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Abstract

Gridded population data is widely used to map fine scale population patterns and dynamics

to understand associated human-environmental processes for global change research,

disaster risk assessment and other domains. This study mapped gridded population across

Germany using weighting layers from building density, building height (both from previous

studies) and building type datasets, all created from freely available, temporally and globally

consistent Copernicus Sentinel-1 and Sentinel-2 data. We first produced and validated a

nation-wide dataset of predominant residential and non-residential building types. We then

examined the impact of different weighting layers from density, type and height on top-down

dasymetric mapping quality across scales. We finally performed a nation-wide bottom-up

population estimate based on the three datasets. We found that integrating building types

into dasymetric mapping is helpful at fine scale, as population is not redistributed to non-resi-

dential areas. Building density improved the overall quality of population estimates at all

scales compared to using a binary building layer. Most importantly, we found that the com-

bined use of density and height, i.e. volume, considerably increased mapping quality in

general and with regard to regional discrepancy by largely eliminating systematic underesti-

mation in dense agglomerations and overestimation in rural areas. We also found that build-

ing density, type and volume, together with living floor area per capita, are suitable to

produce accurate large-area bottom-up population estimates.

Introduction

Within the last decades, global population increased rapidly. While 3.0 billion people lived on

Earth in 1960, this is anticipated to reach approximately 10.0 billion by 2060 [1]. The regional

and local dynamics of this global growth are highly diverse and can be traced back to a com-

plex interplay of factors such as economic development and restructuring, urbanization and

mobility, social, cultural and political frameworks, medical capacities, conflicts or climate
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change related effects that all affect either fertility and mortality rates or migration [2]. Data

about patterns of human population are essential to understand the relation between those fac-

tors and underlying societal or human-environmental processes and are key requirements for

international development frameworks such as the Sustainable Development Goals [3] or the

United Nations Paris Agreement [4]. Population is a key variable in socio-economic metabo-

lism and sustainability pathway research [5], and population density has recently been pro-

posed as Essential Societal Variable [6].

As census data is limited to administrative census units, gridded population approaches are

a popular alternative [7]. These redistribute national or regional census population counts to

smaller, grid-cell based target units that better represent local population patterns. Gridded

population has been used to inform research in several domains, such as climate change and

related health research [8–10], quantification of ecosystem services [11], urban development

and urbanization patterns [12, 13], disaster risk assessment and exposure [14, 15] or settlement

characterization and categorization [16, 17]. To date, a wide range of freely accessible global

products with varying spatial and temporal resolution have been developed, including the

Global Rural-Urban Mapping Project (GRUMPv1, [18, 19]), Gridded Population of the World

(GPWv4.11, [20]), the Global Human Settlement Population Layer (GHS-POP, [21, 22]),

LandScan [23, 24] or WorldPop ([25–27]). An overview including global and continental

products and their specifications can be found in Ref. [7]).

The redistribution of national census population to smaller grid cells is commonly based on

a weighting layer. In an area-weighted approach, population is equally redistributed to all land-

surface cells, e.g. in GPWv4 [28]. Dasymetric mapping techniques refine this procedure by

incorporating spatial ancillary data that is presumably related to population presence and den-

sity and that affects redistribution weights of each individual cell [29, 30]. Binary dasymetric

approaches redistribute population using one or more ancillary layers that describe presence

or absence of populated areas. This can include mask layers such as protected areas, steep

slopes or non-built-up land cover types (e.g. in [31]), where population is not expected (limited
variables, [32]) or data that identify built-up cells that population can be redistributed to.

Weighted dasymetric approaches account for one or more ancillary datasets assuming that

they are unequally related to population density (related variables, [32]) and population is

redistributed based on a cell-based weight. Weights can directly correspond to ancillary fea-

tures (e.g. road density can regionally relate directly to population density [33]) or can be

derived from ancillary layers with an unknown a-priori relation to population based on model-

ling. A common way is random forest (RF) modelling, where population density or a weight-

ing response variable is predicted using ancillary data such as land cover information, night-

time lights, climatic data, topographic information or vector-based features [26]. This proce-

dure identifies previously unknown relations and can outperform binary dasymetric mapping

[31] and are, for example, used in contributions to WorldPop [26]. Hybrid approaches com-

bine a modelled weighting layer within a previously masked settlement area [34].

Settlement layers are a key information to map gridded population [34, 35]. Over the last

years, important advances have been made with regard to mapping settlements on the national

to global scale from remote sensing, improving spatial and temporal resolution as well as accu-

racy [36]. The Global Human Settlement Layer (GHSL, [37]) and the Global Urban Footprint

(GUF, [38]), continued by the World Settlement Footprint (WSF, [39]), are among the best-

known global products. Research showed that a continuous representation of settlements

through density maps is advantageous to further refine gridded population maps [33, 40–42],

because a densely built-up area can potentially house more people than a same-sized, but less

densely built-up area. Currently, however, GHS-POP is the only approach that globally
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accounts for settlement density, deriving density at 250m spatial resolution from an averaged

high-resolution binary layer.

Despite these advances and the considerable accomplishments of globally redistributing

census population to a grid-cell level, current state-of-the-art research faces four major

challenges:

• Building type: Particularly, de jure approaches that redistribute population based on the

legal place of residence, currently used in most products [7], require a fine representation of

where people can permanently live. Even though many global gridded population maps do

account for settlements, they do not account for the respective building type. This is, how-

ever, essential because population and settlement presence correlate differently in single-

family and multi-family areas and do not correlate in industrial and commercial areas. So

far, building types have been incorporated only implicitly into population mapping, for

example through land use data for covariate modeling [26], or in very local settings [43].

• Building height: Vertical building structure is a highly relevant descriptor of settlement

structure in general [36, 44] and population in particular [45, 46]. As operationalized build-

ing height products are only emerging recently, it has not yet been integrated into large-area

gridded population maps, even though population is also vertically distributed.

