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Abstract: Nuclei instance segmentation can be considered as a key point in the computer-mediated
analysis of histological fluorescence-stained (FS) images. Many computer-assisted approaches have
been proposed for this task, and among them, supervised deep learning (DL) methods deliver the
best performances. An important criterion that can affect the DL-based nuclei instance segmentation
performance of FS images is the utilised image bit depth, but to our knowledge, no study has been
conducted so far to investigate this impact. In this work, we released a fully annotated FS histological
image dataset of nuclei at different image magnifications and from five different mouse organs.
Moreover, by different pre-processing techniques and using one of the state-of-the-art DL-based
methods, we investigated the impact of image bit depth (i.e., eight bits vs. sixteen bits) on the nuclei
instance segmentation performance. The results obtained from our dataset and another publicly
available dataset showed very competitive nuclei instance segmentation performances for the models
trained with 8 bit and 16 bit images. This suggested that processing 8 bit images is sufficient for
nuclei instance segmentation of FS images in most cases. The dataset including the raw image
patches, as well as the corresponding segmentation masks is publicly available in the published
GitHub repository.

Keywords: bit depth; nuclei segmentation; fluorescence staining; medical image analysis; computa-
tional pathology; deep learning

1. Introduction

The morphology of nuclei regulates and, vice versa, is regulated by the environ-
ment, as well as the activity of the cell. Nuclei parameters are important measures for
cell biologists investigating physiological and pathophysiological processes and are used
clinically for, e.g., the diagnosis of malignant and other diseases [1]. Physiologically, nu-
clear morphology can for instance be dramatically influenced during the differentiation
of immune cells [1]. In cytopathology, as well as surgical pathology, assessing the mor-
phologic abnormalities of nuclei is essential for the diagnosis of malignancies. Malignant
transformation of cells can result in larger nuclei and an increased nuclear-to-cytoplasmic
ratio. The chromatin of malignant cells can be altered, and nuclear membrane irregularities
such as thickening, dents, folds, grooves and pseudo inclusions can be observed. Malignant
cells may display a combination, but not necessarily all of these morphologic abnormali-
ties [2]. Viral infections of cells can also affect the morphology of the nucleus of the host
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cell. Among the most common morphological alterations of the nucleus observed due
to viral infection of cells are the disruption of the nuclear membrane and fragmentation
of the nucleus. Many viruses are also involved in re-localization or depletion of host
nucleolar proteins or alterations of certain nuclei substructures, such as the promyelocytic
leukaemia nuclear bodies [3]. Visualisation of nuclei in tissue and cell samples can be
performed via either chemical dyes including hematoxylin or via fluorescent dyes such
as 4′,6-diamidin-2-phenylindole (DAPI) [1,4]. Fluorescence imaging is widely used in cell
biology and biomedical research, and the identification of the cell nucleus is an important
first step in the quantitative analysis of fluorescence images [5].

The development of automated computer-based approaches for nuclei instance seg-
mentation as a prerequisite for subsequent image analysis has been an active research area
in recent years [6]. Standard image-processing techniques such as Otsu thresholding or
watershed-based algorithms [7,8] or classical machine learning approaches such as random
forest classifiers are among the proposed approaches for this task [9,10]. Although these
methods are rather fast at performing segmentation and can be easily implemented by
non-computer scientists through publicly available software such as ImageJ [11] or CellPro-
filer [12], their performances degrade drastically in challenging cases [13]. Up to this point,
supervised deep learning (DL)-based methods and, more specifically, convolutional neural
networks (CNNs) have delivered the best nuclei instance segmentation performances in
microscopic images [6,10,13].

In general, three types of CNN-based algorithms were proposed in previous studies to
perform nuclei instance segmentation, namely distance-based algorithms, which try to find
the Euclidean distance maps of each individual object in the images, ternary segmentation-
based algorithms, which assign an extra class for the nuclei boundaries, and localization-
based algorithms, which try to find the nuclei location and then perform segmentation [6].
In some more recent studies, combinations of these methods were employed to further
enhance the nuclei instance segmentation performance [14–17]. However, most of these
algorithms were developed and tested on images where the nuclei were counterstained
with chemical dyes such as hematoxylin, and only a few studies have analysed nuclei
instance segmentation in images with fluorescence-stained (FS) nuclei [10,18,19]. One
main issue that has hampered the development of supervised DL approaches for nuclei
instance segmentation of FS images is the limited number of publicly available fully
annotated FS image datasets in comparison to the image datasets with hematoxylin and
eosin (H&E) or immunohistochemically (IHC) stained samples, where nuclei are chemically
labelled. Parts of the Kaggle Data Science Bowl 2018 dataset [20], Kromp et al. dataset [5],
NucleusSeg dataset [21] and Caicedo et al. dataset [10,22] are among the few publicly
available FS image databases that can be used for developing computer-based nuclei
instance segmentation algorithms.

