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This review is a short update on the diversity of swine biomedical models and the importance of genomics in 
their continued development. The swine has been used as a major mammalian model for human studies because 
of the similarity in size and physiology, and in organ development and disease progression. The pig model al-
lows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, 
and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from 
the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availabil-
ity of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene 
expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic ap-
plications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. 
With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these 
comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The 
review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to 
consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to 
develop new alternatives for control of the most economically important disease of pigs, porcine reproductive 
and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human 
viral infectious disease studies. 
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1. Introduction 
Swine have served as an important biomedical 

model for humans for decades; previous authors have 
summarized such models in more detail [1-5]. This 
manuscript is a short update of the diversity of swine 
biomedical models. Limitations on reference citations 
for this review has meant that only the most recent will 
be cited to cover the latest developments and the 
broadest range of current pig models. The review will 
discuss some of the genomic approaches used to probe 
these models. Advances using these genomic tools are 
described in the other reviews in this issue [6, 7].  

Generally speaking, studying animal models of 
human disease helps scientists understand the 
mechanisms involved in the disease pathogenesis and 
thus provides tools for development of gene therapy to 
cure the disease/condition in humans. To date, the 
humanized mouse has been widely used to advance 
our understanding of human hematopoiesis, innate 
and adaptive immunity, autoimmunity, infectious 
diseases, cancer biology and regenerative medicine [8]. 
Unfortunately, the humanized mouse and many 
mouse disease models often do not faithfully mimic 
the relevant human conditions. Therefore, better ani-
mal models are needed. An example is the well de-
veloped swine atherosclerosis model which has facili-
tated analyses of disease progression and pathogenesis 
and testing of new therapeutics [9, 10]. 

This review will probe, as detailed examples, 
genomic studies of melanoma and of infectious disease 
resistance, highlighting issues to consider in designing 
such genomic studies. It will end with a short discus-
sion of the potential for genomic approaches to de-
velop new alternatives for control of viral infectious 
diseases, targeting porcine reproductive and respira-
tory syndrome virus (PRRSV), and the potential for 
applying knowledge gained with this virus for human 
infectious disease studies. 
2. Advantage of the Swine as a Biomedical 

Model 
As outlined in Table 1 the swine has been used as 

a major mammalian model for human biology [11]. 
The similarity in size, particularly for miniature pigs, 
and physiology, and in organ development and dis-
ease progression make the swine an ideal model. The 
ability to deliberately time studies, image internal 
vessels and organs using standard human technologies, 
and collect repeated peripheral samples and, at kill, 
detailed tissue samples, has meant that the pig is an 
excellent biomedical model for humans. The ability to 
use pigs from the same litter, or cloned or transgenic 
pigs, facilitates genetic mapping. Availability of nu-
merous well defined cell lines, representing a broad 
range of tissues, will facilitate detailed testing of gene 
expression, drug susceptibility, etc. For genomics it is 
an asset that the pig genome has high sequence and 
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chromosome structure homology with humans. With 
the swine genome sequence now well advanced there 
are increasingly improving genetic and proteomic 
tools for pigs. 

Table 1. Advantages of Swine as a Biomedical Model 

 
3. Swine Biomedical Models 

Swine have served as an important biomedical 
model for decades. Table 2 highlights some of the 
broad array of biomedical topics now addressed using 
swine models. Some of these studies already employ 
genomics approaches, such as the heart, transplanta-
tion and melanoma models; others are still in the early 
stages of affirming swine physiological parameters 
and utility as a human biomedical model. Each model 
will be impacted by the availability of the functional 
genomic tools and swine genome sequence and maps 
outlined in other reviews in this issue [6, 7]. 

Some of the best examples of the impact of swine 
as a biomedical model are found with atherosclerosis 
and diabetes, diseases that are increasingly important 
today as the US faces major problems with obesity [9, 
10]. Research is underway in pigs to determine the role 
of genetic background and to identify nutritional, ex-
ercise, and drug approaches which will alleviate dis-
ease progression and prevent pathology. Advances in 
strategies to treat myocardial infarction are being 
pursued with cellular myoblast repair strategies [12] 
and tissue engineering of blood vessels [13]. Testing of 
emergency room treatment options, such as directed 
cardiopulmonary resuscitation (CPR) and ventricular 
fibrillation or cardiopulmonary bypass, which are dif-
ficult to assess in humans, are readily testable with 
pigs. Genomics will provide in depth analytic tools to 
probe these pig models in detail.  

