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Abstract: Solid platelet-rich fibrin (PRF), consisting of coagulated plasma from fractionated blood,
has been proposed to be a suitable carrier for recombinant bone morphogenetic protein 2 (BMP2)
to target mesenchymal cells during bone regeneration. However, whether solid PRF can increase
the expression of BMPs in mesenchymal cells remains unknown. Proteomics analysis confirmed
the presence of TGF-β1 but not BMP2 in PRF lysates. According to the existing knowledge of
recombinant TGF-β1, we hypothesized that PRF can increase BMP2 expression in mesenchymal cells.
To test this hypothesis, we blocked TGF-β receptor 1 kinase with SB431542 in gingival fibroblasts
exposed to PRF lysates. RT-PCR and immunoassays confirmed that solid PRF lysates caused a robust
SB431542-dependent increase in BMP2 expression in gingival fibroblasts. Additionally, fractions of
liquid PRF, namely platelet-poor plasma (PPP) and the buffy coat (BC) layer, but not heat-denatured
PPP (Alb-gel), greatly induced the expression of BMP2 in gingival fibroblasts. Even though PRF
has no detectable BMPs, PRF lysates similar to recombinant TGF-β1 had the capacity to provoke
canonical BMP signaling, as indicated by the nuclear translocation of Smad1/5 and the increase in its
phosphorylation. Taken together, our data suggest that PRF can activate TGF-β receptor 1 kinase and
consequently induce the production of BMP2 in cells of the mesenchymal lineage.
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1. Introduction

Platelet-rich fibrin (PRF) is generated by centrifuging blood, aiming not only to remove
erythrocytes but also to obtain a fraction consisting of plasma enriched with platelets and
leucocytes. Since the introduction of PRF use in 2006 [1], numerous protocols have been
established with the goal of optimizing the ratio of platelet counts and the overall yield
of the PRF fraction generated [2]. The protocols for preparing solid PRF consider the
selection of blood collection tubes containing clot activators such as silica and silicone [3].
PRF membranes are produced by compressing the solid PRF clot so that the serum is
removed. PRF membranes are then applied clinically to defects with the overall goal of
supporting the natural processes of wound healing and bone regeneration [4,5], which
require the coordinated action of growth factors, including those released from solid PRF
membranes [6,7].

Apart from its intrinsic growth factors, solid PRF can serve as a carrier for the de-
livery of recombinant growth factors [8]. Among these proposed growth factors is bone
morphogenetic protein (BMP2), a member of the transforming growth factor beta (TGF-β)
superfamily that is characterized by its osteoinductive potential [8,9]. Based on FDA ap-
proval, recombinant BMP2 has been applied together with an absorbable collagen sponge
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into defect sites during spinal surgery [10] and bone augmentation during regenerative
dentistry [11]. To combine the favorable healing properties of PRF with the osteoinduction
potential of BMP2, various combinations have been introduced. Applying the combination
of BMP2 and L-PRF leads to the early resolution of medication-related osteonecrosis of the
jaws (MRONJ) [12]. L-PRF combined with open flap debridement augments the periodon-
tal healing of chronic periodontitis patients by increasing BMP2 release [13]. Alternatively,
PRF might serve as a carrier for transplanted cells producing BMP2 [14]. PRF targets pris-
tine mesenchymal cells, becoming a potential source of BMP2 [15]. PRF from rabbits [16]
and humans [17] may even release BMP2, but this finding has not been confirmed by
proteomic analysis [18]. The content of TGF-β in a PRF preparation, however, could be
responsible for its clinical activity. Therefore, the question of whether PRF can stimulate
the expression of BMP2 in potential target cells remains.