For H&E-stained and IHC-stained images, the most conventional image format is
the 24 bit RGB images (eight bits per colour channel). For fluorescent applications, more
and more cameras are available that can acquire even 16 bit images. There are general
recommendations that more bits give more information and precision in the images [23,24].
The acquisition of 16 bit images is sometimes even recommended when the images are
later rescaled to 8 bit images for image processing [23]. In particular, in cases where there is
low contrast between the stained objects and the background, sixteen-bit image capturing
enables the identification of subtle changes in the images.

Other sources, in contrast, suggest that the lower fluorescence signal levels are better
suited to 8 or 12 bit images rather than 16 bit images [24,25]. The acquisition of 16 bit
images may have some additional drawbacks. In digital pathology labs where several
hundreds of slides can be scanned per day, storing digitised images at a 16 bit image depth
needs at least twice as much physical storage space in comparison to 8 bit images [25,26].
Moreover, a higher bit depth can reduce the imaging speed of a particular camera as more
possible grey levels exist to convert the signals [24]. Due to the biological limitations of
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eyes, monochrome images are typically viewed at 8 bit, even if the image was acquired at a
higher bit depth [24].

With respect to image analysis, it is unknown whether 16 bit images allow for a
significant better nuclei instance segmentation performance in comparison to 8 bit images.
To our knowledge, no study has been conducted to investigate this impact, and most of the
(immuno) FS image datasets released so far can not be used for such an investigation as
they contain only 8 bit images. The main contributions of this work are twofold. Firstly,
we released a fully annotated nuclei instance segmentation dataset of 16 bit FS images
at different image magnifications and from five different mouse organs to support the
development of computer-based nuclei instance segmentation algorithms. Secondly, we
investigated the impact of image bit depth (i.e., eight bits vs. sixteen bits) on the nuclei
instance segmentation performance using our proposed dataset and a second publicly
available dataset.

2. Materials and Methods
2.1. Datasets

Our released dataset (referred to as the BitDepth dataset in this paper) contains
fully annotated FS images for nuclei instance segmentation. Heart, kidney, liver, muscle
(M. soleus) and bone (femur) were obtained from 8 week-old male C57BL/6J mice [27].
Tissues were formaldehyde-fixed and paraffin-embedded. Four-micrometre sections were
stained with DAPI and cover-slipped using Fluoromount-G mounting medium. Whole-
slide images (WSIs) were generated with a TissueFAXS (TissueGnostics, Vienna, Austria)
scanning system composed of an Axio Imager Z1 (Zeiss, Oberkochen, Germany), equipped
with the Plan-Neofluar 20×/0.5 objective (referred to as 20×), the Plan-Neofluar 40×/0.75
objective (referred to as 40× air), the 40×/1.3 oil immersion objective (referred to as 40×
oil), as well as the Plan-Apochromat 63×/1.4 oil immersion objective (referred to as 63× oil)
and a 49000 ET-DAPI filter set (Chroma Technology Corp, Vermont, USA) in combination
with the TissueFAXS Image Acquisition and Management Software (Version 6.0). Using a
monochrome camera (Hamamatsu, Hamamatsu, Japan), grayscale images were acquired
at 16 bit resolution using the four different objectives (20× air, 40× air, 40× oil and 63×
oil with pixel sizes of 0.32 µm, 0.16 µm, 0.16 µm and 0.10 µm, respectively). A senior cell
biologist selected candidate fields of view (FOVs) with a fixed size of 2048 × 2048 pixels to
perform manual nuclei instance segmentation to form the dataset. Central image cropping
was then applied on the selected FOVs with a fixed size of 512 × 512 pixels.

Manual instance segmentation of the BitDepth dataset was performed as described
recently in [28]. Example kidney image patches acquired with different objectives with
their corresponding labelled and binary masks are depicted in Figure 1. Besides the
conventionally labelled and binary masks, we also generated other auxiliary segmentation
masks that can be utilised in the development of CNN-based instance segmentation models.
The auxiliary segmentation masks included Euclidean distance transforms, weighted maps
that give higher weights to the touching borders and border-removed binary segmentation
masks. More details of the dataset are listed in Table 1. Our fully annotated dataset, as well
as related codes to generate segmentation masks from the ImageJ ROI files are publicly
available in the related GitHub repository (https://github.com/masih4/BitDepth_NucSeg
(accessed on 26 May 2021)).

