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Abstract

Background

Pulmonary hypertension (PH) is a known complication of HCM and is a strong predictor of

mortality. We aim to investigate the relationship between microvascular dysfunction mea-

sured by quantitative PET and PH in HCM patients.

Methods

Eighty-nine symptomatic HCM patients were included in the study. Each patient underwent

two 20-min 13N-NH3 dynamic PET scans for rest and stress conditions, respectively. A 2-tis-

sue irreversible compartmental model was used to fit the segments time activity curves for

estimating segmental and global myocardial blood flow (MBF) and myocardial flow reserve

(MFR). Echocardiographic derived PASP was utilized to estimate PH.

Results

Patients were categorized into two groups across PASP: PH (PASP > 36 mmHg) and no-

PH (PASP� 36 mmHg). patients with PH had larger left atrium, ratio of higher inflow early

diastole (E) and atrial contraction (A) waves, E/A, and ratio of inflow and peak early diastolic

waves, E/e’, significantly reduced global stress MBF (1.85 ± 0.52 vs. 2.13 ± 0.56 ml/min/g;

p = 0.024) and MFR (2.21 ± 0.57 vs. 2.62 ± 0.75; p = 0.005), while the MBFs at rest between

the two groups were similar. There were significant negative correlations between global

stress MBF/MFR and PASP (stress MBF: r = -0.23, p = 0.03; MFR: r = -0.32, p = 0.002); for

regional MBF and MFR measurements, the highest linear correlation coefficients were

observed in the septal wall (stress MBF: r = -0.27, p = 0.01; MFR: r = -0.31, p = 0.003).

Global MFR was identified to be independent predictor for PH in multivariate regression

analysis.
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Conclusion

Echocardiography-derived PASP is negatively correlated with global MFR measured by
13N-NH3 dynamic PET. Global MFR is suggested to be an index of PH in HCM patients.

Introduction

Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy, char-

acterized by cardiac hypertrophy and phenotypic heterogeneity [1, 2]. Although much atten-

tion has focused on the left-sided pathophysiology, alterations in pulmonary hemodynamics

may also be evident. Patients with HCM may develop to pulmonary hypertension (PH) due to

elevated left-sided diastolic pressures, secondary to diastolic dysfunction, and in a minority of

cases to the primary pulmonary vascular resistance [3]. A few studies have identified that PH

in HCM is associated with a poor prognosis even with mild elevations in pulmonary pressures

[3–5]. However, there is considerable variability in the clinical course of HCM patients, addi-

tional modalities which could identify patients at risk for PH and adverse outcomes might be

useful in the clinical evaluation of HCM patients.

Coronary microvascular dysfunction is an central physiopathology in HCM, and has major

prognostic implications as well [6]. Growing evidence suggests that the assessment of micro-

vascular function detected by quantitative positron emission tomography (PET) could play an

important role in the evaluation and management of myocardial ischemia in patients with

HCM [7]. Accordingly, impaired hyperemic myocardial blood flow (MBF) and myocardial

flow reserve (MFR) were regarded as equivalent to the microvascular dysfunction [8]. To date,

it remains unknown whether microvascular function and PH are associated. In the present

study, we used 13N-NH3 dynamic PET imaging to explore the possible quantitative relation-

ship between MBF/MFR and pulmonary artery systolic pressures (PASP) measured by Dopp-

ler echocardiography.

Materials and methods

Study population

This project was reviewed and approved by the John Hopkins Institutional Review Board (No.

00029377), All procedures and methods were performed in accordance with the updated

guidelines and regulations. All patients provided consent to use clinical data for research pur-

poses, and written informed consents were obtained from all participants. The retrospective

study enrolled 118 patients with HCM at Johns Hopkins Hospital, Baltimore, USA, from June

2011 to December 2015 referred to cardiac PET/CT. The clinical diagnosis of HCM was based

on 2-dimesional echocardiographic evidence of LV hypertrophy (maximal wall thickness�15

mm) in the absence of other cardiac or systemic disease such as obstructive coronary artery

disease (> 50% diameter stenosis) by invasive coronary angiography or computed tomography

angiography, hypertension, sarcoidosis capable of producing hypertrophy [1, 2]. All patients

underwent comprehensive echocardiographic evaluation and 13N-NH3 dynamic PET imaging

within a 1-month period. 29 patients were excluded from this analysis because of moderate or

severe valval heart disease, severe lung disease and unavailable measurement of peak tricuspid

regurgitation gradients, as well as patients whose PET images were missing or uninterpretable

owing to poor image quality.