This question is reasonable, as TGF-β1 is highly abundant in solid PRF [18] and is
a known agonist of BMP2 expression in mesenchymal cells; for instance, recombinant
TGF-β1 has been reported to increase BMP2 expression in bone marrow mesenchymal
cells [19]. These findings indicate that TGF-β1 may modulate the BMP2-dependent au-
tocrine/paracrine activity of the target cells. However, knowing that PRF contains TGF-β1
does not mean that PRF is synonymous with TGF-β activity. PRF is more complex than a
single growth factor, and whether TGF-β activity accounts for the overall effects of PRF,
and to what extent, should be based on experimental evidence. One strategy that allows
the determination of TGF-β activity of PRF is based on blocking TGF-β receptor 1 kinase
with SB431542 in a bioassay using mesenchymal cells [18,20,21].

In this study, we first performed a proteomics analysis to confirm that PRF membranes
are devoid of BMP2; therefore, all BMP2 measured during the assay would be produced
by the gingival fibroblasts. Second, we exposed gingival fibroblasts to PRF membrane
lysates in the presence and absence of SB431542 to identify the expression of BMP2 that is
controlled by activation of TGF-β receptor 1 kinase. Finally, we show that PRF can activate
the Smad1/5 signaling pathway, which is usually activated by BMPs. Taken together,
our data show that PRF releases TGF-β, which can activate the expression of BMP2 and
probably also stimulate the Smad1/5 signaling pathway.

2. Results
2.1. Proteomics Analysis of Solid PRF Lysates Shows TGF-β1 but Not BMP2

We recently performed a proteomic analysis of PRF lysates showing the presence of the
classical growth factor TGF-β1, but neither of the BMP family members was identified [18].
We next examined our data from another independent proteomic analysis of the total PRF
clots based on mass spectrometric analysis. This analysis confirmed the presence of TGF-β1
and the lack of BMP2 and other members of the BMP superfamily in the PRF lysates
(Supplementary Table S1). The PANTHER classification system revealed 1791 GO terms
(Supplementary Table S2) and 1269 functional hits (Figure 1A). The molecular functional
regulator (GO:0098772) contained 126 genes with 126 functional hits (Figure 1B). For exam-
ple, receptor regulator activity (GO: 0030545) contains nine members: transforming growth
factor-β1 proprotein, platelet basic protein, follitropin subunit β, platelet factor 4 variant,
ectodysplasin A, choriogonadotropin subunit β3, platelet factor 4, C-C motif chemokine
S, and choriogonadotropin subunit beta variant 1. Subsequently, REVIGO analysis re-
duced the visualized gene ontology to 350 terms (Supplementary Table S3). Among the
1791 proteins identified, only a were few growth factors, e.g., TGF-β1, insulin-like growth
factor II, myeloid-derived growth factor, epidermal growth factor, and hepatocyte growth
factor-like protein, which were enriched in the intercellular signal molecule class (PC00102,
Figure 1C). Taken together, the proteomic signature of PRF membranes confirmed the
absence of BMPs. However, there is reason to assume, based on in vitro studies with
recombinant TGF-β1 [19] and the strong TGF-β activity found in PRF lysates [18,20,21],
that these growth factors are capable of inducing the expression of BMP2.
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nanogram per milliliter level (Figure 2B), but BMP2 signals were not observed when the 

Figure 1. PRF lysates contain a large spectrum of proteins, including TGF-β1. PANTHER analy-
sis for the protein IDs was conducted based on (A) molecular function, and among the sections,
(B) molecular functional regulators including TGF-β1 are indicated. Classifications based on
(C) protein class and (D) cellular components are also presented.

2.2. Solid PRF Lysates Stimulate the Expression of BMP2 in Gingival Fibroblasts

Gingival fibroblasts were exposed to PRF lysates, focusing on the expression changes
of BMP2. RT-PCR analysis showed that 30% of the PRF lysates increased the expression
of BMP2 by up to 17-fold (Figure 2A). TGF-β1 at 30 ng/mL was used as the positive
control. Immunoassays confirmed that BMP2 expression was translated into BMP2 at
the nanogram per milliliter level (Figure 2B), but BMP2 signals were not observed when
the PRF lysates were analyzed (data not shown). RT-PCR analysis further confirmed the
increased expression of the typical TGF-β/BMP-regulated ID1 and ID3 genes by PRF
lysates (Figure 3). SB431542 significantly suppressed the expression of the BMP2, ID1, and
ID3 genes in gingival fibroblasts. These data suggest that PRF lysates can activate TGF-β
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receptor 1 kinase signaling and thereby increase the expression of BMP2 and the related
genes ID1 and ID3 (Figure 4A–C).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 13 
 