• Census data: Redistributing census population relies on accurate census data in the first

place. Dasymetric mapping is impossible when the total population is unknown and difficult

when its estimation is outdated or incomplete [7]. The quality, consistency and temporal res-

olution of census data varies across countries and census data might erroneously be consid-

ered accurate [32]. This is particularly important as census information is often used to both

redistribute population and to validate the estimation at a finer scale (e.g. [31, 34, 47]), prob-

ably resulting in an overestimation of accuracy.

• Data consistency and modeling: The use of modeled weighting layers based on ancillary

data can introduce uncertainty based on variations in local data quality. Furthermore, physi-

cal relations between population and ancillary data are hard to quantify when weighting lay-

ers are derived from RF modeling [7]. Those statistical relations might also be regionally

specific and the resolution of available census data can be important when transferring mod-

els to regions where they are different [48].

As there is a demand for gridded population data in places where administrative census

units are large or in countries with quickly increasing population, high migration rates and

less frequent or accurate census [7], bottom-up approaches are promising, since they do not

require spatially exhaustive census data to estimate gridded population for the entire region.

They seem, thus, potentially more robust towards spatially incomplete data or if national cen-

sus data is outdated. However, bottom-up approaches are rather rare as they rely on detailed

survey information or other high-resolution data. This is why, despite the lower cost compared

to national census, bottom-up mapping has focused on settings with good data coverage so far

[49]. To date, bottom-up population estimates mainly focus on specific demographic phenom-

ena [50] and local to sub-national analyses only [43].

The goal of this study was to contribute to an accurate, large area and fine-scale gridded de
jure population estimate using both census-based top-down dasymetric mapping and a bot-

tom-up approach on a nation-wide scale. We established a workflow that derives population

estimates for the year 2018 on a grid cell level and that responds to the identified challenges of

current large-area products. We used three covariate layers that provide a direct physical rela-

tionship to population without statistical modelling. All layers were derived at 10 x 10 m2
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spatial resolution from freely available, temporally and globally consistent Copernicus Senti-

nel-1 A/B and Sentinel-2 A/B (from here S1 and S2) imagery as well as OpenStreetMap (OSM)

data, thus, minimising the use of region-specific ancillary covariates. We incorporated (1) a

building density layer that quantifies the share of building-covered surface, (2) a building

height layer and (3) a layer that indicates the type of buildings including major residential and

non-residential types. Those layers were used as an input to both binary and weighted dasy-

metric mapping as well as the bottom-up approach using literature-guided calculations on

living floor area per capita. Our study area was Germany as a) both building density and build-

ing height layers were already available and validated for this country and b) accurate census

data at different administrative levels and information about regional living conditions were

available for a proof-of-concept. This study specifically addressed the following research

questions:

1. How do building density, building type and building height data improve the top-down

redistribution of census population at different spatial scales?

2. How accurate are gridded bottom-up population estimates based on regional living condi-

tions using building density, building type and building height?

3. How sensitive are bottom-up estimates to spatially outdated and temporally incomplete

data?

Study area

Our study area is Germany. Germany covers an area of about 357,000 km2 and had about

82.79 million inhabitants in 2018 [51], with a population density of about 232 inhabitants km-

2. Settlement structure in Germany is highly diverse and characterized by both dense agglom-

erations and rural structures, with population density ranging from 69 km-2 to 4,055 km-2 in

its federal states [51] and large urban-rural gradients. This study uses administrative areas

from Eurostat NUTS (Nomenclature des unités territoriales statistiques) and LAU (Local

Administrative Unit) territorial units [52] as well as Planning Areas for the city of Berlin [53].

Germany (as a NUTS-0 unit) has 16 Federal States (among which Berlin, Hamburg and Bre-

men are city-states) on a NUTS-1 level, 401 districts on a NUTS-3 level and 11,267 municipali-

ties on a LAU level. The city of Berlin counts 448 planning areas (BPA, Fig 1). The average

spatial resolution (ASR), a widely used measure in gridded population mapping and defined as

the square root of area divided by the number of administrative units [54, 55], is 149.50 km for

NUTS-1 units, 29.86 km for NUTS-3 units, 5.63 km for municipalities, and 1.41 km for BPA.

We did not consider 38 NUTS-2 level regions, as their scale is similar to NUTS-1 units in

some (mostly eastern) and similar to NUTS-3 units in other (mostly western) parts of

Germany.

Materials and methods

This study mapped gridded population using three covariate layers derived from S1 and S2 A/

B time series, as well as from crowd-sourced OSM data. (1) We generated a building density

layer based on a previously established workflow [56] and used (2) a previously generated

building height layer [57]. (3) A building type layer was specifically developed for this study.

Census population is used as an input to population redistribution and for validation on differ-

ent scales in the top-down approach, as well as to parameterize the bottom-up approach. A list

of acronyms specific to this study or to gridded population mapping can be found for reference

in Table 1.
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Census data

Population of the study area in 2018 (reference date: 31 Dec 2017) was retrieved from the Ger-

man Federal Agency for Cartography and Geodesy [51]. Those data contain official population

counts on a national level (NUTS-0) as well as for all NUTS-1, NUTS-3 and LAU units. Popu-

lation counts are based on continuous updates of the 2011 census [58] and account for natural

population change (births and deaths) and net migration (immigration, emigration and sub-

national migration, [59]). Actual census data from 2011 was used for calibrating the bottom-

up estimate. Population counts for BPA (reference date: 01 Jan 2019) were retrieved from the

Berlin Senate Department for Urban Development and Housing [53].

