rx Plasmid NA
JJ2441 H30-Rx Plasmid NA
JJ2489 H30-Rx Plasmid NA
JJ2657 H30-Rx Plasmid NA
JJ2643 H30-Rx Plasmid NA
U004 H30-Rx Plasmid NA
CD358 H30-Rx Plasmid NA
NA1114 H30-Rx Plasmidc NA
MH17102 H30-Rx Undetermined NA
QUC02 H30-Rx Undetermined NA
KN1604 H30-Rx Undetermined NA
JJ2244 H30, non-H30-Rx Plasmid NA
JJ2591 Non-H30 Plasmid NA
a Marked as undetermined if the in silico analyses provided equivocal results.
b Chromosomal location based on the JJ1886 closed genome. NA, not applicable.
c Reported previously.

TABLE 2 Association of ST131 subclones with resistance traits among 261 recent clinical isolates of Escherichia coli ST131 from the United States
and Germany

Resistance trait

Prevalence of resistance trait, no. (%)

Total ST131 strains
(n � 261)

ST131 subclone(s)

Non-H30
(n � 87)

H30 (n � 174)

Non-H30-R
(n � 11)

H30-R (n � 165)

Non-H30-Rx
(n � 119)

H30-Rx
(n � 44)

FQ resistant 163 (62) 0 (0) 0 (0) 119 (100) 44 (100)a

ESBL 45 (17) 3 (3) 1 (9) 7 (6) 34 (77)b

blaCTX-M-15 39 (15) 3 (7) 1 (9) 2 (2) 33 (75)c

a For the fluoroquinolone (FQ)-resistant fraction, H30-Rx compared to other ST131 isolates, P � 0.001 (Fisher’s exact test [FET]).
b For prevalence of extended-spectrum �-lactamase (ESBL) production, H30-Rx compared to other ST131 isolates, P � 0.001 (FET).
c For prevalence of blaCTX-M-15, H30-Rx compared to other ST131 isolates, P � 0.001 (FET).
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both CTX-M-15 production and fluoroquinolone resistance in
E. coli ST131. Past studies have shown that the determinants for
both of these traits can be acquired through horizontal gene trans-
fer or, in the case of fluoroquinolone resistance, independent mu-
tation (15). However, the whole-genome SNP-based phylogenies
presented here show that almost all of the fluoroquinolone-
resistant ST131 isolates belong to a distinct subclone, H30-R,
which was derived from a single common ancestor carrying the
fimH30 allele (i.e., part of the H30 subclone). Likewise, 91% of the
CTX-M-15-producing isolates form another distinct subclone,
H30-Rx, which was derived from a single common ancestor
within the H30-R subclone. These nested subclones form a
Russian-doll-like configuration, within which each subsequent
lineage is more extensively resistant than the former.

The nearly exclusive confinement of the CTX-M-15 element to
the H30-Rx subclone was in striking contrast to this element’s
promiscuity within the ST131 genome. We identified H30-Rx iso-
lates with a copy of the element on the chromosome, on an IncFII-
type plasmid, and, in some instances, on both the chromosome
and a plasmid. Moreover, among those isolates with a chromo-
somal CTX-M-15 element, the element was inserted in five differ-
ent locations. Notably, the only two isolates with identical chro-
mosomal insertion sites were recovered from epidemiologically
linked adult siblings who both suffered from UTIs of varying se-
verity and were suspected of sharing the same ST131 strain (43), as
supported here by the close proximity of these isolates in the high-
resolution H30 phylogenetic tree (Fig. 2). Among the 22 CTX-M-
15-producing strains, the CTX-M-15 elements exhibited no SNPs

and, therefore, no phylogenetic signal that could be compared
with the host strain phylogeny.

One cannot exclude the possibility that chromosomal and even
some plasmid-borne CTX-M-15 elements were acquired horizon-
tally by H30-RX on multiple occasions. However, three lines of
evidence suggest that within H30-Rx, the chromosomally en-
coded CTX-M-15 is the result of repeated intragenomic mobili-
zation of the plasmid-located Tn3-like ISEcp1-blaCTX-M-15-orf477
element, rather than independent horizontal acquisition events.
First, the sequence identity of the CTX-M-15 elements suggests
that they represent copies of the same recently derived genetic
element. Second, the plasmid location is the most common
among H30-Rx isolates. Third, some strains with chromosomally
encoded CTX-M-15 (e.g., JJ1886 and JJ1887) also maintain an
IncFII-type plasmid, albeit missing the CTX-M-15 element, con-
sistent with the CTX-M-15 element having moved from the plas-
mid to the chromosome.