All aspects of reproductive function have been 
studied in the pig, from the basics of maternal-fetal 
interactions [14], embryo development [15-17] and the 
impact of transgenesis [18, 19] to sperm function and 
quality [20, 21]. Basic sperm biology, such as chromo-
some positioning during spermatogenesis [22], as well 
as semen transmission of infectious disease [23, 24] are 
under active investigation (Table 2). Major transcrip-
tional genomic and mapping efforts are underway in 
the pig model [14, 18] and should reveal important 
pathways regulating reproductive function. 

Table 2. Swine Biomedical Models  

 
 
Because of the size and physiologic similarity of 

pigs to humans, the pig has become a model of choice 
for tissue engineering and imaging studies. A range of 
imaging techniques has been developed with pigs as 
an early pre-human validation model. For example, 
sentinel node detection is increasingly important for 
cancer therapeutics; the pig model has informed tech-
niques for laparoscopic colon visualization and resec-
tion procedures [53, 54]. Tissue engineering using 
polymer scaffolds [61] have targeted areas as diverse 
as alternatives for knee meniscus cartilage and artifi-
cial bladder construction [62]. 

Swine skin studies have been very important, the 
swine melanoma model has been particularly infor-
mative. Targeted studies analyzing percutaneous 
permeation with different chemicals will influence 
international biodefense efforts as well as responses to 
biological toxins [77]. Gut physiology and intestinal 
development following probiotics have been pursued 
in pigs both as a means of decreasing antibiotic usage 
in pig feed as well as an important human model. As-
sessments have focused on probiotic strain selection, 
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timing and dosing and the effects of these particularly 
on neonatal gut physiology.  
4. Genomics and Melanoma: A case study 

The swine melanoma model is a well established 
spontaneous melanoma model and one of the best 
developed for genomic approaches. The Sinclair 
melanoma and Melanoma-bearing Libechov Minipig 
(MeLiM) have been studied in detail using immune 
analyses, focusing on the role of tumor infiltrating 
lymphocytes, the potential effects of natural killer (NK) 
and γδ T cells in tumor regression. Imaging and senti-
nel lymph node (SLN) mapping will enhance these 
studies [54]. Comparative studies of normal melano-
cytes with localized tumor cells should reveal tumor 
specific regulatory pathways [78]; indeed laser capture 
microdissection studies revealed loss of the 13q36-49 
chromosomal region in nodular melanoma cells [79]. 

 Early mapping studies in the Sinclair swine 
melanoma model determined that a single dose of a 
specific “B” swine leukocyte antigen (SLA) haplotype 
on SSC7 was required for tumor initiator [80]; complex 
segregation analysis identified a second locus [81]. 
These were followed by more detailed QTL studies 
using the MeLiM model which identified numerous 
melanoma candidate loci [40]; interestingly human 
candidate genes CDK4 and BRAF were not suscepti-
bility genes in this model. Zhi-Qiang [41] continued 
these studies identifying QTL for the synthetic trait, 
development of melanoma on SSC1, 2, 13, 15 and 17. 
Their detailed phenotyping of 331 pigs revealed highly 
significant QTLs (p < 0.001/p < 0.05 respectively, 
chromosome-/genome-wide levels) for precise disease 
traits. These included SSC10 42.0 cM for ulceration; 
SSC12 95.6 cM for presence of melanoma at birth; 
SSC13 81.0 cM for lesion type; SSC16 45.3 cM and 
SSC17 44.8 cM for number of aggressive melanomas; 
and the SSC1 MeLiM MC1R*2 allele for black coat 
color predisposing to melanoma. As outlined in Table 
3 these studies affirmed that more exact mapping of 
complex traits such as tumor growth and regression 
are improved when very detailed phenotypic infor-
mation is collected on a large group of animals. 

Table 3. Lessons learned from Swine Melanoma Studies 

 
5. Swine as infectious disease models 

As scientists evaluate methods to prevent infec-
tious diseases and test new therapies and vaccines the 
pig is an ideal choice. Approaches include probing 
mucosal tissue responses in respiratory [72], repro-
ductive [23, 24], neurological [73], and intestinal infec-

tions [74, 75], testing biotherapeutics and drug thera-
pies, probing the effects of disease on development [70, 
71] and testing therapies for specific ailments, e.g., 
asthma [66, 67]. Major efforts to determine the ge-
nomics of host responses using transcription and pro-
teomic analyses are in early stages [82] Transgenic and 
mapping approaches [76, 83] will help to affirm spe-
cific gene and allele involvement. Table 4 outlines 
some of the major issues to consider as one attempts to 
use swine models for biomedical studies. 