Fig 1. Study area administrative units. NUTS (Nomenclature des unités territoriales statistiques) and LAU (Local

Administrative Units) in the study area. LAU delineations within Berlin correspond to local planning areas, Proj:

ETRS-89. Inset A illustrates different higher and lower average LAU sizes across federal states. Administrative

boundaries from [51] under dl-de/by-2-0 license (https://www.govdata.de/dl-de/by-2-0).

https://doi.org/10.1371/journal.pone.0249044.g001
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Earth Observation-based data

Building density. We generated a building density layer derived from a S1 and S2 image

time series from 2017 and 2018 that quantifies the sub-pixel share of impervious surfaces in

percent with a spatial resolution of 10 x 10 m2 = 100 m2; thus, each percent equals 1 m2 of

impervious surfaces (Fig 2–1A, [60]). This imperviousness layer is based on a workflow pre-

sented and validated in [56] that used a regression-based unmixing approach and spectral-

temporal metrics of S1 and S2 time series. We here expanded on this workflow with an

adapted feature set (see SI 1A in S1 File). As population should only be allocated to buildings,

we also used crowd-sourced OSM vector data [61, licensed under CC BY-SA 2.0, www.

openstreetmap.org/copyright] to support the distinction of buildings from other impervious

Table 1. List of acronyms.

Acronym Full form

NUTS-� Nomenclature des unités territoriales statistiques, EUROSTAT statistical administrative units

LAU Local Area Units, EUROSTAT municipal administrative units

BPA Berlin Planning Areas

BD-BUILD Binary Dasymetric Mapping with Building Presence

BD-RESI Binary Dasymetric Mapping with Residential Building Presence

WD-DENS Weighted Dasymetric Mapping with Building Density

WD-VOL Weighted Dasymetric Mapping with Building Volume

WD-VOLADJ Weighted Dasymetric Mapping with Adjusted Building Volume

BU-LFA Bottom-up Mapping using Living Floor Area

MAPE Mean Absolute Percentage Error

REE Relative Estimation Error

LFA/cap Living Floor Area per Capita

IC/MF/SF/LS Building Types: Industrial & Commercial, Multi-Family, Single-Family Buildings, Lightweight

Structures

ASR Average Spatial Resolution

RMSE Root Mean Square Error

https://doi.org/10.1371/journal.pone.0249044.t001

Fig 2. Earth Observation-based covariate layers. (1A) Imperviousness and (1B) infrastructure density from OSM to generate (1C)

building density. (2) Building Height. Projection: ETRS-89.

https://doi.org/10.1371/journal.pone.0249044.g002
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surfaces (Fig 2–1B, see SI 1B in S1 File). Shares of infrastructure were subtracted from shares

of impervious surfaces to yield building density (Fig 2–1C).

Building height. This study made use of a building height layer with a resolution of 10 x

10 m2 (Fig 2–2 57). This layer represents the average building height within a 50 m radius. It

was generated based on spatial spectral-temporal metrics of S1 and S2 time series. Those repre-

sent textural information, not only accounting for reflectance and backscatter values of a single

grid cell value, but also of the surrounding cells through the use of morphological operators. A

radius of 50 m was used to generate spatial spectral-temporal metrics, based on the assumption

that roughness and seasonal shadow effects within that area are robust descriptors of building

height [62]. In contrast to the original dataset, building height in this study was not masked

with an existing settlement layer.

Building type classification. We generated information about building types at a spatial

resolution of 10 x 10 m2 for all cells with a building density > 25 percent. We classified four

different building types–industrial and commercial (IC), multi-family residential (MF), single-

family residential (SF) and lightweight structure (LS) buildings with a random forest classifica-

tion approach. IC structures relate to buildings in industrial or business parks, retail or whole

sale commercial centres, but also to other non-residential buildings, such as stadiums, schools

or airports. MF and SF are residential building types mainly distinguished based on their size,

as SF buildings are usually smaller. LS buildings are light structures such as sheds in allotment

gardens or semi-permanent mobile homes. The workflow of building type mapping and its

rationale can be found in SI 2 in S1 File. We achieved an overall classification accuracy of

81.40 percent.

Top-down redistribution of census population

Top-down dasymetric mapping approaches redistribute known census population to smaller

scale grid-cells. We generated several gridded population maps using a gradient of increasingly

complex covariate layers for redistributing NUTS-0 population from 2018 to the 10 x 10 m2

grid-cells (Fig 3). All covariate layers were previously described building density, height and

type or their combinations.

(a) In a first step, we equally redistributed NUTS-0 population to all grid cells that contain a

building (i.e. building density > 25% after the application of the correction factor). In this

binary dasymetric (BD) mapping approach, all cells hold an equal amount of population. This

Fig 3. Workflow: Top-down redistribution of census population. Workflow of the data-driven redistribution of census data using different

dasymetric mapping approaches. Refer to text for details about BD-BUILD, BD-RESI, WD-DENS, WD-VOL, WD-VOLADJ.

https://doi.org/10.1371/journal.pone.0249044.g003
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approach is referred to as BD-BUILD. Binary dasymetric approaches are based on Eq (1), with

popi,j being the population within a grid cell i,j, inhi,j being the binary factor of whether a cell

can be inhabited in the current model and poptotal being the total NUTS-0 population.

popi;j ¼ inhi;j �
poptotal
Pi�j

n¼0
inhn

ð1Þ

(b) In a second step, this procedure was refined by equally redistributing NUTS-0 popula-

tion to all building cells classified as residential area. This refinement accounted for the fact

that de jure population can usually not be found in non-residential areas. This approach is

referred to as BD-RESI.

(c) While discrete land cover classification implies that a land cover feature (here: a build-

ing) is either present or absent, settlements are highly heterogeneous areas characterized by

many objects smaller than the grid cell size or objects split by multiple cells. Thus, we per-

formed a weighted dasymetric (WD) mapping approach using building density as a weight for

redistributing NUTS-0 population to residential building cells. This approach is referred to as

WD-DENS. All following weighted dasymetric approaches are based on Eq (2), with wi,j being

the cell weight.

popi;j ¼ wi;j �
poptotal
Pi�j

n¼0
wn

ð2Þ

(d) In order to account for vertical structure, building density information was multiplied

with building height to obtain cell-based building volume. Here, we use building volume as a

weighting factor wi,j to redistribute NUTS-0 population to residential building cells. This

approach is referred to as WD-VOL.