The exact evolutionary history of CTX-M-15 acquisition in
H30-Rx also remains to be elucidated. It is possible that H30-Rx
was founded by an ancestor that acquired CTX-M-15 on an incF-
type plasmid, which expanded and differentiated along with the
subclone. Under this model, the CTX-M-15-negative H30-Rx iso-
lates would represent independent gene loss events. An alternative
explanation is that the H30-Rx subclone was founded by a CTX-
M-15-negative ancestor and partially expanded before becoming
extensively cephalosporin resistant later, through horizontal ac-
quisition of the CTX-M-15 element. Indeed, this subclone may be
under differential third-generation cephalosporin selection due to

TABLE 3 Prevalence of ST131 subclones in relation to source population among 261 recent clinical isolates of Escherichia coli ST131 from the
United States and Germany

Source population
Total no. of
ST131 isolates

ST131 subclones, no. (%)

Non-H30
(n � 87)

H30 (n � 174)

Non-H30-R
(n � 11)

H30-R (n � 165)

Non-H30-Rx
(n � 119)

H30-Rx
(n � 44)

United States ambulatory 86 35 (41) 3 (4) 42 (49) 6 (7)a,b

United States hospital 120 32 (27) 4 (3) 64 (53) 20 (17)a,c

German hospital 55 20 (36) 4 (7) 13 (24) 18 (33)b,c

a For prevalence of H30-Rx, United States ambulatory compared to United States hospital isolates, P � 0.054 (FET).
b For prevalence of H30-Rx, United States ambulatory compared to German hospital isolates, P � 0.001 (FET).
c For prevalence of H30-Rx, United States hospital compared to German hospital isolates, P � 0.03 (FET).

TABLE 4 Association of ST131 subclones with clinical sepsis among 162 recent clinical isolates of Escherichia coli ST131 from the United States

Clinical presentation

No. (%) of isolates with associated clinical presentation

Total ST131
isolates
(n � 162)

ST131 subclone(s)

Non-H30
(n � 56)

H30 (n � 174)

Non-H30-R
(n � 6)

H30-R (n � 165)

Non-H30-Rx
(n � 82)

H30-Rx
(n � 18)

No sepsis 150 (92.6) 54 (96) 6 (100) 77 (94) 13 (72)
Sepsis 12 (7.4) 2 (4)a 0 (0)b 5 (6)c 5 (28)a,b,c,d

a For prevalence of sepsis, H30-Rx compared to non-H30, P � 0.008 (FET).
b For prevalence of sepsis, H30-Rx compared to non-H30-R (H30), P � 0.28 (FET).
c For prevalence of sepsis, H30-Rx compared to non-H30-Rx (H30-R), P � 0.016 (FET).
d For prevalence of sepsis, H30-Rx compared to all other ST131 (7/144, 5%), P � 0.005 (FET).
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its enhanced virulence, which might result in its being exposed to
aggressive antimicrobial therapy more commonly than other
E. coli strains. Further investigation, including total chromosome
and plasmid closure, could clarify the most probable mechanism
for the association between H30-Rx and CTX-M-15. Interest-
ingly, however, the blaCTX-M-15-positive, FQ-resistant JJ2244
strain, which occupies a phylogenetic outgroup position relative
to both H30-R and H30-Rx (see Fig. 2), likely represents an inde-
pendently emerged multidrug-resistant clonal lineage within the
H30 subclone. Indeed, this strain not only lacks all canonical
H30-Rx SNPs but also has a distinct, recombinant FQ resistance-
conferring gyrA-parC allele combination (i.e., 1AB/4A), com-
pared with that present in H30-R (i.e., 1AB/1aAB).