To confirm the generalisation of the results, besides our proposed dataset, we used
another publicly available dataset presented in [10]. The Caicedo et al. dataset contains
200 FS images of U2OS cells acquired with a 20× objective. More than 23,000 nuclei were
manually segmented in this dataset with an average of 118.1 nuclei per image. The dataset
includes image patches extracted from WSIs with a fixed size of 520 × 696 pixels at 16 bits.
Further details about this dataset can be found in [10,22].

While the Caicedo et al. dataset has more manually segmented nuclei compared to
the BitDepth dataset, it only contains images with one image magnification and from one
cell type, which is not optimal to be used alone, as it may not deliver generalisable results.

https://github.com/masih4/BitDepth_NucSeg
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In contrast, our dataset contains images with three image magnifications (20×, 40× and
63×) and from five mouse organs. To our knowledge, other publicly available datasets of
FS images for nuclei instance segmentation only include images at 8 bits and thus cannot
be used in this study to investigate the impact of image bit depth on the nuclei instance
segmentation performance.

Figure 1. Examples of kidney images at different image magnifications with their corresponding
labelled and binary segmentation masks.

Table 1. Details of the BitDepth dataset.

Objective
Images Per Organ #Total

Images #Nuclei Avg #Nuclei
Per Image#Bone #Heart #Kidney #Liver #Muscle

20× air 1 2 2 2 2 9 1310 145.5
40× air 3 4 4 4 4 19 896 47.2
40× oil 4 4 4 4 4 20 762 38.1
63× oil 3 5 5 5 4 22 426 19.4

# sum 11 15 15 15 14 70 3394 48.5

2.2. Pre-Processing

For the BitDepth dataset, we created four sub-datasets (Dataset 1, Dataset 2, Dataset 3
and Dataset 4) from the acquired raw 16 bit images for each image magnification. In Dataset 1,
we divided all intensity values in the images by 65,535. In Dataset 2, we applied outlier
removal on the normalised derived images. The reason that we applied the outlier removal
pre-processing step was the existence of saturated pixels in the images (very bright spots)
due to acquisition artefacts. To remove outliers, we calculated the 99th-percentile intensity
value for each image as the threshold. Then, all intensity values above the calculated
threshold were cut off, and their intensity values were replaced by the derived threshold.
The utilised percentile value was selected empirically to not change the raw images drasti-
cally and at the same time remove the outliers from the images. To create Dataset 3, we
used the following formula to normalise the images:

Xnorm =
Xraw − Xmin
Xmax − Xmin

(1)
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where Xraw represents the raw intensity values in a 16 bit image and Xmin and Xmax are the
minimum and maximum intensity values in the 16 bit image, respectively. To create Dataset 4,
we used the Dataset 3 images and applied the outlier removal step described above.

To create raw 8 bit images, we used the following formula and applied it to raw
16 bit images.

X8bit = uint8[
X16bit
256

] (2)

where uint8 is the round function to assign all values to integer numbers between 0 and
255 to form raw 8 bit images from 16 bit images. From these raw 8 bit images, we also
created Datasets 1–4.

Examples of raw, outlier-removed and normalised 16 bit and 8 bit images of a bone
sample at 40×magnification are depicted in Figures 2 and 3, respectively.

For the Caicedo et al. dataset, we created a normalised 16 bit dataset and a normalised
8 bit dataset similar to what we did for Dataset 4 in the BitDepth dataset. We used these
two derived datasets to perform additional experiments to explore the generalisability of
the obtained results from the BitDepth dataset.

Finally, we created other sub-datasets of 2, 4, 6, 10, 12 and 14 bit images from both
the BitDepth and the Caicedo et al. datasets. To create these sub-datasets, we used min/max
normalisation with outlier removal with the identical setting as Dataset 4. Although using
these bit depths is not very common in practice in comparison to 8 bit and 16 bit images,
it allowed us to investigate the impact of other image bit depths on the nuclei instance
segmentation performance.

Figure 2. Example of raw, outlier-removed and normalised 16 bit images of a bone sample at 40× magnification from left to
right in the first row, respectively. We also plot a profile intensity line (depicted with dashed red lines in the images) in the
second row. The raw 16 bit image was selected from the BitDepth dataset.
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Figure 3. Example of raw, outlier-removed and normalised 8 bit images of a bone sample at 40×magnification from left to
right in the first row, respectively. We also plot a profile intensity line (depicted with dashed red lines in the images) in the
second row. The raw 8 bit image was selected from the BitDepth dataset and corresponds to the 16 bit image presented in
Figure 2.