(e) Using building volume for grid-based dasymetric mapping implies that an equal pro-

portion of building area and height can be assigned to each citizen. However, there is a particu-

lar difference of living floor area per capita in SF and MF housing and previous research found

that incorporating those particularities is beneficial for an accurate population estimate on a

local level [63]. We here performed an empirical sensitivity analysis to adjust volume weights

of MF residential housing (see SI 6 in S1 File) and adapt the weighting factor wi,j. This

approach is referred to as WD-VOLADJ.

A best product was eventually created using the approach that provided best results. For this

best product we used municipal instead of national data and redistributed it to grid-cells. This

product provides the best absolute results and should be used in further analyses or

applications.

Bottom-up population estimates

In this bottom-up approach, we generated gridded population estimates without a-priori

knowledge of the total population count. We used building density, height and type layers that

are all physically related to population to compute a dataset of residential living floor area (Fig

4). Using living floor area per capita statistics, we then calculated the number of inhabitants

per 10m x 10m grid-cell.

First, building height was used to derive the number of floors of SF and MF buildings per

cell. We reduced building height by 3.00 m to account for roof area where population is not

expected. Buildings lower than 2.00 m were excluded. We assumed a floor height of 4.50 m,

based on empirical work in [63], who found a floor height between 4.00 m and 5.55 m for dif-

ferent building types in a local setting in South-West Germany. The number of floors was the

building height divided by floor height (as decimal number, but at least 1.00). Living floor area

PLOS ONE Gridded population mapping for Germany based on building density, height and type

PLOS ONE | https://doi.org/10.1371/journal.pone.0249044 March 26, 2021 8 / 23

https://doi.org/10.1371/journal.pone.0249044


was the number of floors multiplied with building area per cell, using an adjustment factor of

0.8 that accounted for uninhabitable areas such as walls or staircases [63]. Finally, living floor

area per cell was divided by the average living floor area per capita (LFA/cap), resulting in the

number of people per cell. LFA/cap was derived from census-based data on a NUTS-1 level

providing the number of dwellings in SF and MF buildings and the average living floor area

per dwelling, assuming that household sizes are the same (see SI 5 in S1 File). This approach is

referred to as BU-LFA. As the nature of bottom-up modelling does not enforce an a-priori

total, this also allows for a more independent validation compared to top-down population

redistribution.

popi;j ¼

bHeighti;j � rHeighti;j
fHeighti;j

� bResDensi;j � 0:8

LFA=capi;j;t;s
ð3Þ

Cell values were based on Eq (3), with bHeighti,j being the building height in cell i,j,

rHeighti,j being the roof height, fHeighti,j, being the floor height, bResDensi,j being the density

of residential buildings in a cell and LFA/capi,j,t,s being the living floor area per capita of a cell

with building type t in state s.

Spatial and temporal bottom-up mapping sensitivity

Finally, we mapped gridded population using a bottom-up approach based on building den-

sity, type and height, assuming that LFA/cap information is spatially incomplete or temporally

outdated. In a first step, we calculated gridded population using yearly LFA/cap data from

1994 to 2017 and compared the outcomes to a model using data from 2018, all based on aver-

aged LFA/cap value from all NUTS-1 areas. In a second step, we calculated gridded population

across the whole study area using LFA/cap information from one NUTS-1 unit respectively

and compared each model to the regionalized model. This second comparison was using LFA/

cap information from 2011, as updated regional data is not available for 2018.

Fig 4. Workflow: Bottom-up gridded population. Building fraction, building height and floor area per capita for

bottom-up mapping. Refer to text for details about BU-LFA.

https://doi.org/10.1371/journal.pone.0249044.g004
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Quality assessment

A quantitative quality assessment of gridded population was performed using the established

procedure of comparing aggregated gridded population to census reference data at fine spatial

scale [e.g. 26, 34, 42]. Previous research found that the ASR ratio of validation units and the

census units providing input population has a great impact on quality. A small ratio, i.e. a

small offset in spatial scale, generally lead to better results as the compared units are less het-

erogeneous [7, 55, 64]. For the top-down approach we compared gridded population to census

data on NUTS-1, NUTS-3 and LAU level. We focused on the smallest available reference unit,

which represents the largest possible national-level ASR ratio between input and validation

units. Bottom-up results were validated at all scales including NUTS-0. We derived model

metrics of uncertainty (root mean squared error RMSE and mean absolute error MAE), coeffi-

cient of determination R2 and model slope.

We additionally computed relative quality metrics. These included the mean absolute per-

centage error (MAPE) that computes the average absolute percentage error across all valida-

tion units at the respective scale, and the relative estimation error (REE) that describes the

mean error of population reference and estimate in each unit relative to its reference popula-

tion (e.g. [42]). Models were also evaluated regarding REE in relation to actual census popula-

tion density and spatial resolution in order to examine if additional covariate layers can

equally improve population estimates in both smaller and larger areas with both high and low

population density. For this purpose, we also analysed the distribution of LAU validation units

and population counts within different ranges of REE (0–10%, 10–25%, 25–50%, 50–100%, >

100% over- and underestimation).

In order to further evaluate the mapping results, the best product dataset was visually com-

pared to mapping results to two existing global example products—WorldPop and GHS-POP.

No quantitative comparison was performed because most global datasets redistribute census

data from the smallest available administrative unit to grid-cells. This way, the most accurate

product possible can be provided, but no finer-scale units can provide census data for

validation.