The results of this whole-genome SNP-based analysis depicted
a considerably different evolutionary history for ST131 from that
derived from PFGE analysis. Our use of an iterative approach to
identify and exclude SNPs from recombinant regions elucidated
an evolutionary path marked by clonal expansions rather than
frequent lateral gene acquisitions. This underscores one of the
major advantages of a whole-genome SNP-based approach rela-
tive to PFGE. Although PFGE likewise uses signatures from
throughout the genome, it is highly vulnerable to phylogenetic
distortions from horizontal gene transfer, which can lead to false
assumptions about the evolutionary history of an organism (44),
and from subjective interpretation of banding patterns and the
(often invalid) presumption that similarly migrating bands repre-
sent the same chromosomal region.

The biological basis for the proliferation of H30-R and H30-Rx
remains unclear. It is possible that antimicrobial resistance, the
seemingly obvious explanation, is not the sole selective character-
istic leading to the successive proliferation of H30-R and H30-Rx
from within the H30 subclone. This is suggested by the fact that
certain non-H30 ST131 isolates were identified that possessed the
same phenotypic resistance traits without having reached a com-
parable level of success as H30-Rx. Increased virulence, as sug-
gested by the significant association between H30-Rx and sepsis,
could be a factor contributing to the success of this important
subclone. Further investigations, including detailed comparative
genomic, epidemiological, and functional studies, are needed to
determine the basis for the success of H30-R and the strong asso-
ciation of H30-Rx with sepsis.

Regardless of mechanisms, the association of H30-Rx with sep-
sis, its broad multidrug resistance profile, and its rapid expansion
and geographic dispersal warrant attention from the public health
and clinical communities. Although continued accumulation of
antibiotic resistance determinants may limit therapeutic options
in the future, the clonal nature of H30-Rx may facilitate effective
control strategies involving vaccines or transmission prevention.

MATERIALS AND METHODS
Isolates and patients. The molecular epidemiological analyses used a
large collection (n � 1,908) of recent, consecutive, single-patient E. coli
isolates from 6 clinical microbiology laboratories in the United States and
Germany. The United States isolates (n � 1,518) were recovered in 2010
and 2011 from 5 locations, including Group Health Cooperative, Harbor-
view Medical Center, Seattle Children’s Hospital, and University of Wash-
ington Medical Center (all in Seattle, WA) and the Veterans Affairs Med-
ical Center in Minneapolis, MN, as described previously (15). The
German isolates (n � 390) were recovered in 2012 at the University Hos-
pital in Münster, Germany. All isolates underwent fumC-fimH (CH)
clonotyping (45) to identify ST131 and its constituent CH clonotypes (i.e.,

fimH-specific subclones, including H30) and were assessed for ESBL pro-
duction by disk diffusion as specified by the Clinical and Laboratory Stan-
dards Institute. Medical record data regarding presence of clinically diag-
nosed sepsis at the time of sample collection or during the subsequent
30 days were available for 1,133 (75%) of the 2010-2011 United States
isolates. Each center’s institutional review board approved the study pro-
tocol.

PFGE analysis. The 524 historical and recent ST131 isolates were sub-
jected to standardized XbaI PFGE analysis, as described previously (46).
The dendrogram was inferred within BioNumerics (Applied Maths) ac-
cording to the unweighted pair group method based on Dice similarity
coefficients.

Strain selection. Selection of ST131 isolates for genome sequencing
was done in successive phases. First, to sample the breadth of phylogenetic
diversity within the ST (to the extent that this is reflected in PFGE pro-
files), 20 isolates were selected to represent widely distributed clusters
within a PFGE profile dendrogram based on a published collection of 524
historical and recent ST131 isolates from diverse locales, years of isolation,
and hosts (Fig. 1A). In selecting the representative isolate(s) for a given
PFGE cluster, priority was given to (i) most recent year of isolation, (ii)
human host, and (iii) fluoroquinolone resistance. Next, 28 additional
isolates were selected from these same PFGE clusters based on (i) prox-
imity in the dendrogram to the initially selected (index) isolate and (ii)
differences from the index isolate with respect to host and/or fluoroquin-
olone phenotype. Subsequently, an additional 60 isolates were selected
from both this initial collection and a large collection of recent human
clinical ST131 isolates from Seattle, WA, and Minneapolis, MN, that had
undergone sequence analysis of gyrA, parC, and fimH (to define subclones
within ST131) and PFGE analysis. Here, selection criteria included (i)
distinctive gyrA, parC, and/or fimH alleles, or combinations thereof, (ii)
outliers with respect to fluoroquinolone phenotype, in comparison with
other isolates sharing the same PFGE type or gyrA-parC-fimH allele com-
bination, and (iii) distinctive host species, clinical presentations (e.g.,
published case report isolates), specimen types (e.g., food or environmen-
tal), or dates of isolation (e.g., oldest known and oldest published ST131
isolates). Of the 108 total selected isolates, four isolates were subsequently
excluded due to questionable authenticity, leaving 104 isolates for genome
sequencing.

