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Abstract

Motivation: The advance of mass spectrometry-based technologies enabled the profiling of the phosphoproteomes
of a multitude of cell and tissue types. However, current research primarily focused on investigating the phosphoryl-
ation dynamics in specific cell types and experimental conditions, whereas the phosphorylation events that are com-
mon across cell/tissue types and stable regardless of experimental conditions are, so far, mostly ignored.

Results: Here, we developed a statistical framework to identify the stable phosphoproteome across 53 human phos-
phoproteomics datasets, covering 40 cell/tissue types and 194 conditions/treatments. We demonstrate that the sta-
bly phosphorylated sites (SPSs) identified from our statistical framework are evolutionarily conserved, functionally
important and enriched in a range of core signaling and gene pathways. Particularly, we show that SPSs are highly
enriched in the RNA splicing pathway, an essential cellular process in mammalian cells, and frequently disrupted by
cancer mutations, suggesting a link between the dysregulation of RNA splicing and cancer development through
mutations on SPSs.

Availability and implementation: The source code for data analysis in this study is available from Github repository
https://github.com/PYangLab/SPSs under the open-source license of GPL-3. The data used in this study are publicly
available (see Section 2.8).

Contact: pengyi.yang@sydney.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein phosphorylation regulates diverse protein function, including
the catalytic activity and stability of proteins, dictates their subcellular
localization and controls the dynamics of protein–protein interaction
(PPI) (Ubersax and Ferrell, 2007). Working as a molecular switch,
this reversible event is one of the most common post-translational
modifications (PTMs) and is intricately controlled by the balanced ac-
tion between kinases and phosphatases (Hunter, 1995).
Phosphorylation has a broad impact on cellular processes spanning
from cell cycle progression, alternative splicing, cell differentiation
and apoptosis (Ubersax and Ferrell, 2007). The dysfunction of phos-
phorylation can therefore severely disrupt cellular homeostasis, lead-
ing to various diseases (Su et al., 2019) and cancer (Rush et al.,
2005). Whilst most research been carried out so far primarily focused
on investigating the cell-type- and condition-specific regulation of
phosphorylation sites and their functional significance in various dis-
ease and physiological states, the stable phosphorylation events that

cut across cell types, tissues, conditions and perturbations and the sig-
nificance of the stable phosphoproteome in cell physiology remains
largely unexplored.

Recent advances in mass spectrometry-based technologies
(Choudhary and Mann, 2010) and the growing accumulation of
phosphorylation-specific resources (Gnad et al., 2007; Hornbeck
et al., 2015; Krassowski et al., 2021) and databases (Bodenmiller
et al., 2008; Yu et al., 2019) offer a great opportunity to investigate
the stable phosphoproteome. Previously, we identified a set of stably
phosphorylated sites (SPSs) by using four mouse phosphoproteomics
datasets and demonstrated the utility of the stable sites for data nor-
malization and integration (Kim et al., 2021). Whilst our study high-
lighted the usefulness of these stable sites for phosphoproteomics
data analysis, it lacked any systematic and functional characteriza-
tion of the SPSs themselves.

Here, we hypothesize that, akin to stably expressed genes such as
housekeeping genes (Lin et al., 2019), phosphosites that remain
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stably phosphorylated irrespective of cellular origins and states may
represent the core set of phosphoproteome that are tightly regulated
to support essential cellular function and homeostasis in a wide
range of cell and tissue types, and the dysregulation of such phos-
phosites could lead to various diseases such as cancer. To systemat-
ically identify and characterize the stable phosphoproteome, we
developed an analytical framework to identify SPSs from a compre-
hensive collection of 53 high-quality human phosphoproteomics
datasets encompassing a total of 40 cell types/tissues and 194 condi-
tions/perturbations. We validated the stability of our high-
confidence human SPSs on three independent datasets, highlighting
the cross-species conservation of the SPSs between mouse and
human. Further characterization of SPSs based on a diverse set of
features ranging from phosphosite- to gene/protein-level informa-
tion revealed the functional importance and evolutionary conserva-
tion of SPSs. We next demonstrated through enrichment analyses a
strong association between SPSs and their host proteins with RNA
splicing. Consistent with our enrichment analyses, a closer examin-
ation of the phosphosites unveiled known and putative phosphoryl-
ation events involved in spliceosome assembly and function.
Strikingly, we observed that the majority of the spliceosome-
associated SPSs are affected by cancer mutations, suggesting their
potential impact on spliceosome formation and function.
Collectively, our statistical framework provides an effective ap-
proach for identifying stable phosphoproteome and the subsequent
analyses of SPSs derived from this framework reveal their functional
importance across cell types and species and highlighting a potential
link between the malfunction of spliceosome and cancer develop-
ment via mutations on spliceosome-associated SPSs.