Results

Top-down redistribution of census population

Population results can be compared along two dimensions–the applied (re-)distribution

method (Fig 5, rows) and the scale of validation (Fig 5, columns). We found that in dasymetric

Fig 5. Top-down and bottom-up gridded population mapping quality. Mean absolute percentage error (MAPE),

Slope and R2 of redistribution models at different spatial validation scales (NUTS-1 to LAU and BPA). All numbers

used to create this figure in SI 8 in S1 File.

https://doi.org/10.1371/journal.pone.0249044.g005
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mapping approaches (BD-BUILD to WD-VOLADJ) overall results improved along both

dimensions. At all validation scales, limiting built-up areas to residential building types only is

preferable, while improvements were larger on a finer validation scale. For example, MAPE

decreased from 152.73% to 68.64% at BPA level, from 53.08% to 49.50% at LAU level and from

20.45% to 19.73% on a NUTS-1 level. Similar improvements could be observed for MAE,

RMSE, R2 and Slope. Using building density, quality metrics improved slightly across all scales.

The level of model quality increased markedly when building height was introduced. MAE

decreased from 4,100 to 2,600 at BAP-level, from 2,100 to 1,400 at LAU-level and from 52,700

to 34,600 at NUTS-3-level. MAPE, RMSE, Slope and R2 improved accordingly. At a NUTS-

1-level, the increase in quality was less pronounced, but still visible regarding MAPE, MAE or

RMSE. Including an adjusted building volume, quality metrics improved at a NUTS-1- and

NUTS-3-level, while stagnating or slightly declining at LAU- and BAP-level. We here present

the results for an approach that adjusts volume weights of MF residential housing by a factor

of 1.6, based on a comparison of different weighting factors. Using binary covariate layers,

NUTS-1-level results largely outmatched those at finer scale units with regard to MAPE, slope

and R2. Upon integration of building density and volume, NUTS-3- and LAU-level quality

approached that of NUTS-1 with regard to slope and R2. While Fig 5 provides a visual repre-

sentation of major quality metrics, SI 8 in S1 File provides precise numbers and scatterplots.

Using building volume reduced both the underestimation of population counts in areas

with high population density and the overestimation in areas with comparatively low popula-

tion density (Fig 6, top). The distribution of REE values of all validation units (NUTS-1 to

LAU) showed that absolute distribution skewness decreases after integrating building density

and volume, and that negative and positive REE became less related to population density. The

relation of REE to spatial resolution was not as pronounced as that between REE and popula-

tion density (Fig 6, bottom). However, results also improved in BD-RESI and WD-VOLADJ,

where mean REE values were closer to zero and standard deviations decreased compared to

the previous model.

Different population models showed a different distribution of LAU (Fig 7, left) and of ref-

erence population (Fig 7, right) within REE ranges. In BD-BUILD, for example, 154 LAU

units had an REE of -100 to -50%, 989 units had an REE of -50 to -25%, 1,249 units had an

REE of -25 to -10%, etc. Correspondingly, for example, 8.3 million people are living in areas

where BD-BUILD showed an REE of -10 to 0%. In BD-BUILD, BD-RESI and WD-DENS,

only a small number of LAU showed population underestimation. In a volume-preserving

Fig 6. Population mapping quality in relation to population density and spatial resolution. Population density

(top) and spatial resolution (bottom) of all NUTS-1, NUTS-3 and LAU areas related to their respective relative

estimation error (REE) in the different redistribution models. Black dots: Mean value of y-axis bins. Grey bars: Mean

values of bins +/- one standard deviation. |skew.| = absolute skewness of the means.

https://doi.org/10.1371/journal.pone.0249044.g006
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approach, this resulted in a rather large number with positive REE values, as overall population

estimates remain stable by definition. Results suggested that the integration of building volume

helps to balance the number of LAU in which population is under- or overestimated. Com-

pared to WD-DENS, the number of LAU with an REE between -25% and +25% increased

from about 4,600 to 5,700. Similar patterns could be observed in the distribution of population.

Here, the use of building volume leads to an important increase of population in areas that

were modeled rather accurately, i.e. with REE values between -25 and +25% (about 58,827,000

with 25,972,000 people in areas modeled with REE between -10 and +10%) compared to using

building density only (40,801,000 with 16,776,000 between -10 and +10%).

In BD-BUILD, BD-RESI and WD-DENS, relatively few LAU had negative REE (Fig 7). A

spatial representation of REE at LAU level confirmed that population tended to be underesti-

mated in and around agglomerations, i.e. LAU with a comparatively high population density

(Fig 8). Integrating building volume in WD-VOL and WD-VOLADJ reduced differences

Fig 7. Distribution of Local Administrative Units and reference population by error range. Histogram of LAU

validation units (left) and census reference population (right) within REE bins for each model. Orange colors represent

underestimation, purple colors represent overestimation, grey color represents accurate predictions (REE ranges from

-10% to +10%). All numbers used to create this figure in SI 7 in S1 File.

https://doi.org/10.1371/journal.pone.0249044.g007

Fig 8. Quality of gridded population models by LAU (spatial representation). Spatial distribution of REE by LAU

and model. Purple shades imply over-estimation, orange shades imply under-estimation, grey shades imply accurate

predictions (REE between -10% and +10%). Administrative boundaries from [51] under dl-de/by-2-0 license (https://

www.govdata.de/dl-de/by-2-0).

https://doi.org/10.1371/journal.pone.0249044.g008
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between urban agglomerations and surrounding rural areas. Also, regional differences in REE

became smaller. The number of highly over- and underestimated regions was reduced, and

only few LAU remained where a large REE met high population proportions, for example in

the very west of Germany.

The best productmap was created by redistributing municipal census reference data to 10 x

10 m2 grid cells using adjusted residential building volume (WD-VOLADJ). Although munici-

pal census population is the input for all three approaches, a higher detail in population pat-

terns can be observed in the best productmap of this approach (Fig 9).