2.3. Nuclei Segmentation Method

To investigate the impact of the image bit depth of FS images on the performance of
nuclei instance segmentation, we employed our recently published algorithm for nuclei
segmentation in H&E-stained microscopic images [16]. This algorithm consisted of two
training stages for background detection and distinguishing overlapping nuclei. For back-
ground detection in the first stage, a U-Net-like encoder–decoder model was trained.
Binary segmentation masks were used in this stage. In the second stage, a regression U-Net
model was trained to predict Euclidean distance transforms of all individual objects in the
images. Euclidean distance transforms derived from the labelled masks were used in the
second stage of training. The results from these two stages were then merged through a
watershed-based method [8] to form nuclei instance segmentation masks. As the original
architecture of the utilised approach was designed for H&E-stained RGB images, we copied
the single-channel FS microscopic images three times to have three channels as the input of
the network. Further details about the model and merging procedure can be found in [16].
We used the Adam optimiser, a learning scheduler (starting learning rate of 0.01, which
halved after every 8 epochs) and a batch size of 4 to train the models. The models in each
stage were trained for 30 epochs. To partially overcome the issue of limited training images
in the BitDepth and Caicedo et al. datasets, we utilised intensity-based and morphological
data augmentation techniques including random brightness and contrast shift, random
horizontal and vertical flipping and random rotations, as suggested in [29,30]. The utilised
augmentation techniques were only applied on the training images and not on the valida-
tion set images. The utilised model had around 7.7 million trainable parameters for each
stage, which yielded an approximate total number of 15.2 million trainable parameters for
both stages.
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2.4. Evaluation

For the evaluation of the nuclei instance segmentation performance, we used three
evaluation indexes, namely the similarity Dice score (Equation (3)), the aggregate Jaccard
index (AJI) (Equation (4)) and the panoptic quality (PQ) score (Equation (5)) [6,31,32]:

Dice =
2.S ∩ G
S + G

(3)

AJI = ∑L
i=1 Gi ∩ S̃K(i)

∑L
i=1 Gi ∪ S̃K(i) + ∑l∈U Sl

(4)

PQ =
2.TP

2.TP + FN + FP
×

∑(Gi ,Si)∈TP Jaccard(Gi, Si)

TP
(5)

where in the above formulas for a given image, S represents the predicted segmentation
mask, G represents the ground truth, L is the total number of objects in G, U is the indices
for the nuclei in S that have not been matched with any nuclei in G, S̃K(i) is the detected
nucleus in S that maximises the Jaccard index with the Gi in the ground truth, TPs are
the matched pairs between S and G, FNs are the unmatched G instances and FPs are the
unmatched S instances. In general, the Dice score indicated the semantic segmentation
performance (i.e., separating foreground and background), while the AJI and PQ scores
showed the instance segmentation performance (i.e., the ability of the model to separate
touching objects).

To perform statistical tests, we used the Wilcoxon signed-rank test method for each
of the evaluation indices [33,34]. In our initial experiments, we considered 0.05 as the
threshold for the significance level. However, as we performed three statistical tests for
each of the paired datasets, the level of significance could be reduced to 0.017 according to
the Bonferroni correction [35].

2.5. Implementation

The manual instance segmentation was performed with ImageJ software (Version 1.52a)
and its pre-built region of interest (ROI) tool. To convert ImageJ ROI files to conventional
binary and labelled masks and also to create auxiliary segmentation masks, we employed
MATLAB (Version 2020a). To develop the nuclei instance segmentation model, we used the
Keras deep learning framework (Version 2.3.1) with a TensorFlow (Version 1.14) backend.
All experiments were conducted on a single workstation with 32 GB of RAM, an Intel Core
i7-8700 3.20 GHz CPU and a TITAN V NVIDIA GPU card.

2.6. Experimental Setup

To compare the nuclei instance segmentation performance of the models trained
with 16 bit FS images and 8 bit FS images for the BitDepth dataset, images obtained with
different objectives (20×, 40× air, 40× oil and 63× oil) were analysed separately. For each
magnification, we performed eight experiments based on the image bit depth (i.e., 8 bits or
16 bits) and the utilised sub-dataset (i.e., Dataset 1, Dataset 2, Dataset 3 and Dataset 4, as
explained in Section 2.2). Thus, we performed 32 experiments with identical settings, as
explained in Section 2.3. To report the results for each experiment, we performed five-fold
cross-validation with a fixed randomised seed point to have a fair comparison of the results.