PET-measured myocardial flow reserve and echocardiography-estimated pulmonary artery systolic pressure
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Echocardiography

Two-dimensional Doppler echocardiographic studies were performed using a GE Vivid 7 or

Ezuochuang-9 ultrasound machine (GE Ultrasound, Milwaukee, WI) on each patient. Echo-

cardiographic assessments were based on the current guideline [9]. Peak instantaneous LV

outflow gradient was estimated with continuous wave Doppler at rest and after exercise to

elicit latent obstruction. Rest obstruction was defined as gradient� 30 mmHg at rest, latent

obstruction as gradient < 30 mmHg at rest, but gradient� 30 mmHg on provocation, and no

obstruction as gradient < 30 mmHg at rest and on provocation. Inflow early diastole (E) and

atrial contraction (A) waves were assessed for the E/A ratio. The peak early diastolic wave (e’)

was used to calculate the E/e´ ratio. The PASP was obtained by addition of estimated right

atrial pressure based on inferior vena cava size and collapsibility and trans-tricuspid gradient

calculated from the modified Bernoulli equation [4 times the velocity (in m/s) of tricuspid

regurgitation jet (TRV) square] [10]. Pulmonary stenosis or right ventricular outfiow tract

obstruction were excluded. PH was identified as PASP > 36 mmHg and classified as mild

(PASP 37~50 mmHg) and moderate or severe (PASP> 50 mmHg) [4, 11].

PET/CT acquisition

All patients underwent cardiac PET/CT scanning using a GE 64-slice Discovery Rx VCT PET/

CT system (GE Healthcare, Waukesha, Wisconsin). Patients were positioned with the assis-

tance of a computed tomographic (CT) scout, a low-dose CT scan (120 kv, 30 mA) was per-

formed for attenuation correction of PET emission data. Subsequently, 20-min dynamic PET

images were acquired using a same-day rest/stress protocol [12, 13] as follows: approximately

370 MBq 13N-NH3 was injected intravenously as a bolus (using a power injector as constant

rate of 1200 ml/h), and a list-mode dynamic PET scan was obtained over 20 minutes. Approxi-

mately 60 minutes after injection of the rest dose, Regadenoson (Lexiscan, Gilead Sciences

Inc., Foster City, California) (0.4 mg/5 ml) was administered for vasodilator stress, and the

stress PET scan was started about 30 sec after Regadenoson administration. Heart rate, blood

pressure, and a 12-lead electrocardiogram were recorded before, during, and after completion

of the stress protocol.

The attenuation- and decay-corrected 36-frame (20×6, 5×12, 4×30, 5×60, 2×300 seconds)

dynamic PET images (volume size:128×128×47, and voxel size: 3.27×3.27×3.27 mm in x, y, z

direction) and gated PET images (8 bins per cardiac cycle, volume size:128×128×47, voxel size:

3.27×3.27×3.27 mm) were reconstructed using an iterative ordered-subset expectation-maxi-

mization (OS-EM) algorithm (2 iterations, 21 subsets) with post-processing filtering (Butter-

worth, order 0.5 cycles/cm).

MBF quantification

All reconstructed dynamic PET images were transferred to a workstation for image processing

and quantification using the PCARDP tool (PMOD Technologies, Zurich, Switzerland, ver-

sion 3.4). The images were reoriented along the heart axis, and segmented into the AHA

17-segments within the detected endo- and epicardial borders [14]. A 2-tissue irreversible

compartment model (2TCM) with four parameters (F, k2, k3, Vb) (15) was employed for fitting

the 17-segments tracer time-activity curve (TAC). Volume of interests (VOIs) were manually

drawn in the mitral of LV and in the right ventricle on PET images. The LV TACs and the

average of LV and RV TACs were used as input function and blood volume correction, respec-

tively. Our in-house software were used for model fitting [15]. The septal, anterior, lateral,

inferior and global flow (S1 Table) and MFR were calculated from the 17 segmental MBFs and