Bottom-up gridded population estimates

Quality metrics of the bottom-up approach matched those of WD-VOL and WD-VOLADJ,

with slightly lower MAE and RMSE at NUTS-1- and NUTS-3-level (Fig 5). This also applied to

the relation of REE to actual population density and spatial resolution, with the exception of a

slight underestimation of validation units with a population density of up to about 1,000 km-2,

also resulting in a higher absolute distribution skewness (Fig 6). The use of BU-LFA showed a

similar distribution to WD-VOLADJ with regard to the number of LAU and census popula-

tion in different REE ranges, with a slightly higher number of LAU where population is under-

estimated (Fig 7). Accordingly, BU-LFA results were very similar to WD-VOLADJ with

regard to the spatial patterns of quality, with some local particularities, for example a slightly

higher population estimation in northern central Germany (Fig 8).

Spatial and temporal bottom-up mapping sensitivity

Including LFA/cap estimates from a different spatial or temporal context in the BU-LFA mod-

els showed that using data from previous years can yield good results (Fig 10, left). LFA/cap

from 2012 to 2017 did not substantially alter the estimated population at the national or

municipal level. LAU population using LFA/cap data from 2012 was overestimated by about

1% compared to using LFA/cap data from 2018. Using data from 2010 and 2011, overestima-

tions became slightly higher, with a low variance of population overestimation. Until 2009,

overestimations were much higher, as smaller LFA/cap from before that year were used

together with higher built-up surface density from 2018. Using LFA/cap data from 2018, over-

all population was estimated to be 78.84 million, as compared to a census reference of 82.8 mil-

lion inhabitants.

Fig 9. Gridded population product comparison. Comparison of WorldPop (Left, Constrained/UN-Adjusted/100m, target year 2020, [27]),

GHS-POP (center, target year 2015, [21]) and the best product map from this study (right).

https://doi.org/10.1371/journal.pone.0249044.g009
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Fig 10 (right) shows population estimates across the whole study area on a NUTS-0 (blue

line) and LAU level (boxplots), assuming that LFA/cap data is only available for a spatial sub-

set. We see that compared to the regionalized model (reg.), which used individual LFA/cap

data per federal state, LAU population showed an under-/overestimation factor of 0.85 to 1.15

when using regional data only. This is also discernible in the overall population estimates,

which ranged from about 74.5 million inhabitants when data from Saarland (SL) is used to

about 84.9 million when data from Brandenburg (BB) is used. Using regionalized LFA/cap

data from 2011, overall population is estimated to be 78.5 million.

Discussion

Earth Observation-based data

The quality of gridded population estimates is directly related to the availability and quality of

the underlying covariate layers as well as the temporal and semantic consistency between cen-

sus data and ancillary datasets. An increased amount of suitable ancillary datasets increases

mapping uncertainties [7]. We here used previously established top-down dasymetric and bot-

tom-up mapping approaches and combined them with a previously unused set of covariate

layers that are directly and physically related to population.

A building density layer was created based on an established workflow to map imperviousness,

but using an adapted training feature set. An extensive discussion of the workflow including possi-

ble methodological challenges can be found in the corresponding study [56]. The major challenges

of using rasterized OSM data for the distinction of building and impervious non-building surfaces

are discussed in the corresponding SI 1B in S1 File. An extensive discussion of the previously gen-

erated building height layer can be found in the corresponding study [62]. Current and future

developments in directly mapping high-resolution building density from Earth Observation data,

e.g. the convolutional neural network based approach in [65], could contribute to a more reliable

distinction of building and non-building impervious surface density without additional OSM

data. A building type layer was specifically created for this study. A more detailed discussion of

mapping building types can be found in the corresponding SI 2 in S1 File.

Top-down redistribution of census population

In dasymetric mapping, census data determines the initial population to be redistributed. Low

quality or outdated census data bears the risk of erroneously misjudging dasymetric mapping

Fig 10. Quality of bottom-up gridded population mapping using floor area per capita from a different year or

spatial subset. (Left) Ratio of population estimates within all LAU when using LFA/cap (national average) from

different years compared to LFA/cap from 2018. Blue line: Predicted Population Total. (Right) Ratio of population

estimates within all LAU when using LFA/cap from a single NUTS-1 unit for the whole study area only compared to

individual LFA/cap per NUTS-1 unit. Blue line: Predicted Population Total.

https://doi.org/10.1371/journal.pone.0249044.g010
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results as redistribution and validation are based on the same dataset. We used national census

data for Germany from 2018, which is based on yearly updates of the 2011 census.

BD-BUILD used a binary building layer to redistribute population. Here, population in a

large number of LAU was overestimated. However, the majority of census population lived in

LAU where population was underestimated and the distribution of REE related to population

density showed a rather high skewness (Fig 6). The spatial representation of results confirmed

that the population of urban agglomerations tended to be underestimated, resulting in an

overestimation of many less populated LAU. BD-RESI excluded cells with non-residential

buildings. Results improved most at finer scale, possibly because here the shares of residential

and non-residential buildings are more heterogeneous across the validation units. This shows

that building type information is particularly helpful to identify local population patterns.

WD-DENS accounted for building density and improved overall mapping quality. This is gen-

erally in line with findings from [42]. Particularly, the share of people living in highly underes-

timated LAU was reduced and the REE distribution skewness decreased. This is because

WD-DENS factors in higher building density in urban areas compared to lower building den-

sity in rural areas, whereas BD-RESI did not distinguish those regional particularities.