 

PRF lysates were analyzed (data not shown). RT-PCR analysis further confirmed the in-
creased expression of the typical TGF-β/BMP-regulated ID1 and ID3 genes by PRF lysates 
(Figure 3). SB431542 significantly suppressed the expression of the BMP2, ID1, and ID3 
genes in gingival fibroblasts. These data suggest that PRF lysates can activate TGF-β re-
ceptor 1 kinase signaling and thereby increase the expression of BMP2 and the related 
genes ID1 and ID3 (Figure 4A–C). 

 
Figure 2. RT-PCR and immunoassays triggered by solid PRF lysates confirmed the presence of 
BMP2. Gingival fibroblasts were stimulated with 30% soluble PRF lysates. (A) Reverse transcription 
PCR analysis for BMP2 is indicated; (B) The levels of BMP2 in the supernatant of the fibroblasts are 
presented as ng/mL. n = 4. Statistical analysis was performed with a two-tailed t-test. p values are 
reported comparing the PRF group with the untreated control. Here, and throughout this study, 
significance was set at p < 0.05. ”wo” indicates without and represents unstimulated cells. 

 
Figure 3. PRF lysates activate the TGF-β and BMP2 target genes ID1 and ID3. Gingival fibroblasts 
were treated with 30% soluble PRF lysates. PCR analysis of ID1 and ID3 is indicated. n = 5. Statistical 
analysis was performed with a Kruskal–Wallis test for multiple comparisons. p values are reported 
comparing the PRF group with the untreated control. 

Figure 2. RT-PCR and immunoassays triggered by solid PRF lysates confirmed the presence of
BMP2. Gingival fibroblasts were stimulated with 30% soluble PRF lysates. (A) Reverse transcription
PCR analysis for BMP2 is indicated; (B) The levels of BMP2 in the supernatant of the fibroblasts are
presented as ng/mL. n = 4. Statistical analysis was performed with a two-tailed t-test. p values are
reported comparing the PRF group with the untreated control. Here, and throughout this study,
significance was set at p < 0.05. ”wo” indicates without and represents unstimulated cells.
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Figure 3. PRF lysates activate the TGF-β and BMP2 target genes ID1 and ID3. Gingival fibroblasts
were treated with 30% soluble PRF lysates. PCR analysis of ID1 and ID3 is indicated. n = 5. Statistical
analysis was performed with a Kruskal–Wallis test for multiple comparisons. p values are reported
comparing the PRF group with the untreated control.
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Figure 4. A TGF-β receptor I kinase antagonist blocks BMP2 and its corresponding genes. Gingival fibroblasts were
stimulated with PRF lysates in the absence or presence of the TGF-β receptor I kinase antagonist SB431542 (10 µM). PCR
analysis for (A) BMP2, (B) ID1, and (C) ID3 gene expression is presented. n = 5. Statistical analysis was performed with a
two-tailed t-test.