In the next step, we performed two additional experiments based on the entire
BitDepth dataset and using the min/max normalisation with the outlier removal step.
For those two experiments and to merge the datasets, we resized the images of 20× and
40×magnifications to bring them to a similar resolution space (63×) and then performed
five-fold cross-validation. The 20× images were resized to 1612 × 1612 pixels, and the 40×
images were resized to 806 × 806 pixels. We performed random image cropping with a
fixed size of 512 × 512 pixels to train the models for these two experiments. In the inference
phase, 1612 × 1612 and 806 × 806 pixel images were resized to 1600 × 1600 and 800 × 800
pixel images, respectively, to be able to send them to the trained models.
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Moreover, to investigate the impact of image bit depth on an external dataset, we
used the two derived datasets from the Caicedo et al. dataset as explained in Section 2.2.
We performed five-fold cross-validation for each of the derived datasets to measure the
instance segmentation performance for 8 bit and 16 bit images.

Finally, in our last set of experiments for both the BitDepth and Caicedo et al. datasets,
we used the created sub-datasets for other image bit depths (i.e., 2, 4, 6, 10, 12 and 14 as
explained in Section 2.2) to investigate the impact of other depths on the nuclei instance
segmentation performances.

3. Results

The derived results for the comparison of the nuclei instance segmentation perfor-
mance of 8 bit and 16 bit images for the BitDepth dataset are shown in Table 2. In cases
where statistical tests between 8 bit and 16 bit images led to p-values less than 0.05, the re-
sults are shown in bold in the table. The exact p-values for the experiments are shown
separately in Table 3. It is worth mentioning that besides these experiments, we also
performed additional examinations without any pre-possessing to train the segmentation
model. However, we noted that for some folds of cross-validation, the training did not
converge, and as a consequence, we did not report the results for those experiments.

To have a more in-depth analysis of the segmentation performance differences between
8 bit and 16 bit images, we also plotted the absolute differences in instance-based scores
against the number of nuclei inside the images for different image magnifications in
Figure 4.

Table 2. Fluorescence-stained nuclei instance segmentation performance of the BitDepth dataset based on image bit depth
at different image magnifications. In cases, where the segmentation performance of 8 bit images differed significantly
(p-values < 0.05) from that of 16 bit images, the results are shown in bold.

Dataset
Dice (%) AJI (%) PQ (%)

8 bit 16 bit 8 bit 16 bit 8 bit 16 bit

Data 1 (20× air) 87.4 ± 4.3 87.8 ± 3.4 66.4 ± 11.6 67.4 ± 11.5 62.9 ± 10.7 62.30 ± 10.8
Data 2 (20× air) 87.5 ± 4.1 88.1 ± 3.0 67.1 ± 10.8 67.1 ± 10.3 62.7 ± 11.0 62.4 ± 10.2
Data 3 (20× air) 87.5 ± 3.6 87.0 ± 2.9 67.4 ± 10.9 67.6 ± 10.4 62.3 ± 10.1 62.0 ± 10.5
Data 4 (20× air) 86.8 ± 4.6 87.7 ± 4.1 68.1 ± 11.6 68.9 ± 10.3 62.5 ± 12.6 64.8 ± 9.8

Data 1 (40× air) 88.1 ± 4.9 87.8 ± 5.0 65.5 ± 12.7 65.3 ± 12.8 61.6 ± 13.8 62.9 ± 12.2
Data 2 (40× air) 88.3 ± 4.2 88.1 ± 4.1 64.0 ± 15.0 65.4 ± 12.3 61.3 ± 14.7 61.0 ± 12.0
Data 3 (40× air) 88.4 ± 4.3 88.0 ± 4.5 66.4 ± 12.5 66.6 ± 11.6 62.6 ± 12.8 62.6 ± 11.3
Data 4 (40× air) 88.1 ± 4.2 88.4 ± 4.1 66.7 ± 11.9 68.2 ± 11.8 61.0 ± 12.0 62.8 ± 11.9