Genome sequencing. DNA samples were prepared for multiplexed,
paired-end sequencing on an Illumina Genome Analyzer IIx (Illumina,
Inc., San Diego, CA). For each isolate, 1 to 5 �g DNA in 200 �l was sheared
in a 96-well plate with the SonicMAN (part no. SCM1000-3; Matrical
BioScience, Spokane, WA) to a size range of 200 to 1,000 bp, with the
majority of material at ca. 600 bp, using the following parameters:
prechill, 0°C for 75 s; cycles, 20; sonication, 10 s; power, 100%; lid chill,
0°C for 75 s; plate chill, 0°C for 10 s; postchill, 0°C for 75 s. The sheared
DNA was purified using the QIAquick PCR purification kit (catalogue no.
28106; Qiagen, Valencia, CA). The enzymatic processing (end repair,
phosphorylation, A tailing, and adaptor ligation) of the DNA followed the
guidelines described in the Illumina protocol (“Preparing Samples for
Multiplexed Paired-End Sequencing,” catalogue no. PE-930-1002, part
no. 1005361). The enzymes for processing were obtained from New Eng-
land Biolabs (catalogue no. E6000L; New England Biolabs, Ipswich, MA),
and the oligonucleotides and adaptors were obtained from Illumina (cat-
alogue no. PE-400-1001).

After ligation of the adaptors, the DNA was run on a 2% agarose gel for
2 h, after which a gel slice containing 500- to 600-bp fragments of each
DNA sample was isolated and purified using the QIAquick gel extraction
kit (catalogue no. 28706; Qiagen, Valencia, CA). Individual libraries were
quantified by quantitative PCR on an ABI 7900HT (part no. 4329001; Life
Technologies Corporation, Carlsbad, CA) in triplicate at two concentra-
tions, 1:1,000 and 1:2,000, using the Kapa library quantification kit (part
no. KK4832 or KK4835; Kapa Biosystems, Woburn, MA). Based on the
individual library concentrations, equimolar pools of no more than 12
indexed E. coli libraries were prepared at a concentration of at least 1 nM
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using 10 mM Tris-HCl (pH 8.0) and 0.05% Tween 20. To ensure accurate
loading onto the flow cell, the same quantification method was used to
quantify the final pools. The pooled paired-end libraries were sequenced
on an Illumina Genome Analyzer IIx to a read length of at least 76 bp.

The genomes were sequenced at an average depth of 60.93� (standard
deviation [SD] � 31.66, using the 4,971,461-base NA114 chromosome as
a reference). An average of 4,654,457.54 bases (SD � 385,629.23) were
sequenced at �10� coverage.

Identification of SNPs. Illumina whole-genome sequence data sets
were aligned against the chromosome of a published ST131 reference
genome (strain NA114; GenBank accession no. CP002797) (42) using the
short-read alignment component of the Burrows-Wheeler Aligner. Each
alignment was analyzed for SNPs using SolSNP, a Java-based DNA
variant-calling tool for next-generation sequencing alignment data. Sol-
SNP uses a modified Kolmogorov-Smirnov statistic and data filtering to
call variants on high-coverage, aligned genomes (http://sourceforge.net
/projects/solsnp/). To avoid false calls due to sequencing errors, SNP loci
were excluded if they did not meet a minimum coverage of 10� and if the
variant was present in �90% of the base calls for that position. SNP calls
were combined for all of the sequenced genomes such that, for the locus to
be included in the final SNP matrix, it had to be present in all of the
genomes. SNPs falling in the duplicated regions on the reference genome
were discarded.