2.3. PRF Can Activate Smad1/5 Signaling

Considering that TGF-β stimulates Smad1 phosphorylation in a variety of cell
lines [20,21] and that TGF-β receptor 1 kinase mediates TGFβ-induced Smad1/5 and
Smad2/3 phosphorylation in chondrocytes [22], we wondered whether PRF lysates can
activate the BMP-related Smad1/5 signaling pathway apart from the known potent ac-
tivation of Smad3 canonical TGF-β signaling [18,23]. Support for this claim came from
our observations that PRF lysates caused weak phosphorylation of Smad1/5 in serum-
starved cells while SB431542 and LDN193189 blocked the phosphorylation (Figure 5).
PRF also initiated robust translocation of Smad1/5 into the nucleus in gingival fibroblasts
(Figure 6). These data suggest that PRF lysates have at least a modest effect on the activation
of canonical BMP-related Smad1/5 signaling. In support of this assumption, LDN193189,
an inhibitor of BMP type I receptor signaling (ALK2/3), significantly suppressed the ex-
pression of the BMP2, ID1, and ID3 genes after treatment with PRF in gingival fibroblasts
(Figure 7A–C), Thus, PRF lysates and TGF-β1, independent of the presence of BMPs, have
BMP-like activity.
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Figure 5. PRF lysates activated the phosphorylation of Smad1/5, which was reduced by treatment
with a BMP2 inhibitor. Gingival fibroblasts were exposed to 30% PRF lysate or BMP2 overnight in the
presence or absence of SB431542 and LDN193189. Western blot analysis showed a clear increase in
the basal Smad1/5 phosphorylation signal in PRF lysates. However, in combination with SB431542
or LDN193189, the signal diminished. ”wo” indicates without and represents unstimulated cells.



Int. J. Mol. Sci. 2021, 22, 7935 6 of 13Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 6. The PRF lysate attenuated the translocation of Smad1/5 from the cytoplasm into the nu-
cleus. Gingival fibroblasts were exposed to TGF-β and BMP2 as positive controls and PRF in the 
presence or absence of SB431542 and LDN193189. Immunofluorescence analysis of the intracellular 
translocation of Smad1/5 into the nucleus is presented. ”wo” indicates without and represents un-
stimulated cells. 

 
Figure 7. A potent ALK2/3 inhibitor can block BMP2 and ID genes. Gingival fibroblasts were exposed to PRF lysates in 
the presence or absence of 100 nM LDN193189. PCR analyses for (A) BMP2, (B) ID1, and (C) ID3 gene expression are 
presented. n = 5. Statistical analysis was performed with the two-tailed t-test.  

2.4. Liquid PRF Lysates Stimulate the Expression of BMP2 in Gingival Fibroblasts 
Considering that the clinical applications of PRF include liquid PRF [24,25], and sim-

ilar to our previous approach to identify the role of TGF-β activity in these various frac-
tions [23], we determined the effects of lysates from platelet-poor plasma (PPP), buffy coat 
(BC), heated PPP (Alb-gel), and the remaining red clot on the expression of BMP2 in gin-
gival fibroblasts. Consistent with the recent observation that PPP and BC, but not Alb-gel 
and red clot lysates, have TGF-β activity [23], we now show that this pattern is also valid 
for BMP2. Lysates of PPP and BC caused an increase in BMP2 expression in gingival fi-
broblasts based on the RT-PCR and immunoassay results (Figure 8A,B). As expected, fur-
ther confirmation of the typical regulation of the ID1 and ID3 genes by TGF-β/BMP after 
treatment with liquid PRF lysates indicated upregulation of these genes (Figure 9A,B). 

Figure 6. The PRF lysate attenuated the translocation of Smad1/5 from the cytoplasm into the nucleus. Gingival fibroblasts
were exposed to TGF-β and BMP2 as positive controls and PRF in the presence or absence of SB431542 and LDN193189.
Immunofluorescence analysis of the intracellular translocation of Smad1/5 into the nucleus is presented. ”wo” indicates
without and represents unstimulated cells.
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presence or absence of 100 nM LDN193189. PCR analyses for (A) BMP2, (B) ID1, and (C) ID3 gene expression are presented.
n = 5. Statistical analysis was performed with the two-tailed t-test.