Data 1 (40× oil) 87.9 ± 6.0 88.7 ± 5.4 62.4 ± 12.9 68.9 ± 13.6 57.4 ± 14.4 62.7 ± 15.4
Data 2 (40× oil) 88.4 ± 5.8 88.4 ± 6.2 61.7 ± 10.7 66.4 ± 12.4 55.6 ± 12.9 61.9 ± 12.3
Data 3 (40× oil) 87.4 ± 5.9 87.1 ± 7.4 67.3 ± 11.9 67.8 ± 13.4 61.1 ± 11.3 61.1 ± 13.4
Data 4 (40× oil) 88.3 ± 5.6 88.0 ± 5.2 70.7 ± 12.7 67.1 ± 12.7 64.8 ± 14.1 60.4 ± 13.1

Data 1 (63× oil) 86.7 ± 8.1 85.8 ± 9.9 65.0 ± 15.2 64.2 ± 16.5 56.3 ± 15.2 55.1 ± 14.8
Data 2 (63× oil) 86.2 ± 5.5 86.7 ± 7.0 63.6 ± 13.2 64.0 ± 14.7 51.4 ± 13.5 56.0 ± 14.9
Data 3 (63× oil) 88.5 ± 4.6 88.9 ± 4.2 67.4 ± 13.7 64.6 ± 11.4 58.3 ± 13.9 54.6 ± 12.4
Data 4 (63× oil) 89.4 ± 3.9 89.6 ± 4.8 68.5 ± 13.5 69.4 ± 13.2 59.2 ± 14.7 61.6 ± 13.2
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Table 3. Derived p-values from comparing 8 bit and 16 bit images of the BitDepth dataset.
p-values < 0.05 are shown in bold in accordance with the results of Table 2.

Dataset p-Values Dice p-Values AJI p-Values PQ

Data 1 (20× air) 0.82 0.57 0.82
Data 2 (20× air) 0.73 0.99 0.99
Data 3 (20× air) 0.13 0.99 0.50
Data 4 (20× air) 0.06 0.36 0.13

Data 1 (40× air) 0.44 0.87 0.06
Data 2 (40× air) 0.78 0.27 0.87
Data 2 (40× air) 0.35 0.81 0.99
Data 2 (40× air) 0.03 0.02 0.06

Data 1 (40× oil) 0.10 0.03 0.23
Data 2 (40× oil) 0.88 0.01 0.004
Data 3 (40× oil) 0.97 0.99 0.88
Data 4 (40× oil) 0.39 0.06 0.03

Data 1 (63× oil) 0.85 097 0.57
Data 2 (63× oil) 0.41 0.70 0.07
Data 3 (63× oil) 0.29 0.15 0.22
Data 4 (63× oil) 0.55 0.37 0.11

Figure 4. Differences between the AJI and PQ scores (%) for 8 bit and 16 bit images based on the number of nuclei in the
images for different image magnifications in the BitDepth dataset. For each magnification, Dataset 4 was used to measure
the performance differences between 8 bit and 16 bit images.

The results from the experiments that utilised the entire BitDepth dataset showed
very competitive segmentation performances for both 8 bit and 16 bit images. An average
Dice score of 88.7 ± 4.6%, an average AJI of 69.3 ± 12.3% and an average PQ score of
63.2 ± 12.7% were obtained for 8 bit images, while an average Dice score of 89.2 ± 4.4%,
an average AJI of 70.6 ± 12.1% and an average PQ score of 64.9 ± 13.5% were obtained for
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16 bit images. Boxplots of these experiments for different evaluation indexes are shown in
Figure 5.

Figure 5. Nuclei instance segmentation performance boxplots for Dice, AJI and PQ scores derived from the BitDepth dataset
(Y-axes are limited for a better visualisation, and hence, some outliers are not shown).

Results obtained from the Caicedo et al. dataset also showed very competitive seg-
mentation performances with an average Dice score of 95.5 ± 11.9%, an average AJI of
86.0 ± 13.0% and an average PQ score of 85.6 ± 12.8% for 8 bit images in comparison to
an average Dice score of 95.6 ± 11.9%, an average AJI of 86.0 ± 12.9% and an average
PQ score of 85.7 ± 12.5% for 16 bit images. Boxplots of these experiments for different
evaluation indices are shown in Figure 6. We note that for three cases in the Caicedo et al.
dataset, zero Dice, AJI and PQ scores were achieved. For those cases, there were no nuclei
in the ground truth segmentation masks, while the model predicted at least one nucleus,
and according to Equations (3)–(5), zero scores were derived. Those three images, as well
as their prediction segmentation masks are shown in Figure 7. If we disregarded these
three images and recalculated the evaluation indexes, an average Dice score of 97.0 ± 1.2%,
an average AJI of 87.3 ± 7.6% and an average PQ score of 86.8 ± 7.2% were obtained for 8
bit images, while for 16 bit images, an average Dice score of 97.0 ± 1.2%, an average AJI of
87.3 ± 7.3% and an average PQ score of 86.9 ± 6.6% can be obtained.