2 Materials and methods

2.1 A statistical framework for SPS identification
Motivated by the assumption that SPSs are commonly identified in
all cell/tissue types and biological systems (i.e. recurrence), and
undergoing minimal changes of phosphorylation level across differ-
ent biological processes or under a wide range of perturbations (i.e.
phosphorylation changes), we developed a statistical framework to
identify SPSs that are characterized by these two stability features
from 53 high coverage human phosphoproteomic datasets �5000
phosphosites and �2 conditions relative to control) curated from
the qPhos database (http://qphos.cancerbio.info) (Yu et al., 2019)
and its updated version ‘qPTM’ (http://qptm.omicsbio.info)
(Supplementary Table S1). Specifically, the recurrence of a given
phosphosite is simply the number of times it was identified across all
datasets and hence ranges from 1 to 53. To quantify the change of
phosphorylation for a given phosphosite across all datasets, we first
filtered phosphosites keeping those that had been identified in
>20% of 53 datasets. Next, we quantified the maximum value of
the absolute log2 fold-change across all conditions and treatments/
perturbations in each dataset for the sites that passed filtering, quan-
tile normalized these quantifications across all 53 datasets, and fi-
nally took the average across all datasets.

To obtain a statistical significance for the phosphosites with re-
spect to their stability, for each phosphosite, we first fitted a gamma
distribution to the values of each of the two stability features,
denoted as X1 and X2 for recurrence and phosphorylation change,
and derived the P-values from the upper-tail of the model fitted to
X1 (i.e. recurrence) and lower-tail of the model fitted to X2 (i.e.
phosphorylation change), respectively:

PðX1 > xÞ ¼
ð

ba

CðaÞx
a�1e�bxdx;

and

PðX2 � xÞ ¼ 1�
ð

ba

CðaÞx
a�1e�bxdx:

We then combined the two P-values for each phosphosite using
Fisher’s method to derive a single statistical significance:

P v2
4 > �2

X
lnðPÞ

� �

where P is a vector of the two P-values obtained from the two stabil-
ity features for each phosphosite.

Phosphosites that have combined P < 0.01 were defined as SPSs
(Supplementary Table S2). To assess the reproducibility of the pro-
posed analytic framework, first we randomly subsampled (80%) from
the 53 datasets, 10 times, and ran the framework to obtain phospho-
site stability statistics for each subsample. We assessed the reproduci-
bility by quantifying the concordance of stability statistics between
each of all pairs of subsamples using Pearson correlation coefficients.
In addition, we also used independent datasets for assessing reproduci-
bility of the framework. These include 22 datasets from qPhos and
qPTM databases that have �3000 phosphosites and �2 conditions
(relative to control) (Supplementary Table S1), and are not part of the
53 datasets and four additional datasets that profiles human embryon-
ic stem cells (ESCs), human colon cancer cells (HCT 116), T-cells and
human gastric adenocarcinoma cells (AGS).

2.2 Evaluating the stability of SPSs
To evaluate the stability of SPSs, we obtained three independent phos-
phoproteomic datasets, which are not included in the 53 datasets
used for SPS identification. These include a human glioblastoma
profiling dataset (Recasens et al., 2021) that measures the responses
of treatments to glioblastoma cells, and two mouse datasets that pro-
files mouse embryonic stem cell (ESC) differentiation (Yang et al.,
2019) and response of adipocytes to redox signaling (Su et al., 2019),
respectively. First, we compared SPSs with size-matched mid- and
bottom-ranked sites (n¼326), and sites that are not defined as SPSs
(i.e. non-SPS) in terms of their maximum absolute log2 fold change in
each of the three datasets. Then, for each of the three datasets, we
performed principal component analysis (PCA) and hierarchical clus-
tering using either data subset by SPSs or all sites. We quantified the
concordance of clustering output with pre-defined labels (time points
or conditions) in each dataset using five metrics, including adjusted
Rand index (ARI), Fowlkes–Mallows index (FMI), normalized mu-
tual information (NMI), purity and Jaccard index, with the expect-
ation that data subset by SPSs will have significantly lower
concordance given they are stably (unchanged) phosphorylated irre-
spective to time points or conditions (Lin et al., 2019).

2.3 Characterization of SPSs
For each of all phosphosites, we derived a diverse set of features
from multiple sources to characterize their potential functions, con-
servations and several other properties on both the phosphosite-level
and the gene/protein-level. In particular, the functional scores, the
similarity between site flanking region and known kinases position
weight matrices, conserved phosphorylation hotspot, the age of
inferred ancestral species containing the site, max Netphorest match
for all models, and the secondary structure prediction were derived
from Ochoa et al. (2020). The human or mouse stably expressed
gene indexes and gene conservation score for each host gene were
obtained from Lin et al. (2019). The average protein abundances for
each host protein were collected from PaxDb (Wang et al., 2015).
For comparison, we included a representative random set, which
contains randomly selected non-SPS sites that match the size of
SPSs, and all phosphosites in these analyses.

2.4 PPI and cancer mutation analyses
To investigate the involvement of SPSs host proteins in PPI net-
works, we derived high-confidence PPIs from the STRING database
(combined score > 900) (Szklarczyk et al., 2019) and the prePPI
database (probability > 0.5) (Zhang et al., 2013), respectively. The
number of PPIs for each host protein of either SPSs or all phospho-
sites was quantified and overall distribution compared.