MFRs. Coronary vascular resistance was calculated as the mean arterial blood pressure divided

PET-measured myocardial flow reserve and echocardiography-estimated pulmonary artery systolic pressure
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by MBF at rest (maximal coronary vascular resistance) and stress (minimal coronary vascular

resistance) as follows:

CVR ¼ 0:33� ðð2� diastolic pressureÞ þ systolic pressureÞ=MBF

Gated PET evaluation

Stress and rest LV ejection fraction (LVEF), LV end-diastolic volumes (LVEDV) and LV end-

systolic volumes (ESV) were automatically calculated from gated datasets by using QGS pack-

age (Cedars Sinai, Los Angeles, California). The LVEF reserve was computed as stress LVEF

minus rest LVEF. A drop larger than– 5 LVEF units was considered abnormal LVEF reserve as

previously reported [16].

Statistical analysis

Simple statistics including mean, standard deviation (SD), and proportions were calculated for

continuous variables and categorical variables, respectively. The comparison between groups

of continuous samples was performed with a Student’s t test, Mann–Whitney U test and one-

way ANOVA depending on the nature of data. Categorical variables between groups were

compared using the χ2 test. Spearman’ correlation coefficients were calculated for potential

correlation between MBF/MFR and other variables. Univariable and multivariable linear

regression analyses were performed to study the independent contributions of various param-

eters on PASP. A p< 0.05 was required for statistical significance. The IBM SPSS 23.0 software

(IBM Corp, Somers, NY) was used for all statistical analysis.

Results

Clinical and echocardiographic features

Overall, the PH (PASP> 36 mmHg) was observed in 31 (35%) patients. Moderate or severe

PH (PASP> 50 mmHg) was presented in 5 (6%) patients. Clinical and echocardiographic fea-

tures of the patients with PH versus patients without PH are summarized in Table 1. There is

no significant difference of age, gender, BMI, cardiovascular risk factors and symptoms. Non-

invasive parameters of diastolic function including E/A ratio and medial E/e’ ratio were signifi-

cantly worse in the PH group versus no-PH group (p< 0.01; p< 0.05, respectively). In addi-

tion, PH group had more increased left atrial size (4.4 ± 0.9 vs. 4.0 ± 0.6 cm, p<0.05) than no-

PH group.

Regional and global MBF

The last 18-min mean stress/rest PET images with representative global MBF and MFRs for

HCM patients with and without PH are demonstrated by Fig 1A-1 and 1B-1. The apical-lateral

kinetic modeling results for the two typical HCM patients are illustrated by Fig 1A-2 and 1B-2.

The model parameters of F, k2, k3 and Vb estimated from 17-segmental TACs based kinetic

modeling for all patients are summarized in the S1 Table. Simple statistics of global MBF and

MFR estimates for PH and no-PH HCM patients are included in Table 2. Patients with PH

had evidence of significantly lower global stress MBF (1.85 ± 0.52 vs. 2.13 ± 0.56 ml/min/g;

p< 0.05) and MFR (2.21 ± 0.57 vs. 2.62 ± 0.75; p< 0.01), while a higher global minimal CVR

(52.31 ± 13.35 vs.44.18 ± 12.51 ml/min/g/mmHg; p< 0.01). Similarly, there were much more

patients being classified as having abnormal stress MBF or MFR in group of PH than those

patients in group of no-PH (p< 0.05 and p< 0.01 for MBF� 1.8 ml/min/g and MFR� 2.5,

PET-measured myocardial flow reserve and echocardiography-estimated pulmonary artery systolic pressure
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respectively. S2 Table). On the other hand, when compared the regional parameters between

these two groups, septal and lateral MBFs at stress, as well as each regional MFR were signifi-

cantly depressed in PH patients (Fig 2).