Figure 6. Nuclei instance segmentation performance boxplots for Dice, AJI and PQ scores derived from the Caicedo et al.
dataset [10] (Y-axes are limited for better visualisation, and hence, some outliers are not shown).

The nuclei segmentation results from the experiments for additional image bit depths
(2, 4, 6, 10, 12 and 14) for the BitDepth and Caicedo et al. datasets are shown in Figure 8.
We also included the average results from the 8 bit images and 16 bit images as baselines to
compare the segmentation performances in the figure.
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Figure 7. Three images from the Caicedo et al. dataset [10] with zero Dice, AJI and PQ scores. There
were no nuclei in the ground truth segmentation masks for these three cases.

Figure 8. The average nuclei instance segmentation performance based on Dice, AJI and PQ scores for different image bit
depths for the BitDepth and Caicedo et al. datasets.

4. Discussion

The main findings of this study are displayed in Table 2. As shown in the table,
for each of the datasets and each image magnification, we observed very competitive
nuclei instance segmentation performances for 8 bit and 16 bit images. More specifically,
for the average Dice scores, the results were very close with less than 1% performance
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differences for the 8 bit- and 16 bit-derived datasets. Although in some cases, the average
results were rather different for the AJI and PQ scores, in most cases, the differences
were not significant. The differences in PQ and AJI were more striking at higher image
magnifications. As reported in Tables 2 and 3 and considering a threshold level of 0.05,
in six out of thirty-two pair results for the Dice, AJI and PQ scores, the results were
statistically different. If we used Bonferroni correction and reduced the level of significance
to 0.017, only in two out of thirty-two tests, the results were different. However, Bonferroni
correction especially in our case where statistical tests for the Dice, AJI and PQ scores were
correlated may not be applicable [36,37]. The competitive segmentation performance of
8 bit and 16 bit images suggested that the model relied on the nuclei morphological features
rather than exact intensity values of background and foreground pixels to segment the
images, and hence, the model was not sensitive to subtle changes in intensity values and
delivered comparable segmentation performance for 8 bit and 16 bit images. Besides the
average scores and standard deviations (SDs) are also reported for all experiments in
Table 2.

As mentioned in the Results Section, training segmentation models without any pre-
processing step did not lead to training convergence, which showed the importance of the
normalisation step in training a DL-based algorithm. By comparing the results derived
from different pre-processing steps (Dataset 1 to Dataset 4), competitive segmentation
performances can be observed. However, the average results derived by the min/max
normalisation with outlier removal (Dataset 4) were slightly superior compared to other
normalisation steps for both 8 bit and 16 bit images.

As the results for the sub-datasets in Table 2 and also the results for the entire BitDepth
dataset in Figure 5 showed, the SDs were rather large for the AJI and PQ scores. However,
the large SDs were related to the level of the image complexity for segmentation. In other
words, some images were easier to segment, which led to high segmentation scores, and
some images were more challenging to segment, thus resulting in low segmentation scores.
However, for the Dice score, the algorithm can deliver rather good semantic segmentation
performance across all images. This led to the low level of SDs for the Dice scores for the
BitDepth dataset.

To further investigate the differences in the segmentation performances for different
image magnifications, we performed additional analysis to relate the number of nuclei
in an image to the difference in the nuclei instance segmentation performance, as shown
Figure 4. In our released BitDepth dataset, we had many more nuclei per image for lower
image magnifications (e.g., 145.5 for 20× air) in comparison to higher image magnification
(e.g., 19.4 for 63× oil). In the case of the existence of only a few nuclei inside an image,
the incorrect split/merge of nuclei, even for one or two instances, can change the instance-
based results greatly. To measure this impact quantitatively, we plot the differences in
instance-based scores against the number of nuclei inside the images for different image
magnifications in Figure 4. As the results in Figure 4 imply, the differences of the results
were much more evident when only a few nuclei existed in the images (for instance by
comparing the 20× air magnification results where the differences were below 6% with
the 63× oil magnification results where the differences for some cases were above 10%).
However, this issue was not related to image bit depth or FS images and can appear in
other staining types where the number of nuclei per image is very small.