For cancer mutation analysis, we extracted all cancer-associated
mutations from the ActiveDriverDB database (Krassowski et al.,
2018). This database collates PTMs that have strong links to cancer
on the basis of their association with factors such as cancer driver
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genes using information extracted from the Cancer Genome Atlas
(TCGA) (Cancer Genome Atlas Research Network et al., 2013) and
the Pan-Cancer Analysis of Whole Genomes (PCAWG) (ICGC/

TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020)
databases. Among the cancer-associated PTMs, we filtered for

mutations on phosphosites and calculated the percentage of cancer
mutation-affected sites among SPSs and all phosphosites. In add-
ition, we further categorized the mutation frequency of SPS (�20)

and 10 size-matched random sets by cancer types. The mutation
counts were extracted from ActiveDriverDB database, which uti-

lized the mutation data of different cancer cohorts from TCGA.

2.5 Spliceosome SPS annotation
We annotated a SPS as associated with spliceosome if its host pro-

tein is a spliceosomal protein or a splicing-associated protein in ei-
ther the Reactome (Fabregat et al., 2018) or the KEGG (Kanehisa
et al., 2017) databases. For the spliceosome-associated SPSs, we first

categorized their host proteins to functional units according to Will
and Lührmann (2011), where spliceosomal proteins are annotated

for their best known functions in splicing. Next, we categorized the
host proteins to eight spliceosomal complexes according to the
Spliceosome database (Cvitkovic and Jurica, 2013). We further

annotated the spliceosome SPSs that are known to be phosphory-
lated by CDKs and are affected by cancer mutations in

ActiveDriverDB (Krassowski et al., 2018).

2.6 Enrichment analyses of pathways, kinases and

phosphatase
Enrichment analyses of pathways were performed using Fisher’s
exact test for the host genes of SPSs and size-matched random sites
against Gene ontology (GO) (The Gene Ontology Consortium,

2017), Reactome (Fabregat et al., 2018), KEGG (Kanehisa et al.,
2017) and Biocarta (https://cgap.nci.nih.gov/Pathways/BioCarta_

Pathways) databases, and also against cancer gene neighborhoods
(CGN) collected from MSigDB (Liberzon et al., 2015). Similarly to
pathway enrichment analysis, enrichment of kinases was performed

on the phosphosite-level using PhosphoSitePlus (Hornbeck et al.,
2015), and phosphatase enrichment analysis was performed on the

protein-level using the data derived from Chen et al. (2017).

2.7 Odds ratio test for cancer mutations
The relative enrichment of cancer mutations in spliceosome-

associated SPSs was performed using odds ratio test. The signifi-
cance of odds ratios and confidence intervals were estimated based
on approximation, followed by null-hypothesis (odds ratio equals to

1), as implemented in the fmsb R package (Nakazawa, 2018).

2.8 Data availability
The phosphoproteomic data described in this study are publicly

available. In particular, the mouse ESC dataset (Yang et al., 2019)
(PRIDE: PXD010621), the human glioblastoma dataset (Recasens

et al., 2021) (PRIDE: PXD020441) and the mouse adipocyte dataset
(Su et al., 2019) (PRIDE: PXD011525) are used for evaluating the
stability of selected SPSs. The human ESC dataset (Billing et al.,
2019) (PRIDE: PXD004652), the HCT116 dataset (Hahn et al.,
2021) (PRIDE: PXD023703), the T-cell dataset (Martinez-Fabregas

et al., 2020) (PRIDE: PXD020964) and the AGS cell dataset (Yin
et al., 2020) (PRIDE: PXD005093) are included for independent
validation of the reproducibility of the proposed framework. All

other human phosphoproteomic datasets were curated from the
qPhos database (Yu et al., 2019, http://qphos.cancerbio.info) and its
updated version (http://qptm.omicsbio.info).

3 Results

3.1 A statistical framework for identifying the stable

phosphoproteome
To generate the stable phosphoproteome, we developed a statistical
framework that integrates a large collection of phosphoproteomics
datasets and extracts a global profile of SPSs. To ensure that the
SPSs we identified accurately represent the stable phosphoproteome,
we applied the proposed framework to a comprehensive data collec-
tion of 53 human phosphoproteomics datasets covering a total of 40
cell/tissue types and the phosphoproteomic changes across 194 con-
ditions (Yu et al., 2019) (Supplementary Table S1). The final re-
source contains 134 456 unique phosphosites on 13 791 unique
proteins, representing a broad coverage of the human phosphopro-
teome (Fig. 1a). Specifically, the proposed analytical framework is
motivated by the assumption that highly stable sites are those that
were frequently identified in phosphoproteomic datasets and with
minimal change in phosphorylation levels (Kim et al., 2021), and
hence we defined SPSs on the basis of the two criteria: (i) the recur-
rence of phosphosite identification across phosphoproteomics data-
sets and (ii) the degree of changes in phosphorylation levels between
the basal and perturbations. Since a phosphosite in a given dataset
may have multiple treatments/conditions and may be up- or down-
regulated, we computed phosphorylation changes as the maximum
of the absolute log2 fold-changes across all treatments/conditions.
To combine these two stability features, we fitted a gamma distribu-
tion to each component for all phosphosites since both features are
non-negative with a right-tail distributions. We then applied Fisher’s
method to generate a final stability statistic measuring the degree of
stability for each of all phosphosites. Using a conservative threshold
(P-value < 0.01), we obtained a total of 326 phosphosites that were
considered as highly SPSs (Fig. 1a) (Supplementary Table S2).