WD-VOL introduced building volume as a weighting layer. Building volume largely improved

quality across all validation scales, for example by reducing RMSE by about 50 percent com-

pared to WD-DENS at NUTS-3 and LAU level. A remarkably larger portion of census popula-

tion was predicted to live in areas where estimates were accurate. Volume increased model

quality because population density in cells with an equal building density is further modulated

through vertical building differentiation. These findings, supported by the spatial representa-

tion of results, suggest that differences in quality between densely settled agglomerations and

sparsely settled areas, an issue also reported in other studies [7, 42, 47], are overcome by intro-

ducing volume. While it was shown that highly accurate 3D building models are beneficial for

population mapping [45, 66], this has not yet been proven to function with potentially globally

available Earth Observation products, also because those are just recently emerging [62, 67]. A

volume adjustment factor further improved quality at a fine scale and the number of LAU

where population is over- or underestimated became more balanced. A regionalized factor

could possibly be beneficial, but would also increase the unwanted correlation of input census

and validation data. Quality still showed regional patterns: For example, population in North-

Western Germany, Northern Bavaria and parts of Eastern Germany tended to be overesti-

mated, whereas population in Southern Germany and Northern Germany tended to be under-

estimated. In this respect, it seems that the covariate layers did not entirely represent regional

heterogeneity. Nevertheless, compared to the other models, a larger share of the census popu-

lation lived in accurately predicted areas. Results showed that it is generally beneficial to

account for different living conditions in different building types. A quantitative comparison

of the quality of our map with existing products, such as GPWv4 or GHS-POP, is challenging.

As building height turned out to be a crucial element for accurate population mapping, results

suggest that this approach is advantageous over products that use two-dimensional informa-

tion only, such as GHS-POP or GPWv4. We also see this approach advantageous over prod-

ucts that require a higher modeling effort, such as WorldPop or Landscan, where the relation

of covariate layers to population is a priori unknown and can be region-specific. The presented

approach is also potentially applicable worldwide, as density, height and type are based on

freely, globally available and consistently pre-processed data. National census data suffice for it

to provide accurate high-resolution results, making it a promising approach for areas where

census data is scarce. Still, the approach requires data (building height and type) that is not

available globally. Future research should focus on generating such base products worldwide

[36]. Also, the implementation of OSM data limits global and historic applicability due to
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issues of data completeness. A visual comparison of the best possible product with existing

datasets showed that the use of building density, height and type is also particularly useful to

map local population patterns.

Bottom-up gridded population

In bottom-up mapping, census data provide information about local living conditions.

Regional data on living floor area were only available for 2011, which could, for example,

explain the underestimation of total population when regionalized data from 2011 was used in

comparison to census data from spatial subsets to estimate total population (Fig 10, right). Bot-

tom-up gridded population mapping was shown to be useful when national census data is out-

dated or spatially incomplete, or when living conditions across the study area are

heterogeneous. However, it can still be challenging, because it requires local survey data that is

relatable to the available covariate data [49]. Using layers with a direct and physical relation to

population, a nation-wide bottom-up population estimate can be created with high accuracy.

The quality of BU-LFA were comparable to the top-down approaches WD-VOL and WD-VO-

LADJ and spatial patterns were highly similar. Total population was estimated to be 78.5 mil-

lion, which is an underestimation of 5.7% compared to census population. The required

additional input is limited to assumptions about average LFA/cap and housing characteristics

such as floor and roof height. Those are a potential source of error, as spatial and thematic

granularity of input data (e.g. detail of differentiation for SF and MF housing) might be driving

regional quality. Future research on bottom-up gridded population mapping should ask how

reliable and representative data on living floor area per capita or similar metrics (e.g. building

volume per capita [68]) can be best derived for large areas, also with regard to different socio-

economic environments and generally data-scarce regions.

Spatial scale

Scale is a particular subject of interest in gridded population mapping and can be discussed

along two dimensions: 1) the minimum mapping unit and its suitability for a specific applica-

tion and 2) the aggregation scale of the gridded data for validation purposes. Cell size is inher-

ently depending on the spatial resolution of covariate layers. Here, the resolution of building

density, height and type layers was 10m, as this was the native resolution of the underlying

Earth Observation data. Thus, we redistributed NUTS-0 census data to a 10 x 10 m2 grid. This

is an advantage compared to large area products commonly available at a 100m resolution or

coarser, as high-resolution maps make it possible to describe local patterns with high detail.

However, we suggest that gridded population results at different resolutions should be used for

different purposes. As building type data was validated at a resolution of 10m, information

about non-inhabited industrial or commercial areas can be reliably derived at this level. Fur-

thermore, 10m resolution results can account for population in very small and widely scattered

settlements potentially unaccounted for at 100m original mapping resolution, which is impor-

tant to be in line with the UN SDG principle to leave no one behind [3]. However, high resolu-

tion results are affected by the empirical OSM correction factor. While at 10m resolution,

population could be wrongly allocated to paved backyards, more reliable absolute population

counts could be derived through aggregation starting at a cell size of about 100 m. This was

also found to be a sufficient resolution for many applications, for example service and resource

allocation [7].The validation of dasymetric approaches is not entirely independent, as popula-

tion to be redistributed and gridded data usually originate from the same census. While it illus-

trates whether the redistribution produced accurate spatial patterns, no conclusion about

actual population counts can be drawn. The most accurate gridded population maps can be
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produced using a small offset in scale between input providing the census population to be

redistributed and validation units [42]. An indicator for this offset is the ASR ratio, the ASR

relation of input and validation units. Knowing that census data might sometimes only be

available on a national level, it is desirable to achieve high accuracies at high ASR ratios, which

is also a sign of suitable ancillary data across heterogeneous areas (Leyk et al. 2019). It is, thus,

necessary that the quality of gridded population is always related to this offset in scale, also

because some quality metrics referring to absolute population (e.g. MAE) are not comparable

across studies otherwise.