To confirm the generalisability of our interpretations, we performed additional experi-
ments on the Caicedo et al. dataset. As the results in Figure 6 show, the nuclei instance
segmentation performances for this dataset were also very competitive for 8 bit and 16 bit
images, in agreement with the BitDepth dataset’s results. However, the average results for
the Caicedo et al. dataset for both image bit depths in comparison to the average results for
the BitDepth datasets were superior with large margins for all three evaluation indexes.
As the same segmentation model was used for both dataset, it can be inferred that in
general, images in the Caicedo et al. were easier to segment in comparison to the BitDepth
dataset. Indeed, the Caicedo dataset contains images from a cell culture, where nuclei are
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usually relatively homogeneous in terms of shape or size, while our dataset was based on
tissue sections, where nuclei of different cell types were present.

With a more in-depth analysis of the Caicedo et al. segmentation results, we noted
three cases with zero Dice, AJI and PQ scores. For these three images, there were no
nuclei in the images and ground truth segmentation masks, but the model identified a
few nuclei (as shown in Figure 7); thus, zero scores were achieved for these three images.
The scores for these three images did not affect the average scores that much, but the SDs
were changed by a large margin.

Our experimental results in Figure 8 show that with reducing the image bit depth
to two or four bits, the nuclei instance segmentation performances degraded. However,
from the image bit depth of six upward, similar average results can be observed. It should
be noted that using or saving images with 2, 4 and 6 bits is not common practice, and we
just reported the results to further investigate the impact of other image bit depth on the
nuclei instance segmentation performance.

It is worth mentioning that using 8 bit images instead of 16 bit images did not change
the training time or GPU usage in our experiments, as in both cases, 32 bit floating points
were used in model training, which is the default training scheme in TensorFlow. Although it
is possible to use mixed precision (using both 16 bit and 32 bit floating points) (https:
//www.tensorflow.org/guide/mixed_precision) (accessed on 26 May 2021) for model
training, as we only used 8 bit and 16 bit images, again, this would not change the model
performance, in terms of training time and GPU usage, in our conducted experiments.

All in all, the results from this study showed the very competitive nuclei segmentation
performance of 8 bit and 16 bit images, which in practice may have two main applications:
first, by reducing the storage space for saving WSIs (by saving them as 8 bit formats instead
of 16 bit raw format) and, second, using 8 bit cameras instead of 16 bit cameras, which
are faster for scanning. However, there are some limitations of this study that can be
addressed in future works. Although we used two datasets in this work to report the
results, the sizes of the datasets were rather small, which is a common problem for inter-
preting the DL-based results in medical image processing. Furthermore, we only explored
the effect of image bit depth on a DL-based nuclei instance segmentation performance.
However, in the case of using other image processing techniques (e.g., histogram-based
image analysis or classical machine learning approaches), different outcomes may be
observed. We explicitly investigate this impact on a DL-based approach, as supervised
CNN models have been shown to deliver the best nuclei instance segmentation perfor-
mances. Moreover, in this work, we used a single DL-based approach without using
any sophisticated pre- and post-processing approaches to perform nuclei segmentation.
Although our utilised segmentation model can deliver acceptable nuclei segmentation
results (an extended version of our segmentation model achieved the first rank in the
MoNuSAC 2020 post-challenge leaderboard for nuclei instance segmentation and classifi-
cation (https://monusac-2020.grand-challenge.org/Results/) (accessed on 26 May 2021)),
using other pre-processing steps such as DL-based foreground normalisation as suggested
in [14], other segmentation models such as Hover-Net [32] or using test time augmen-
tation and ensembling as post-processing [34] can lead to a slight improvement in the
segmentation performance. However, delivering the best segmentation performance was
not the main focus of this study. While we did not observe a significant impact of image
bit depth on nuclei segmentation, it remains to be investigated whether the detection and
segmentation of dynamic nuclei sub-compartments such as nucleoli, Cajal bodies and
others [38] are influenced by image bit depth, which requires properly annotated datasets.
Finally, it should be noted that in this study, we only investigated the impact of image bit
depth on the nuclei segmentation performance, and any possible impact on other WSI
analysis tasks such as gland detection or segmentation needs further investigation.

 https://www.tensorflow.org/guide/mixed_precision
 https://www.tensorflow.org/guide/mixed_precision
https://monusac-2020.grand-challenge.org/Results/
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5. Conclusions

In this study, we investigated the impact of image bit depth on the performance of
DL-based nuclei instance segmentation using different datasets. Our results showed very
competitive nuclei instance segmentation performance for the models trained with 8 bit
and 16 bit images, which suggested that processing 8 bit images seems sufficient for nuclei
instance segmentation of the FS image. Exploring the impact of image bit depth on other
WSI analysis tasks can be addressed in future studies.
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