We confirmed that these SPSs have the highest recurrence and
the lowest phosphorylation changes among all phosphosites (Fig. 1b
and c). Notably, we observed a moderate but statistically significant
negative correlation between the recurrence of SPS and the phos-
phorylation changes (r ¼ �0.22; Supplementary Fig. S1a), consistent
with our assumption that the two stability features complement
each other in defining the stable phosphoproteome. To test the re-
producibility of the proposed computational framework, we ran-
domly sub-sampled 80% of the 53 datasets and repeated the
computation of the stability statistics multiple times. We observed a
strong correlation between the stability statistics from sub-
samplings results (r¼0.96; Supplementary Fig. S1b), demonstrating
a high reproducibility of the computational framework for stable
phosphoproteome identification.
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tions/conditions (see Section 2 for details). (b) The distributions of the two stability
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change across treatment/conditions), for SPS and all phosphosites. (c) Boxplots com-

paring the two stability features of SPS and all phosphosites, respectively
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3.2 SPSs are stable across various cell types and

species
We next evaluated our high-confidence SPSs on three independent
phosphoproteomics datasets that were not included in the data col-
lection. The datasets consisted of a human glioblastoma inhibition
dataset (human glioblastoma) (Recasens et al., 2021) and two mur-
ine datasets, an embryonic stem cell differentiation dataset (mouse
ESCs) (Yang et al., 2019) and an adipocyte treatment dataset
(mouse adipocytes) (Su et al., 2019), which were included to investi-
gate the generalizability of our human SPSs to mouse orthologous
phosphosites. We found that SPSs demonstrated the lowest phos-
phorylation changes in comparison to the size-matched middle- and
bottom-ranked phosphosites (i.e. phosphosites ranked in the middle
or bottom based on their stability statistics) and non-SPS sites across
all the datasets. These findings confirm that SPSs show small phos-
phorylation changes in phosphorylation upon perturbation across
various cell types and suggest that SPSs are conserved across two
species, human and mouse (Fig. 2a).

Characteristically, SPSs by nature of their stability are expected
to demonstrate a low capacity to discriminate between samples or

timepoints. We would therefore expect that if SPSs are used to dis-
criminate phosphoproteomic data covering distinct samples in repli-
cates, they would do poorly to recapitulate the similarity within
replicates of the same samples and variability among different sam-
ples. To investigate this, we applied PCA and hierarchical clustering
on the mESC differentiation dataset using either SPSs, a size-
matched random set or all the phosphosites. Using all the phospho-
sites or the random set, we observed a strong clustering of biological
replicates as well as a clear ordering of the time points that were in
line with the expected findings. In contrast, neither the clustering of
biological replicates nor the trajectory of the differentiation was
observed using SPSs (Fig. 2b and c). We observed the same findings
in the glioblastoma and adipocyte datasets (Supplementary Figs S2a
and b, S3a and b). The results from the hierarchical clustering were
quantified in terms of the concordance between the clustering out-
put and the pre-defined labels (conditions or time points) using five
performance metrics (ARI, FMI, NMI, purity and Jaccard index; see
Section 2). We found that the concordance in clustering, denoted by
the evaluation metrics, was much lower when SPSs were used com-
pared with those from using the random set or all phosphosites
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(Fig. 2d, Supplementary Figs S2c and S3c). Moreover, by visualizing
the pairwise correlation of the four biological replicates across all
the time points in the mouse ESCs dataset, we observed a stronger
correlation of biological replicates and also between closer condi-
tions than distant conditions when using the random set or all the
phosphosites. No such pattern was observed using SPSs (Fig. 2e); the
lack of contrast in the heatmap further revealed the low variability
of SPSs. Lastly, we show that the human orthologous sites of a set of
mouse SPSs identified previously (Kim et al., 2021), demonstrated a
significantly lower stability index than the rest of the human phos-
phosites (Supplementary Fig. S4a). Together, these results suggest
that SPSs are stably phosphorylated across cell types/tissues and per-
turbations, and are conserved across species.

3.3 SPSs are evolutionarily conserved and functionally

important
To comprehensively characterize SPSs, we assessed its various fea-
tures on both phosphosite- and protein-level. We first derived the
functional scores for each phosphosites from a previous study which
examined phosphosites functionality (Ochoa et al., 2020). The func-
tional scores, reflecting the functional importance of phosphoryl-
ation sites, were generated by integrating various information
covering proteomic, structural, regulatory or evolutionary relevance
of phosphosites using a machine learning approach. We found that
SPS had significantly higher functional scores relative to either a
size-matched random set or the background of all sites (Fig. 3a, first
panel). To further investigate the functionality of SPS, on phospho-
site level, we examined several features which were highly inform-
ative for accurately predicting the functionality of phosphosites. We
found that SPS is frequently located at highly conserved phosphoryl-
ation hotspots which were identified from 40 eukaryotic species
(Strumillo et al., 2019) (Fig. 3a, second panel). Moreover, the older
age of their inferred ancestral species (Fig. 3a, third panel) revealed
that SPS is evolutionarily conserved.