PET-derived LVEF

At rest, PET-derived LVEF was similar between the two groups (p> 0.05). During vasodilator

stress, patients with PH exhibited impaired LVEF compared to the patients without PH

(46 ± 12 vs. 52 ± 12%; p< 0.05). As a consequence, group of PH yielded lower LVEF reserve

values (-8 ± 6 vs. -5 ± 5%; p< 0.01) and high prevalence of abnormal LVEF reserve (64% vs.

40%; p< 0.05) as above defined (S3 Table).

LVOT obstruction

In the study, 32 (36%) patients were classified as no-obstructive HCM, 32 (36%) had latent

obstruction and 25 (28%) had rest obstruction. Obstructive HCM patients were more likely to

Table 1. Clinical and echocardiographic findings of HCM patients with and without PH.

Characteristics Total

(n = 89)

No PH

(n = 58)

PH

(n = 31)

p-value

Clinical data

Age, years 52±15 52±13 52±17 0.893

Sex, male, n(%) 45(51) 31(53) 14(45) 0.456

BMI, kg/m2 28.5±4.7 28.6±4.8 28.4±4.5 0.850

NYHA Class III/IV, n(%) 51(58) 32(56) 19(61) 0.640

Dyspnea, n(%) 64(73) 39(68) 25(81) 0.219

Risk factors

Hypertension, n(%) 45(50) 29(50) 16(52) 0.885

Dyslipidemia, n(%) 48(54) 30(52) 18(58) 0.568

Diabetes mellitus, n(%) 12(13) 9(15) 3(10) 0.442

Smoking, n(%) 30(34) 20(34) 10(32) 0.832

Medications

β-Blockers 65(73) 41(71) 24(77) 0.495

Calcium channel blockers 28(31) 19(33) 9(29) 0.718

Diuretics 16(18) 10(17) 6(19) 0.805

Disopyramide 3(3) 0(0) 3(10) 0.016

Echocardiographic parameters

Maximal LV thickness, cm 2.0±0.5 2.0±0.4 2.1±0.5 0.128

Rest LVOT gradient, mmHg 29±29 27±28 33±32 0.359

Provoked LVOT gradient, mmHg 68±56 67±59 72±51 0.513

LVEF(%) 67±7 67±6 67±8 0.662

Moderate/severe MR, n(%) 16(19) 8(14) 8(27) 0.160

LAD, cm 4.1±0.7 4.0±0.6 4.4±0.9 0.015

E/A ratio 1.5±0.7 1.3±0.6 1.8±0.9 0.004

E/e’ ratio 18.3±8.7 16.9 ±7.1 21.5±10.5 0.021

Data are expressed as mean ± standard deviation or number of the patients(percentage).

PH:pulmonary hypertension; BMI: body mass index; NYHA: New York Heart Association; LVOT: left ventricular outflow tract; LVEF: left ventricular ejection fraction;

MR: mitral regurgitation; LAD: left atrial diameter; E/A:ratio of peak early diastolic velocity(E)/peak atrial filling velocity(A); E/e’: ratio of peak early diastolic velocity

(E) /peak early diastolic velocity of the septal mitral annulus (e’).

https://doi.org/10.1371/journal.pone.0212573.t001
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have higher E/e’ ratio; Otherwise, there was no significant difference in stress MBF, MFR, min-

imal CVR and PASP among the 3 groups, as depicted in Table 3.

Correlations

On the basis of findings that the echocardiographic parameters including PASP, LAD, E/A

and E/e’ ratio were significantly different between patients with and without PH, we further

investigate their correlations with the global MBF/MFR. The results showed that global stress

MBF was negatively correlated with PASP values (r = -0.23; p< 0.05) and E/A ratio (r = -0.24;

p< 0.05) but not LAD and E/e’ ratio; Similarly, global MFR was only negatively related to

PASP values (r = -0.32; p< 0.01). On the other hand, the global MBFs at rest did not correlate

with PASP (p> 0.05). Furthermore, the correlation between regional stress MBF/ MFR and

Fig 1. Representative cases of HCM with or without PH. (A1, B1): patient A is a 56-year-old female with normal

PASP showing no evidence of vasodilator stress-induced myocardial ischemia; patient B is a 37-year-old female with

elevated PASP revealing global myocardial ischemia but most severe in mid to apical regions of lateral and anterior

walls; Lines from left to right: short axial slice; vertical axial slice; horizontal axial slice; (A2, B2): Time-activity curves at

stress and rest. Dashed line: arterial blood; Hollow dots: myocardial time-activity curve of apical-lateral segment

measured by PET; Solid line: myocardial time-activity curve predicted by the model.

https://doi.org/10.1371/journal.pone.0212573.g001

Table 2. Global PET parameters of HCM patients with and without PH.