Table 4. Utilizing genomics for Swine Models - Issues to 
Consider  

 
6. Pig anti-Viral Responses: the response to 

Porcine Reproductive and Respiratory 
Syndrome virus  
 Regulation of immune responses and genetic re-

sistance to infectious viral diseases is an area of con-
cern for human and swine. Porcine Reproductive and 
Respiratory Syndrome (PRRS) is caused by the PRRS 
virus, an enveloped, single-stranded positive-sense 
RNA virus. When present in a herd, PRRSV causes 
increased abortions, stillbirths, mummies and chronic 
respiratory problems in pigs resulting in >$560 million 
losses in the US each year [84]. As an RNA virus with 
an evolving genome, PRRSV is particularly problem-
atic due to slow development of protective immunity 
to homologous challenge and lack of protection 
against heterologous virus challenge. Thus it is a major 
target for swine research; information gained from 
swine studies will inform human infectious disease 
studies, particularly for analyses of viral persistence 
and of factors relevant to prevention of congenital and 
seminal transmission pathways.  

Major efforts are underway to identify factors 
regulating PRRSV immunity, persistence and trans-
mission. Tests involve probing local mucosal anti-viral 
responses (Petry et al., submitted). Detailed cellular 
analyses have assessed gene and protein expression. 
As with human disease studies analyses of cultured 
cells, e.g., infected MARC cells [85], swine macro-
phages [86, 87], or samples from infected pigs [88], 
have expanded our knowledge of the impact of timing 
and level of viral infection on gene expression and 
pathway involvement. Future work will determine 
whether RNAi approaches will be effective. More de-
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tailed gene expression analyses are underway using 
long oligo and Affymetrix arrays, testing both pooled 
and individual animal samples, as well as mucosal 
samples at death. An important issue is the timing of 
mucosal sample collection. Results can be disappoint-
ing if mucosal samples are collected only after viral 
levels begin to resolve. The peak of anti-viral immu-
nity (and relevant gene expression) may be much ear-
lier; however, that may be at a time when the actual 
viral levels may be difficult to evaluate and thus com-
plicate comparative analyses. Therefore, it is important 
to affirm preliminary results with hypothesis driven 
repeated analyses and with translation of gene ex-
pression and array results into protein expression data. 

Genetic variation does exist in resis-
tance/susceptibility to viral infections and has been 
proven for swine resistance/susceptibility to PRRS [87, 
89]. Although to date there is limited knowledge of 
host genes determining PRRSV resistance; some can-
didate genes have been identified (Petry et al., sub-
mitted). More detailed studies are required to deter-
mine whether naturally disease resistant pigs can be 
identified and why do [some] pigs stay healthy even 
with PRRS? What set of factors (detailed phenotype) 
truly correlate with lower PRRSV burden? What is the 
potential for sampling peripheral blood cells, serum or 
saliva for preinfection predictive studies of genetically 
determined virus resistance phenotype? 

An international PRRS Genomics Consortium, of 
university, government, and company based scientists, 
has been established to assess host genetics of PRRS 
resistance/susceptibility. The goal is to develop a large, 
publicly available disease sample and dataset from 
thousands of pigs from relevant commercial lines in-
fected with PRRSV and from which a detailed pheno-
type have been collected. Access to samples will be 
dependent on data sharing. The end user performs 
his/her analysis on the appropriate sample and re-
turns the data to the consortium. It is hoped that the 
data generated by the Consortium will verify the ge-
netic variation in pigs responding to PRRSV infection, 
will reveal factors influencing health, survivability and 
growth, and will identify the relative importance of 
different phenotypes, and their heritability, in pre-
dicting responses to PRRSV infection. Overall this data 
should enable breeders to produce healthier pigs with 
improved resistance to PRRSV and help animal health 
companies to develop improved vaccines and alterna-
tive anti-PRRSV therapeutics. This data should help 
identify new critical control factors in human re-
sponses to viral infections. 
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