At the gene level, we found that SPS is preferentially associated
with stably expressed genes derived either from mouse or human
(Lin et al., 2019) (Fig. 3b, first and second panels), suggesting that
SPS host proteins are stably expressed. We also found that the aver-
age abundance of SPS host proteins are relatively high (Fig. 3b, third
panel). However, phosphosites of highly abundant host proteins are
not any more stable compared with those of low abundance
(Supplementary Fig. S4b). These data suggest that while SPS host
proteins are relatively more abundant, higher protein abundance
does not necessarily correlate with higher phosphorylation stability.
There were significantly more phosphosites on SPS host proteins
than the random set and background (Fig. 3b, fourth panel), sug-
gesting that the host proteins are likely to serve as signaling integra-
tors. Consistent with the site-level analysis, the high conservation
score of SPS host genes indicates that they are evolutionarily con-
served (Supplementary Fig. S4c, first panel).

While phosphosites are known to be preferentially located in un-
structured coil regions (Iakoucheva et al., 2004; Jim�enez et al.,
2007), our analysis of the host protein secondary structures showed
SPSs have significantly higher preference for unstructured coil
regions as compared with the host proteins from the size-matched
random set or the background (Fig. 4a). The predictions of struc-
tural disorder for phosphosite were consistent with the proportion
of secondary structure within host proteins (Supplementary Fig. S4c,
second panel): SPSs were preferentially located at disordered
regions. This is possibly because phosphosites in unstructured or dis-
order regions are more accessible to binding by kinases and the rec-
ognition of binding motifs in those regions are less dependent on
tertiary structure (Landry et al., 2009). For secondary structures
associated with ordered and folded regions, SPS was found to be
preferentially resided at hydrogen bonded turn and bend rather than
helix and beta-sheet (Fig. 4b).

Protein phosphorylation is an important cellular mechanism
orchestrated by the activities of kinases and phosphatases (Hunter,
2000) and is important for the regulation of many canonical bio-
logical pathways (Proud, 2019). Enrichment of known kinase- and
phosphatase-substrate recognition motifs were among the most in-
formative features for accurately predicting the functionality of
phosphosites. To this end, we examined the enrichment of SPSs with
known kinase- and phosphatase-substrate recognition motifs. The
flanking regions of SPSs were found to be significantly better
matched to known kinase-substrate recognition motifs (Fig. 3a,
fourth panel), and SPSs also had higher probability of being the tar-
get sites of kinase-substrate motifs as compared with random sites
and the background (Supplementary Fig. S4c, third panel). To fur-
ther examine the specific kinases and phosphatases that regulate
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SPS, we performed kinase enrichment on the phosphosite-level
(Fig. 4c, top left panel; Supplementary Fig. S5a) and phosphatase en-
richment on the protein-level (Fig. 4c, top right panel). We found
that SPS were enriched for targets of cell cycle related kinases
(CDKs) such as CDK2, CDC7, CDK1, CDK7, CDK6, CDK4, while
no significant enrichment was observed from the random set for
these kinases (Supplementary Fig. S5a). In addition, SPSs were
enriched for targets of several phosphatases, with limited enrich-
ment observed for the random set. Pathway enrichment analysis
using KEGG, Biocarta or Reactome annotations showed that SPS
host proteins were strongly associated with canonical pathways (e.g.
mRNA splicing, mRNA processing), but not for the random set
(Fig. 4d, bottom panels; Supplementary Fig. S5b, first panel).
Similar enrichments of SPS host proteins among essential cellular
activities were observed across the three GO domains (biological
process, cellular component and molecular function)
(Supplementary Fig. S5b, second to fourth panels). Together, the
higher enrichment of kinase- and phosphatase- motifs and canonical
pathways among SPSs indicates that they are likely to play central
roles in the regulation of cellular functions.

3.4 SPSs are enriched in spliceosomes and frequently

affected in cancer
Dysregulation of phosphorylation has been linked to several human
diseases, including numerous cancers (Rikova et al., 2007; Sever and
Brugge, 2015). Mechanistically, mutations nearby phosphorylation
sites can affect the physicochemical properties of the flanking
regions around the residue, thus change the interactions of the host
proteins with other proteins, the binding preference with kinases, or
abolish kinase binding, and therefore may rewire signaling networks
involved in cancer progression (Lundby et al., 2019). We first inves-
tigated whether SPSs are signaling hubs within the PPI networks and
found that compared with the background, SPSs have significantly
more PPIs derived from either STRING (Szklarczyk et al., 2019) or
prePPI database (Zhang et al., 2013) (Fig. 5a and b), indicating SPS

hosts are hub proteins with high number of interaction partners. We
next performed the enrichment analysis of the CGNs as defined in
the Molecular Signatures Database (Liberzon et al., 2015). We
found that SPS host genes are significantly enriched for cancer-
associated genes compared with the host genes of the size-matched
random phosphosites (Supplementary Fig. S5c). We then analyzed
the SPSs for their susceptibility to cancer mutations. We found that
a large proportion of SPSs are annotated as affected by cancer muta-
tions compared with the background using either TCGA or
PCAWG databases (Krassowski et al., 2021) (Fig. 5c). Finally, we
further categorized the mutation frequency of SPS and the size-
matched random sets by eight different cancer types. We found that
cancer mutation affected SPS were more frequently detected across
different cancer types compared with those of random sets (Fig. 5d).
Together, these results suggest that many host genes of SPSs are the
key nodes in PPI networks and are associated with CGN, and the
SPSs themselves are frequently affected by cancer mutations across
cancer types.