2.4. Liquid PRF Lysates Stimulate the Expression of BMP2 in Gingival Fibroblasts

Considering that the clinical applications of PRF include liquid PRF [24,25], and
similar to our previous approach to identify the role of TGF-β activity in these various
fractions [23], we determined the effects of lysates from platelet-poor plasma (PPP), buffy
coat (BC), heated PPP (Alb-gel), and the remaining red clot on the expression of BMP2
in gingival fibroblasts. Consistent with the recent observation that PPP and BC, but not
Alb-gel and red clot lysates, have TGF-β activity [23], we now show that this pattern is also
valid for BMP2. Lysates of PPP and BC caused an increase in BMP2 expression in gingival
fibroblasts based on the RT-PCR and immunoassay results (Figure 8A,B). As expected,
further confirmation of the typical regulation of the ID1 and ID3 genes by TGF-β/BMP
after treatment with liquid PRF lysates indicated upregulation of these genes (Figure 9A,B).
Thus, not only lysates from solid PRF but also the respective liquid fractions drive the
expression of BMP2 in gingival fibroblast cells of the mesenchymal lineage.
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3. Discussion

This study was based on our recent observations that PRF is composed of a large
spectrum of proteins containing TGF-β but not BMPs among the growth factors stored in
PRF membranes [18]. Recombinant BMP2 has gained increasing attention because of its
osteoinductive activity that drives bone formation in clinical scenarios of bone augmentation
in dentistry [11] and enhanced bone remodeling capacity as an autogenous bone graft [26].
PRF has been proposed to serve as a carrier for recombinant BMP2 to achieve controlled release
during fibrinolysis [8]. Considering that PRF contains TGF-β [18,20,21] and recombinant TGF-
β1 can stimulate BMP2 expression in vitro [19], it is reasonable to suggest that PRF can support
the expression of BMP2 in cells of the mesenchymal lineage. In support of this hypothesis, we
show here that lysates obtained from solid and liquid PRF are both capable of causing a robust
SB431542-dependent increase in BMP2 expression in gingival fibroblasts. Unexpectedly, the
PRF lysates and recombinant TGF-β1 caused SB431542-dependent activation of Smad1/5
signaling. Thus, PRF-derived TGF-β not only causes the expression of BMP2 and ID genes
but also activates Smad1/5 signaling that is apparently not caused by PRF-derived BMP2.

If we relate these findings to those of others, we learn that the question of whether PRF
is a source of BMPs cannot ultimately be answered and this situation remains controversial.
Our recent and current proteomic analysis of PRF [18] and data from the immunoassays
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are consistent with those of others who could not identify BMPs in PRF [27]. In contrast,
the immunoassays gave signals for BMP2 [16,17], and proteomic analysis identified the
release of BMP4, BMP5, BMP7, and GDF15 from solid PRF [28]. BMPs have also been
identified by antibodies in lysates of human platelets [29] but not confirmed by proteomics,
as reported in Platelet Web [30]. Nevertheless, we have accumulated evidence that PRF
lysates activate Smad1/5 signaling, which is typically caused by BMPs [31], similar to the
expression of the genes ID1 and ID3, both potential targets of BMP signaling [32]. In the
present study, activation of Smad1/5 signaling is probably a consequence of PRF-derived
TGF-β as it was blocked by SB431542 and recombinant TGF-β1 was activating Smad1/5
signaling. Further studies can be designed to recognize the effects of PRF on the activity of
BMP2 in BMP-responsive reporter cell lines [33].

The clinical relevance of this study is hard to interpret even though PRF membranes are
widely used in tissue regeneration, including in the dental field [34–36], but can be extended
to studies showing the amazing capacity of PRF membranes to treat diabetic ulcers [37]
and alveolar ridge preservation [38]. What remains unclear is which key components of
PRF membranes appear in the proteomic signature, causing at least some of the beneficial
effects of the treatment in clinical scenarios. Considering what we know about the role of
TGF-β during the course of natural wound healing [39] and bone regeneration [40] and
the local release of therapeutic doses of TGF-β at a defect site, the content of TGF-β in
PRF membranes is a possible candidate to predict the clinical activity of a PRF preparation.
Moreover, GO analysis tells us that the proteins associated with molecular transducer
activity contain TGF-β1, but whether the changes in expression levels of the fibroblasts,
including the growth factor BMP2, have an impact on the clinical outcome of PRF treatment
remains unclear.