Phylogenetic analysis. Phylogenetic trees were generated using the
maximum-parsimony method in PAUP version 4.0b10. Using prior
knowledge about near neighbors, a published E. coli strain belonging to
the phylogenetic group B2 genome (strain AA86; GenBank accession no.
AFET00000000) was selected as an outgroup to root the ST131 whole-
genome sequence tree (45). ST131 isolates in the clade nearest to this
bifurcation point were used to root subsequent trees.

The homoplasy index (HI) was calculated in PAUP using the formula
HI � 1 � CI, where CI is the consistency index. CI serves to measure the
relative amount of homoplasy in a cladogram, as assessed by the level of
difficulty in fitting SNP alleles to a given tree. The CI is calculated using the
formula CI � m/s, where m is the total number of expected character
changes and s is the actual number of changes that occur in the tree.

Detection of H30-Rx-specific SNPs. Two SNPs that differentiate the
CTX-M-15-associated subclone (H30-Rx) within the H30-R subclone
from the rest of the H30 subclone were interrogated using Sanger se-
quencing. SNP-200 was detected as a C-to-T transition at position 299 of
the 460-bp PCR product generated using forward primer 5= GACACCA
TGCGTTTTGCTTC 3= and reverse primer 5= TCGTACCGGCAACAAT
TGAC 3=. SNP-264 was detected as a G-to-A transition at position 287 of
the 462-bp PCR product generated using forward primer 5= GTGGCGA
TTTCACGCTGTTA 3= and reverse primer 5= TATCCAGCACGTTCCA
GGTG 3=. Isolates that tested positive for both SNPs were regarded as
members of the H30-Rx subclone.

PCR-based detection of blaCTX-M-15. The CTX-M-15-encoding gene
blaCTX-M-15 was detected by PCR using SNP-specific forward primer 5= A
TAAAACCGGCAGCGGTGG 3= and universal reverse primer 5=GAATT
TTGACGATCGGGG 3= (47). PCR conditions were 10 min of denatur-
ation at 95°C, 33 cycles of 30 s at 94°C, and 30 s at 67°C, followed by 7 min
at 72°C elongation. The blaCTX-M-15-specific 483-bp PCR product was
detected by agarose gel electrophoresis

Location of CTX-M-15-encoding mobile element. Illumina short
reads were aligned to the closed chromosome of JJ1886 (CP006784,
CP006785, CP006786, CP006787, CP006788, and CP006789) (54) and
the pEC_L8 closed plasmid sequence using BWA-MEM (48) version
0.7.5a-r405 with the default settings for paired reads. Alignments were
analyzed using the IGV tool (49, 50). The location of the conserved CTX-
M-15 element (ISEcp1-blaCTX-M-15-orf477) was then inferred based on
the sequence alignments. Close attention was paid to the boundaries of
the element, since any unmapped or incorrectly mapped pairs or pairs
with insertions or deletions provided clues as to the genomic location and
possible rearrangements. Putative duplications were noted if the depth of

coverage around the element was substantially higher than the flanking
regions. Illumina short reads were also assembled with the Mira assembler
(51). The contigs were aligned with Mauve (52) against JJ1886 and
pEC_L8 to identify any chromosomal rearrangement in the contigs car-
rying the CTX-M-15 element.

fimH and gyrA-parC allele assignments. Sequenced isolates were as-
sembled using VelvetOptimiser (version 2.2.2) and Velvet (53). All fimH,
gyrA, and parC sequences were compared to an in-house sequence library
using nucleotide-nucleotide BLAST (version 2.2.25�). Sequence similar-
ity matches were determined using thresholds of 100% nucleotide identity
and 100% coverage of the query sequence length. Allele designations were
assigned based on an in-house nomenclature for the gyrA-parC combina-
tion and fimH.

Statistical methods. Comparisons of proportions were tested using
Fisher’s exact test or a chi-square test (two tailed), with P values of �0.05
as the criterion for significance.

Accession number. All Illumina sequences were deposited into the
NCBI SRA (http://www.ncbi.nlm.nih.gov/sra), study accession number
SRP027327.
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