Given that SPS host genes are enriched for splicing-related path-
ways and, in particular, spliceosome (Fig. 4c and Supplementary
Fig. S5b) and the changes with alternative splicing are frequently
linked to cancer (David and Manley, 2010; Zhang et al., 2021), we
sought to investigate whether SPSs are associated with cancer by
rewiring the signaling of splicing factors in the spliceosome. To this
end, we focused on SPSs whose host proteins are associated with the
spliceosome complex (Will and Lührmann, 2011). Out of 326 SPSs,
48 of them (15%) are within 21 spliceosome-associated proteins
(refer to as spliceosome SPSs hereafter), covering eight functional
categories (Fig. 6a and Supplementary Table S2). Furthermore, the
vast majority of these spliceosome proteins (19 out of 21) are associ-
ated with at least three different spliceosomal complexes, suggesting
the potential impact of the spliceosome SPSs may have on multiple
stages of splicing. Notably, most spliceosome SPSs are concentrated
on a few subunits including SR proteins, exon junction complex
(EJC) and heterogeneous nuclear ribonucleoproteins (hnRNPs)
(Fig. 6b). Specifically, the SR protein SRSF1 is known to mediate
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spliceosome assembly and is essential for nuclear import (Zhong
et al., 2009). In addition, hyperphosphorylation of SRSF1 at mul-
tiple sites including SPSs at serine 199 and 201, via oncogenic acti-
vation of PI3k/Akt pathway, could result in differential alternative
splicing of Casp9 which favors the prosurvival Casp9b isoform over
the proapoptotic Casp9a isoform in non-small cell lung cancers
(Shultz et al., 2010). The EJC serves as an anchor in splicing for vari-
ous processing proteins (Le Hir et al., 2001) and the peripheral EJC
component SRRM1, containing more than 20 SPSs, has been dem-
onstrated that its phosphorylation status influences splice-site selec-
tion (Cheng and Sharp, 2006) and SRRM1 overexpression has been
associated with the aggressiveness of prostate cancer (Jim�enez-Vacas
et al., 2020). Finally, hnRNPs are well-characterized as splicing
silencers (Wang et al., 2011). Phosphorylations of HNRNPK at ser-
ines 284, a SPS, among other sites were reported to regulate its
nucleocytoplasmic localization and activity (Habelhah et al., 2001),
and the dysregulation of HNRNPK is a hallmark of poor prognosis
in multiple cancers (Carpenter et al., 2006).

Given the potential impact SPSs may have on spliceosome assem-
bly, localization and RNA splicing, and that a large proportion of
spliceosome SPSs are affected by cancer mutations (Fig. 6a), we next
compared the proportion of cancer mutation-affected spliceosome
SPSs, all SPSs and all phosphosites. We found that while cancer mu-
tation-affected phosphosites were significantly enriched in SPSs
(odds ratio¼2.2), the enrichment in spliceosome SPS is even more
substantial (odds ratio¼3.0) (Fig. 6c and d). Taken together, these
results highlight the possible impact of SPSs on splicing factors in
regulating RNA splicing and point to a potential link between their
dysregulation, such as those due to mutations, in the spliceosome
complex and the onset of oncogenic processes.

4 Discussion and conclusion

Our search for SPSs was initially guided by their utility in phospho-
proteomic data normalization and batch correction (Kim et al.,
2021). Nevertheless, the conceptual similarity between SPSs and sta-
bly expressed housekeeping genes, which are indispensable in a wide
range of cell/tissue types (Lin et al., 2019), led us to wonder about
their biological importance and the essential roles they may play in
cell signaling and disease. Motivated by this quest, we developed a
statistical framework to systematically identify the stable phospho-
proteome from a large collection of human phosphoproteomic data-
sets that profiled a diverse set of cell/tissue types. Our statistical
framework identified a total of 231 SPS host proteins each contain-
ing on average 32 phosphosites and out of which 1.4 are SPSs, sug-
gesting that only a small percentage (4%) of the phosphosites on
SPS host proteins (i.e. genes whose protein-product contains one or
more SPSs) are stable. While we found that SPS host genes tend to
be stable in their expression (Fig. 3b), these statistics suggest that the
stability of SPSs are unlikely to be explained solely by the stability of
their host genes/proteins but should be attributed to their stability in
phosphorylation regulation.

To validate the reproducibility of SPSs identified from the 53
phosphoproteomics datasets, we have performed a subsampling
analysis (Supplementary Fig. S1b) and have also repeated the ana-
lysis using an independent set of datasets (Supplementary Fig. S1c).
While these results suggest that SPSs can be identified with high re-
producibility, we acknowledge that the 53 datasets used in this
work cannot represent the full variety of conditions and cell/tissue
types and hence will not fully determine the landscape of the stable
phosphoproteome. Future work is required to further explore how
characteristics such sex, cell type, immortalization status and dis-
eases may affect the generalization of results from current datasets.
The landscape of the stable phosphoproteome. Future work is
required to further explore how characteristics such sex, cell type,
immortalization status and diseases may affect the definition of SPSs
and the generalization of results from current datasets.