Characteristics Total

(n = 89)

No PH

(n = 58)

PH

(n = 31)

p-value

SBP, mmHg 130±19 128±20 135±18 0.103

DBP, mmHg 75±12 74±12 78±11 0.145

Global stress MBF, ml/min/g 2.03±0.56 2.13±0.56 1.85±0.52 0.012

Global rest MBF, ml/min/g 0.85±0.20 0.84±0.17 0.86±0.24 0.952

Global MFR, unitless 2.48±0.71 2.62±0.75 2.21±0.57 0.005

Maximal CVR, ml/min/g/mmHg 110.78±30.27 110.74±26.35 110.87±37.09 0.586

Minimal CVR, ml/min/g /mmHg 46.98±13.31 44.18±12.51 52.31±13.35 0.001

Data are expressed as mean ± standard deviation.

PH:pulmonary hypertension; SBP: systolic blood pressure; DBP: diastolic blood pressure; MBF: myocardial blood flow; MFR: myocardial flow reserve; CVR: coronary

vascular resistance.

https://doi.org/10.1371/journal.pone.0212573.t002
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PASP showed that the coefficients in septal wall were the highest (stress MBF: r = -0.27,

p< 0.05; MFR: r = -0.32, p< 0.01, respectively) among all regional walls (Fig 3).

Univariate and multivariate regression analysis were further performed to identify the pre-

dictive factors for PH (all HCM patients). In univariable analysis, a significant correlation was

found between PASP and global stress MBF, MFR, minimal CVR, LAD, E/A ratio and E/e0

Fig 2. Comparison of global and regional MBF/ MFR between HCM patients with and without PH. A: stress MBF;

B: rest MBF; C: MFR. �p<0.05, ��p<0.01 for comparison between PH versus no PH.

https://doi.org/10.1371/journal.pone.0212573.g002
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ratio. On separate step-wise forward multiple linear regression, only global MFR(β = -0.35;

p< 0.01), E/A ratio(β = 0.35; p< 0.01) and systolic blood pressure(β = 0.29; p< 0.01) were

the independent predictors for PH as showed in Table 4.

Table 3. Characteristics of HCM patients with and without obstruction.

Characteristics Non-obstructive HCM (n = 32) Latent obstructive HCM (n = 32) Obstructive HCM (n = 25) p-value

Global stress MBF, ml/min/g 2.01±0.58 2.11±0.57 1.95±0.52 0.642

Global MFR, unitless 2.40±0.61 2.60±0.84 2.42±0.60 0.449

Minimal CVR, ml/min/g /mmHg 47.70±12.77 46.36±13.07 46.82±14.77 0.615

Rest LVOT gradient, mmHg 29±29 27±28 33±32 <0.001

Provoked LVOT gradient, mmHg 68±56 67±59 72±51 <0.001

LAD, cm 4.1±0.9 4.0±05 4.3±0.7 0.234

E/A ratio 1.7±1.0 1.4±0.6 1.4±0.5 0.382

E/e’ ratio 15.7±7.3 18.6 ±7.0 22.1±10.9 0.009

PASP, mmHg 34±10 34±8 37±10 0.456

Data are expressed as mean ± standard deviation.