Our study simulates only the scenario where PRF membranes come in contact with
local mesenchymal cells and experience a strong TGF-β receptor 1 kinase-dependent
change in the gene expression signature. There are many more potential targets for PRF
that need to be evaluated in this respect, particularly in cells related to innate immunity and
the formation of blood vessels. Nevertheless, fibroblasts are known targets of TGF-β [41],
and as they are part of the early stage of wound healing and bone regeneration [42,43],
this research at least partially simulates a natural defect situation. To come closer to an
answer, preclinical studies where the supposed beneficial effects of PRF are suppressed
by SB431542 could be recommended. Unexpected were our findings with LDN193189.
LDN193189 inhibits the BMP type I receptors ALK2 and ALK3, with a 200-fold selectivity
for BMP versus TGF-β and was originally used by us to interrupt BMP2 autocrine activity.
Our data, however, are more in favor of LDN193189 blocking TGF-β signaling. However,
LDN212854 did not prevent the phosphorylation of Smad1/5 by TGF-β [21,44]. Moreover,
TGFβ-induced Smad1 phosphorylation is independent of BMP type I receptors in certain
cell lines [44]. Thus, more research is required to reveal how PRF provoke Smad1/5
phosphorylation and nuclear translation in gingival fibroblasts and thereby activate BMP
signaling, a process that can even be enhanced by the expression of BMP2 in an autocrine
mode of action.

4. Materials and Methods
4.1. Cell Culture

Approval for the collection of human gingiva was obtained from the Ethics Committee
of the Medical University of Vienna (EK NR 631/2007), and patients signed informed
consent forms. Three different strains of fibroblasts were prepared from explant cultures.
Gingival fibroblasts were expanded in growth medium containing penicillin, streptomycin
(Sigma Aldrich, St. Louis, MO, USA), and 10% fetal bovine serum (Bio&Sell GmbH,
Nuremberg, Germany). Fibroblasts (30,000 cells/cm2) were exposed to the lysates of
unheated and heated PPP (Alb-gel), buffy coat C-PRF (BC), and the red blood clot (RC)
in serum-free medium for 24 h at 37 ◦C with 5% CO2 and 95% humidity. The BMP2
receptor was blocked with 10 µM SB431542 (Billerica, MA, USA) and 100 nM LDN193189,
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a potent and selective ALK2 and ALK3 inhibitor (Cayman, Hamburg, Germany). BMP2 at
300 ng/mL and TGF-β1 at 30 ng/mL (both from ProSpec-Tany TechnoGene Ltd., Rehovot,
Israel) were used as the positive controls in the respective experiments.

4.2. Preparation of PPP, Alb-gel, Buffy Coat, and Red Clot

Volunteers signed informed consent forms, and the ethics committee of the Medical
University of Vienna (1644/2018) approved the preparation of PRF. To prepare PRF gels [45],
venous blood was collected from healthy volunteers, three females and three males aged
23 to 35 years old, in plastic tubes (“No Additive”, Greiner Bio-One GmbH, Kremsmünster,
Austria) and centrifuged at 700× g for 8 min (swing-out rotor; Z 306 Hermle, Universal
Centrifuge, Wehingen, Germany). The uppermost 2 mL of PPP and 1 mL of buffy coat,
as well as a 1 mL erythrocyte fraction, were collected. To generate PPP gels [45], PPP
was immediately heated at 75 ◦C for 10 min (Eppendorf, Thermomixer F1.5, Hamburg,
Germany) before being placed on ice [46]. Each blood fraction was subjected to two freeze–
thaw cycles followed by sonication (Sonopuls 2000.2, Bandelin electronic, Berlin, Germany).
After centrifugation (Eppendorf, Hamburg, Germany) at 15,000× g for 10 min, 1 mL of the
lysate was mixed with 0.5 mL of serum-free medium and stored at −20 ◦C for no longer
than one month. Once the cells were ready for stimulation, the fractions were thawed, and
cells were exposed as indicated above.