Most phosphoproteomics studies have so far focused on identify-
ing dynamically regulated phosphosites between cell types and con-
ditions while ignoring phosphosites that are stable presumably
under the assumption that they lack functions. Our analysis,

however, sheds light on a highly stable phosphoproteome that is
evolutionarily conserved and functionally important. One explan-
ation of the high stability found in these phosphosites across various
cellular systems is that they are so essential that dysphosphorylation
of the SPS would lead to significant disruption on the core cellular
processes, resulting in the diseases such as cancer. Indeed, our char-
acterization of SPSs highlights their enrichment in proteins/pathways
associated with RNA splicing, an essential cellular process in mam-
malian cells, and suggests a potential link between the dysregulation
of spliceosomes and cancer via mutations on spliceosome SPSs.
While increasing evidence demonstrates that mis-splicing contrib-
utes to cancer progression (Du et al., 2021; Scotti and Swanson,
2016), the functional significance of PTM on splicing factors and
their relationship with cancers remains uncharacterized. Our ana-
lysis links stable phosphorylation sites on splicing factors to cancer
mutations allowing us to contemplate a common mechanism in can-
cer development through targeting the core phosphoproteome of
mammalian cells.

Funding

This work was supported by a National Health and Medical Research

Council (NHMRC) Investigator [1173469 to P.Y.], Children’s Medical

Research Institute Postgraduate Scholarships to D.X. and H.J.K., and an

Australian Research Council (ARC) Postgraduate Research Scholarship to

H.J.K. and Luminesce Alliance—Innovation for Children’s Health established

with the support by the NSW Government.

Conflict of Interest: none declared.

References

Billing,A.M. et al. (2019) A systems-level characterization of the differenti-

ation of human embryonic stem cells into mesenchymal stem cells. Mol.

Cell. Proteomics, 18, 1950–1966.

Bodenmiller,B. et al. (2008) PhosphoPep—a database of protein phosphoryl-

ation sites in model organisms. Nat. Biotechnol., 26, 1339–1340.

Cancer Genome Atlas Research Network et al. (2013) The cancer genome

atlas Pan-Cancer analysis project. Nat. Genet., 45, 1113–1120.

Carpenter,B. et al. (2006) Heterogeneous nuclear ribonucleoprotein K is over

expressed, aberrantly localised and is associated with poor prognosis in

colorectal cancer. Br. J. Cancer, 95, 921–927.

Chen,M.J. et al. (2017) Genomics and evolution of protein phosphatases. Sci.

Signal, 10, D344–D350.

Cheng,C. and Sharp,P.A. (2006) Regulation of CD44 alternative splicing by

SRm160 and its potential role in tumor cell invasion. Mol. Cell. Biol., 26,

362–370.

Choudhary,C. and Mann,M. (2010) Decoding signalling networks by mass

spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol., 11, 427–439.

Cvitkovic,I. and Jurica,M.S. (2013) Spliceosome database: a tool for tracking

components of the spliceosome. Nucleic Acids Res., 41, D132–41.

David,C.J. and Manley,J.L. (2010) Alternative pre-mRNA splicing regulation

in cancer: pathways and programs unhinged. Genes Dev., 24, 2343–2364.

Du,J.-X. et al. (2021) Splicing factors: insights into their regulatory network in

alternative splicing in cancer. Cancer Lett., 501, 83–104.

Fabregat,A. et al. (2018) The reactome pathway knowledgebase. Nucleic

Acids Res., 46, D649–D655.

Gnad,F. et al. (2007) PHOSIDA (phosphorylation site database): manage-

ment, structural and evolutionary investigation, and prediction of phospho-

sites. Genome Biol., 8, R250.

Habelhah,H. et al. (2001) ERK phosphorylation drives cytoplasmic accumula-

tion of hnRNP-K and inhibition of mRNA translation. Nat. Cell Biol., 3,

325–330.

Hahn,M. et al. (2021) Sik2 orchestrates actin-dependent host response upon

salmonella infection. Proc. Natl. Acad. Sci. USA, 118, e2024144118.

Hornbeck,P.V. et al. (2015) PhosphoSitePlus, 2014: mutations, PTMs and

recalibrations. Nucleic Acids Res., 43, D512–20.

Hunter,T. (1995) Protein kinases and phosphatases: the yin and yang of pro-

tein phosphorylation and signaling. Cell, 80, 225–236.

Hunter,T. (2000) Signaling—2000 and beyond. Cell, 100, 113–127.

Iakoucheva,L.M. et al. (2004) The importance of intrinsic disorder for protein

phosphorylation. Nucleic Acids Res., 32, 1037–1049.

1962 D.Xiao et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac015#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac015#supplementary-data


ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. (2020)

Pan-cancer analysis of whole genomes. Nature, 578, 82–93.

Jim�enez,J.L. et al. (2007) A systematic comparative and structural analysis of

protein phosphorylation sites based on the mtcPTM database. Genome

Biol., 8, R90.

Jim�enez-Vacas,J.M. et al. (2020) Dysregulation of the splicing machinery is

directly associated to aggressiveness of prostate cancer. EBioMedicine, 51,

102547.

Kanehisa,M. et al. (2017) KEGG: new perspectives on genomes, pathways,

diseases and drugs. Nucleic Acids Res., 45, D353–D361.

Kim,H.J. et al. (2021) Phosr enables processing and functional analysis of

phosphoproteomic data. Cell Rep., 34, 108771.

Krassowski,M. et al. (2018) ActiveDriverDB: human disease mutations and

genome variation in post-translational modification sites of proteins.