MBF: myocardial blood flow; MFR: myocardial flow reserve; CVR: coronary vascular resistance; LVOT: left ventricular outflow tract; LAD: left atrial diameter; E/A:ratio

of peak early diastolic velocity(E)/peak atrial filling velocity(A); E/e’: ratio of peak early diastolic velocity (E) /peak early diastolic velocity of the septal mitral annulus

(e’); PASP: pulmonary artery systolic pressure

https://doi.org/10.1371/journal.pone.0212573.t003

Fig 3. Correlation between PASP and PET parameters in the total HCM cohort. (A1,A2):correlation between PASP and global/regional stress

MBF; (B1,B2): correlation between PASP and global/regional rest MBF; (C1,C2): correlation between PASP and global/regional MFR.

https://doi.org/10.1371/journal.pone.0212573.g003
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Discussion

Our study demonstrates a link between echocardiography-estimated pulmonary pressure and

the PET-measured MBF/MFR in HCM. These patients showed significantly more severe

impairment of global and regional stress MBF and MFR than patients without PH. The study

also indicates that global MFR which is independently determined for the change in PASP,

indicating that impaired MFR is associated with PH in HCM patients.

Although invasive right heart catheterization remains the gold standard for assessment of

pulmonary pressures, echocardiographic-derived measures of PASP was highly correlated to

right heart catheterization in patients with left heart pathology [9, 17, 18], thereby validating

echocardiography as a useful screen for PH. Estimating the exact prevalence of PH across

echocardiographic PASP is definitely challenging because of the different thresholds used to

define PH. In our cohort, using a cutoff at PASP>36 mmHg, PH was present in a significant

proportion of our HCM population (36%), with moderate or severe in a small proportion

(6%). The prevalence of PH was concordant with other left-side heart diseases such as aortic

stenosis and heart failure with preserved ejection fraction which share similar haemodynamic

features with HCM[3, 4].

In clinical practice, the impairment of diastolic function and left atrial dilation has been

regarded as primary risk factors of PH in left-side heart disease[3]. Consistent with previous

reports, our findings showed that the left atrium was significantly enlarged in PH-HCM

patients compared with in no PH-HCM patients. Additionally, diastolic function, assessed by

E/A and E/e’ ratio, was also significantly decreased in PH-HCM patients compared with in

HCM patients. As in other left-heart diseases [3] or heart failure with preserved ejection frac-

tion [19], PH appear to be the consequence of the increase of LV filling pressure, due to an

impaired relaxation and augmented stiffness of the myocardium. HCM is a potentially inher-

ited cardiomyopathy characterized by hypertrophy in the absence of another etiology. Some

investigators have attributed diastolic dysfunction or mitral regurgitation to slow early ventric-

ular filling associated with increased dependence on late diastolic filling by atrial contraction,

thereby favoring the development of PH [20]. In the long-term, the PASP increase drives a

Table 4. Regression: Correlation with the PASP.

Univariable analysis Multivariable analysis

β-coefficient p-value β-coefficient p-value

Global stress MBF -0.23 0.030

Global MFR -0.32 0.002 -0.35 0.001

Minimal CVR -0.17 0.111

SBP 0.14 0.213 0.29 0.006

DBP 0.13 0.216

LAD 0.27 0.011

E/A ratio 0.31 0.003 0.35 0.001

E/e’ ratio 0.41 <0.001

Age 0.01 0.896

BMI -0.12 0.281

Smoker 0.07 0.503

PASP:pulmonary artery systolic pressures; MBF: myocardial blood flow;MFR: myocardial flow reserve; CVR: coronary vascular resistance; SBP: systolic blood pressure;

DBP: diastolic blood pressure; LAD: left atrial diameter. BMI: body mass index; Multivariate regression model adjusted for minimal CVR,SBP,DBP, age, BMI and

smoker, only independent variables that attained p< 0.05 are listed. E/A:ratio of peak early diastolic velocity(E)/peak atrial filling velocity(A); E/e’: ratio of peak early

diastolic velocity (E) /peak early diastolic velocity of the septal mitral annulus (e’).

https://doi.org/10.1371/journal.pone.0212573.t004
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progressive pulsatile loading of right ventricle, subsequently leading to right ventricle failure

[21].