4.3. Proteomic Analysis

The detailed protocol is presented in the Supplementary Materials and was recently
reported [47]. PRF lysates from a pool of three independent donors were subjected to
proteomic analysis [48]. In brief, PRF lysates were first dissolved in 1% Rapigest in
50 mM TEAB, and the solution was filtered through a molecular-weight cutoff filter of
100 kDa. The resulting filtrate was then passed through a 50 kDa filter, and four fractions
were generated—two filtrates and two concentrates. Extracted proteins were reconstituted
from the membrane and from the filtrate, precipitated using methanol/dichloromethane,
and digested with trypsin as described earlier [49]. In total, four fractions were gener-
ated and analyzed. Protein concentrations were determined using a DeNovix DS-11 FX
Spectrophotometer (Wilmington, Waltham, MA USA), and proteins were reduced using
5 mM dithiothreitol (DTT; Sigma-Aldrich, Vienna, Austria) for 30 min at 60 ◦C and alky-
lated for 30 min with 15 mM iodoacetamide (IAA; Sigma-Aldrich, Vienna, Austria) in
the dark. Finally, porcine trypsin (Promega, Vienna, Austria) was added at a ratio of
1:50 (w/w). After 16 h of incubation at 37 ◦C, aliquots of 20 µL were prepared and stored
in 0.5 mL protein low-bind vials (Eppendorf, Vienna, Austria) at −20 ◦C until injection
the next day. Nano-HPLC separation of each fraction was performed using a nanoRSLC
UltiMate 3000 HPLC system from Thermo Fisher. Raw MS/MS files were analyzed using
Proteome Discoverer 2.2 (Thermo Fisher Scientific, Bremen, Germany) and searching the
SwissProt database (Homo sapiens, http://www.UniProt.org/proteomes/UP000009606,
version from 10 May 2019). The search parameters are presented in the Supplementary
Materials. All search results were refined and researched using Scaffold 4.6.5 (Proteome
Software, Portland, OR, USA) [50]. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium (www.proteomexchange.org, accessed on
12 May 2019) via the PRIDE partner repository (www.ebi.ac.uk/pride, accessed on 12 May
2021) with the dataset identifiers PXD014382 and 10.6019/PXD014382. REVIGO analysis
was used to reduce the redundancy of the GO terms (http://revigo.irb.hr/, accessed on 12
May 2021).

4.4. Reverse Transcription Quantitative Real-Time PCR (RT-qPCR) and Immunoassay

For RT-qPCR [51], total RNA was prepared with the ExtractMe total RNA kit (Blirt
S.A., Gdańsk, Poland) followed by reverse transcription (LabQ, Labconsulting, Vienna,
Austria) and polymerase chain reaction (LabQ, Labconsulting, Vienna, Austria) on a CFX
Connect Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA). The

http://www.UniProt.org/proteomes/UP000009606
www.proteomexchange.org
www.ebi.ac.uk/pride
http://revigo.irb.hr/
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primer sequences were hGAPDH-F: AAGCCACATCGCTCAGACAC and hGAPDH-R:
GCCCAATACGACCAAATCC; hBMP2-F: CAGACCACCGGTTGGAGA and hBMP2-R:
CCACTCGTTTCTGGTAGTTCTTC; hID1-F: CCAGAACCGCAAGGTGAG and hID1-R:
GGTCCCTGATGTAGTCGATGA; hID3-F: CATCTCCAACGACAAAAGGAG and hID3-R:
CTTCCGGCAGGAGAGGTT. Amplification was performed with a CFX Connect Real-Time
PCR Detection System. The expression levels were calculated after normalizing to the
housekeeping gene GAPDH using the ∆∆Ct method. The immunoassay for human BMP2
(DY218, R&D Systems, Minneapolis, MN, USA) was performed with the supernatant of
gingival fibroblasts exposed to lysates of either PRF or PPP, heated PPP (Alb-gel), buffy
coat (BC), or red clot (RC) after 24 h.