Nucleic Acids Res., 46, D901–D910.

Krassowski,M. et al. (2021) ActiveDriverDB: interpreting genetic variation in

human and cancer genomes using post-translational modification sites and

signaling networks (2021 update). Front. Cell Dev. Biol., 9, 626821.

Landry,C.R. et al. (2009) Weak functional constraints on phosphoproteomes.

Trends Genet., 25, 193–197.

Le Hir,H. et al. (2001) The exon-exon junction complex provides a binding

platform for factors involved in mRNA export and nonsense-mediated

mRNA decay. EMBO J., 20, 4987–4997.

Liberzon,A. et al. (2015) The molecular signatures database (MSigDB) hall-

mark gene set collection. Cell Syst., 1, 417–425.

Lin,Y. et al. (2019) Evaluating stably expressed genes in single cells.

Gigascience, 8, giz106.

Lundby,A. et al. (2019) Oncogenic mutations rewire signaling pathways by

switching protein recruitment to phosphotyrosine sites. Cell, 179,

543–560.e26.

Martinez-Fabregas,J. et al. (2020) Cdk8 fine-tunes il-6 transcriptional activ-

ities by limiting stat3 resident time at the gene loci. Cell Rep., 33, 108545.

Nakazawa,M. (2018) fmsb: Functions for Medical Statistics Book with Some

Demographic Data. R Package Version 0.5.2. Retrieved from https:

//cran.r-project.org/web/packages/fmsb/fmsb.pdf

Ochoa,D. et al. (2020) The functional landscape of the human phosphopro-

teome. Nat. Biotechnol., 38, 365–373.

Proud,C.G. (2019) Phosphorylation and signal transduction pathways in

translational control. Cold Spring Harb. Perspect. Biol., 11, a033050.

Recasens,A. et al. (2021) Global phosphoproteomics reveals DYRK1A regu-

lates CDK1 activity in glioblastoma cells. Cell Death Discov., 7, 81.

Rikova,K. et al. (2007) Global survey of phosphotyrosine signaling identifies

oncogenic kinases in lung cancer. Cell, 131, 1190–1203.

Rush,J. et al. (2005) Immunoaffinity profiling of tyrosine phosphorylation in

cancer cells. Nat. Biotechnol., 23, 94–101.

Scotti,M.M. and Swanson,M.S. (2016) RNA mis-splicing in disease. Nat. Rev.

Genet., 17, 19–32.

Sever,R. and Brugge,J.S. (2015) Signal transduction in cancer. Cold Spring

Harb. Perspect. Med., 5, a006098.

Shultz,J.C. et al. (2010) Alternative splicing of caspase 9 is modulated by the

phosphoinositide 3-kinase/akt pathway via phosphorylation of SRp30a.

Cancer Res., 70, 9185–9196.

Strumillo,M.J. et al. (2019) Conserved phosphorylation hotspots in eukaryotic

protein domain families. Nat. Commun., 10, 1977.

Su,Z. et al. (2019) Global redox proteome and phosphoproteome analysis

reveals redox switch in akt. Nat. Commun., 10, 5486.

Szklarczyk,D. et al. (2019) STRING v11: protein–protein association net-

works with increased coverage, supporting functional discovery in

genome-wide experimental datasets. Nucleic Acids Res., 47, D607–D613.

The Gene Ontology Consortium. (2017) Expansion of the gene ontology

knowledgebase and resources. Nucleic Acids Res., 45, D331–D338.

Ubersax,J.A. and Ferrell,J.E.,Jr, (2007) Mechanisms of specificity in protein

phosphorylation. Nat. Rev. Mol. Cell Biol., 8, 530–541.

Wang,M. et al. (2015) Version 4.0 of PaxDb: protein abundance data, inte-

grated across model organisms, tissues, and cell-lines. Proteomics, 15,

3163–3168.

Wang,Y. et al. (2011) An SRp75/hnRNPG complex interacting with

hnRNPE2 regulates the 50 splice site of tau exon 10, whose misregulation

causes frontotemporal dementia. Gene, 485, 130–138.

Will,C.L. and Lührmann,R. (2011) Spliceosome structure and function. Cold

Spring Harb. Perspect. Biol., 3, a003707.

Yang,P. et al. (2019) Multi-omic profiling reveals dynamics of the phased pro-

gression of pluripotency. Cell Syst., 8, 427–445.

Yin,C.-F. et al. (2020) Phosphoproteome analysis reveals dynamic heat shock

protein 27 phosphorylation in tanshinone IIA-induced cell death. J.

Proteome Res., 19, 1620–1634.

Yu,K. et al. (2019) qPhos: a database of protein phosphorylation dynamics in

humans. Nucleic Acids Res., 47, D451–D458.

Zhang,Q.C. et al. (2013) PrePPI: a structure-informed database of protein–-

protein interactions. Nucleic Acids Res., 41, D828–D833.

Zhang,Y. et al. (2021) Alternative splicing and cancer: a systematic review.

Signal Transduct. Target Ther., 6, 78.

Zhong,X.-Y. et al. (2009) Regulation of SR protein phosphorylation and alter-

native splicing by modulating kinetic interactions of SRPK1 with molecular

chaperones. Genes Dev., 23, 482–495.

Functional analysis of the stable phosphoproteome 1963