We validated gridded population on an aggregated NUTS-1, NUTS-3, LAU and, locally,

BPA level. The ASR ratio was 106.2 at LAU level, 20.0 at NUTS-3 level and 3.9 between at

NUTS-1 level. Datasets where gridded population was modeled with WD-VOLADJ and

BU-LFA, as well as the best product redistributing LAU census data to 10m grid cells in order

to create the most accurate maps possible are openly available [69, 70]) and can be explored in

an interactive map viewer: https://ows.geo.hu-berlin.de/webviewer/population. We found that

besides the fact that overall quality metrics increased with decreasing ASR ratio for nearly any

model, the impact of enhanced covariate layers including building density, type and height on

quality becomes more apparent at higher ASR ratios. While overall quality metrics across all

validation units are important, it is also desirable that the quality within the individual units is

acceptable for a given application. The integration of (adjusted) volume contributed consider-

ably to decoupling REE from the size and population density of the validation unit (Fig 6).

Spatial and temporal transferability

Temporal transferability of gridded population models becomes relevant if no census data is

available for the point in time to be mapped, which may rather be the rule than the exception.

As dasymetric mapping approaches are volume-preserving, model transfer is more interesting

in bottom-up approaches, where the suitability of LFA/cap data from a different point in time

can be tested. While always depending on local conditions, related results are an indicator for

overall temporal model robustness. We found that bottom-up estimates were relatively stable

when using LFA/cap from 2010 to 2018. This is because before 2010, building statistics were

extrapolated from the 1987 census in West Germany and the 1995 building census in East Ger-

many [71]. Since 2010, LFA/cap was extrapolated from the 2011 census, and some of the ear-

lier estimates were corrected according to the new data: For example, the estimated number of

SF and MF units was reduced by about 900.000 from 2009 to 2010 with an increasing total liv-

ing floor area, leading to a jump in LFA/cap statistics. Population before 2010 was overesti-

mated, because lower LFA/cap statistics at this time are now used together with higher

building volume.

Spatial transferability of gridded population models becomes relevant if no area-wide cen-

sus is available. We therefore tested the quality of bottom-up population estimates if LFA/cap

was available from a subregion only. Note that the results considering spatial and temporal

transferability are not comparable among each other, as regional LFA/cap on a NUTS-1 level

could only be derived for 2011 and with a slightly different approach than historic LFA/cap

(see SI 5 in S1 File). We mapped nation-wide population using LFA/cap from one selected

NUTS-1 region at a time and compared the results to using a regionalized model (i.e. as in

BU-LFA). Population is over- or underestimated by up to ca. 10%, depending on the region

that contributed LFA/cap. Thus, results showed that data from a subregion can generally be

used for bottom-up mapping as long as local living conditions are largely stable or within a

fairly low margin of change, which is in line with findings of a similar study in Haiti [40].

However, the representativity of the region providing LFA/cap can have an impact on

PLOS ONE Gridded population mapping for Germany based on building density, height and type

PLOS ONE | https://doi.org/10.1371/journal.pone.0249044 March 26, 2021 17 / 23

https://ows.geo.hu-berlin.de/webviewer/population
https://doi.org/10.1371/journal.pone.0249044


mapping results. LFA/cap from Mecklenburg-West Pomerania, featuring the lowest popula-

tion density in Germany, led to a large quality range and fewer LAU were accurately mapped

compared to using LFA/cap from North Rhine-Westphalia, which itself hosts nearly a fifth of

the total population.

Conclusion

We mapped gridded population across Germany to quantify how mapping quality relates to

input covariate data that is directly and physically related to population. We found that an

equal weighting of building cells along the urban-rural gradient and, thus, an equal distribu-

tion of population seems inadequate. While building density and building type were found to

be useful for dasymetric mapping, particularly with regard to local analyses, building height

improved mapping most remarkably and at all spatial scales and contributed to a more spa-

tially equal distribution of mapping quality. Foremost, building height reduced the underesti-

mation of population in dense urban environments and particularly increased result quality

when the average spatial resolution ratio was high, which indicates that height enables accurate

population maps without high-resolution census reference data.

Our approach including building height allows for creating a fine-scale picture of popula-

tion distribution from both top-down and bottom-up mapping. Building height improves

mapping quality across large areas and, in particular, accurately describes population heteroge-

neity along urban-rural gradients, i.e. in areas with both higher and lower population density.

The approach is advantageous over products using two-dimensional information only or

those that require an increased modeling effort. We are accordingly convinced that this study

provides a valuable contribution towards more robust and accurate fine-scale gridded popula-

tion mapping and suggest to make the effort to implement building type and, even though not

yet consistently available across the globe, building height data into existing gridded popula-

tion products. We underline the importance of providing population mapping accuracy

related to the scale of validation and of using relative quality metrics. More accurate fine scale

population maps will contribute to a deeper understanding of processes relevant for global and

climate change mitigation, to efforts in mapping social-environmental key variables such as

material stocks, as well as to the achievement of the Sustainable Development Goals, both in

specific regions of interest, but also globally along urban-rural gradients.

Supporting information

S1 File. This contains information about the adaptation and creation of underlying build-

ing density, height and types data, including information about data and methodology.

This material is presented in the S1 File, as we do not consider it essential for the goal of this

study. SI 1. Building density mapping Contains supplementary information about how

imperviousness maps from [56] were transformed into building density maps using rasterized

OpenStreetMap data. SI 2. Building type mapping Contains further information about how a

building type layer was modeled from Sentinel-1 and Sentinel-2 Earth Observation data using

Random Forest modeling. SI 3. Opening and closing Contains further information about

morphological metrics used to classify building types. SI 4. Federal state abbreviations

(NUTS-1 units) Contains federal state abbreviations used in this study. SI 5. Living floor area

per capita Contains information about how living floor area per capita values were calculated

for bottom-up population estimates. SI 6. Adjusted building volume Contains results from

the sensitivity analysis conducted to select a volume-adjusted dasymetric mapping model (e.g.

presented in Fig 5). SI 7. Validation units and census population within REE ranges Con-

tains numerical representation of results that were presented graphically in Fig 7. SI 8.
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Gridded population results Contains a scatterplot representation including numerical results

for all gridded population mapping models as presented graphically in Fig 5.
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