4.5. Immunostaining

Immunofluorescence analysis of p-Smad1/5 was performed on gingival fibroblasts
seeded onto glass slides (Merck, Darmstadt, Germany) that were serum-starved overnight.
Thereafter, the cells were treated with TGF-β, BMP2, or PRF for one hour followed by stim-
ulation with the inhibitors SB431542 and LDN193189 for another 30 min in the respective
wells. Cells were fixed in paraformaldehyde and blocked with 1% BSA and 0.3% Triton
X-100 in PBS at room temperature for one hour. Cells were subsequently incubated with a
phospho-Smad1/5 (Ser463/465) antibody (CS-9516, anti-rabbit IgG, 1:1000, Cell Signaling
Technology) for another hour. An Alexa Fluor 488 secondary antibody (Cell Signaling Tech-
nology, Danvers, MA, USA) was applied for one hour. Cells were washed, and fluorescent
images were captured (Euromex, Oxion fluorescence, Arnhem, The Netherlands).

4.6. Western Blot

Gingival fibroblasts were seeded at 30,000 cells/cm2 into 6-well plates. The following
day, the medium was changed to serum-free medium overnight. The wells containing
PRF were stimulated with 30% PRF overnight, and the following day, the supernatant
was applied to the serum-starved cells for one hour with or without inhibitors SB431542
and LDN193189. Subsequently, all cells were stimulated for one hour. Extracts con-
taining SDS buffer with protease and phosphatase inhibitors (cOmplete ULTRA Tablets
and PhosSTOP; Roche, Mannheim, Germany) were separated by SDS-PAGE and trans-
ferred onto polyvinylidene fluoride (PVDF) membranes (Roche Diagnostics, Mannheim,
Germany). Membranes were blocked, and the binding of the first phospho-Smad1/5
(Ser463/465) antibody (CS-9516, anti-rabbit IgG, 1:1000, Cell Signaling Technology) and
actin (SC-47778, anti-mouse IgG, 1:1000, Santa Cruz Biotechnology, Dallas, TX, USA) was
detected with the appropriate secondary antibody labeled with HRP (IgG, 1:10,000, Cell
Signaling Technology). After exposure to the Clarity Western ECL Substrate (Bio-Rad
Laboratories, Inc., Hercules, CA, USA), chemiluminescence signals were visualized with a
ChemiDoc imaging system (Bio-Rad Laboratories).

4.7. Statistical Analysis

All experiments were performed four to five times. Each data point is representative
of one independent experiment. Statistical analysis of BMP2, ID1, and ID3 expression
and the BMP2 immunoassay were performed with the Kruskal–Wallis test for multiple
comparisons and a two-tailed t-test for single comparisons. For multiple comparisons, all
groups were compared with the untreated control group. In the PRF groups, each data
point is representative of an individual donor. Analyses were performed using Prism v8
(GraphPad Software, La Jolla, CA, USA). Significance was set at p < 0.05.

5. Conclusions

In summary, we show here that TGF-β is part of the proteomic signature of PRF.
Activation of the TGF-β R1 signaling pathway drives the expression of strongly regulated
genes in gingival fibroblasts, including the growth factor BMP2 and consequently ID1 and



Int. J. Mol. Sci. 2021, 22, 7935 11 of 13

ID3, which can generate a change in the autocrine/paracrine environment of a defect site
and significantly affect gingival fibroblasts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22157935/s1. Table S1: List of the gene IDs obtained by PANTHER analysis, Table S2:
List of the 1791 GO terms derived by PANTHER analysis system based on proteomics analysis, and
Table S3: Revigo analysis reduced the visualize gene ontology to 350 GO term that are listed.
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