The concept of microvascular dysfunction as a precursor of HCM has been tested in

multiple prior studies [7, 22]. It seems to be the result of structural changes in small vessels by

luminal narrowing of the intramural microvascular network caused by hyperplasia and hyper-

trophy of the intima and media. Evidences have been showed that measurement of hyperemia

MBF and MFR by means of PET is the most effective way to assess microvascular dysfunction

in vivo [22]. A novel observation regards the role of microvascular dysfunction in PH in our

HCM cohort. Global stress MBF and MFR values were generally depressed, whereas minimal

CVR were elevated in PH-HCM patients compared with no PH-HCM patients. Based on pre-

vious studies [23, 24], MBF� 1.8 mL/min/g or MFR� 2.5 are used as a cutoff to distinguish

abnormal or normal myocardial hyperemic flow increases, the number of patients with

blunted stress MBF/MFR was much higher in PH-HCM patients. As intracoronary resistance

relates inversely not only to the vessel diameter but also to the velocity of the blood flow [25].

Mechanistically, It was probably explained by the process that higher LV afterload and lower

microvascular density in HCM patients may increase metabolic demand whereas reduce

hyperemic flow, and thus myocardial perfusion, which in turn causes diastolic dysfunction

resulting in increased left atrial pressure and thus pulmonary artery wedge pressure [26].

On the other hand, we found that the extent of global MFR were most negatively related to

the severity of PASP, and the correlations were not improved in regional analysis, suggesting

that the increased PASP in patients with HCM are not limited to microvascular dysfunction

localized to certain walls but a diffuse process. In addition to traditional risk factors, including

age, BMI, smoker, blood pressure, LA size and diastolic function, the global MFR was signifi-

cantly associated with the PASP. Further multivariate linear regression analyses showed that

global MFR, E/A ratio and SBP were independent predictive factors for PH in HCM patients.

The progression of PH involves complex mechanisms including hemodynamic changes and

cardiac function [27]. The potential for biomarker combinations is currently of considerable

interest in the prediction of PH in HCM patients, and our study suggests that a combination

of impaired global MFR, diastolic dysfunction and elevated blood pressure might be helpful

for the screening and identification of PH in HCM patients.

In addition to MBF quantifications, we assessed LV function by means of gated PET and

found the occurrence of abnormal LVEF reserve was in nearly a half of 89 HCM patients, con-

sistent with two recent reports[16, 28]. Moreover, we showed a trend towards LVEF decrease

after stress and blunted LVEF reserve, which appeared to be greater in those subjects with PH.

The mechanism underling transient LV dysfunction has been partially elucidated by Dr. Galla-

gher [29] that vasodilator-induced redistribution of blood flow from the maximally vasodilated

subendocardial layers to the subepicardial layers, resulting in ischemia. Since our study has

excluded significant epicardial coronary stenosis, ischemia induced by microvascular dysfunc-

tion appears to play a role in the genesis of PH in HCM patients.

Of note, although LVOT obstruction is an established risk factor for adverse outcome in

HCM patients, the effect of relief of LVOT obstruction after septal reduction therapy on PH

was still paradoxical [4, 20]. Our data did not recognize an association between HCM pheno-

type (LVOT obstruction) and PASP or microvascular function. When taken in conjunction

with our univariate and multivariate regression results, it appears that microvascular dysfunc-

tion could be a more powerful risk factor for PH-HCM.

There are some limitations of our study must be considered. Firstly, this was a retrospective

study enrolled form a unique center. Secondly, assessment of pulmonary hemodynamics was

derived from Doppler echocardiography but not the right heart catheterization, pulmonary

pressure estimated from tricuspid regurgitation cannot distinguish whether the increase in

PET-measured myocardial flow reserve and echocardiography-estimated pulmonary artery systolic pressure
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pulmonary pressure is just a passive backward transmission of filling pressures driven by left

ventricular diastolic dysfunction or secondary mitral regurgitation, atrial arrhythmias, or if

there is also a superimposed component of pulmonary vasoconstriction due to progressive vas-

cular remodeling, thereby limiting the accuracy of evaluation for PH. Finally, we are lacking

complete data on other possible contributors to PH, such as RV function, RV MBF/MFR

which could be of value for better understanding of pathophysiology in PH-HCM.

Conclusion

Our study demonstrated that elevated PASP correlated with microvascular dysfunction in

HCM patients. Global MFR was suggested to be an independent predictor for PH. Further-

more, global MFR, especially combined with diastolic dysfunction and elevated blood pressure

demonstrated a better predictive value for PH-HCM. Our study may introduce a novel con-

cept of a link between these two unfavorable disease features.
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