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A B S T R A C T

It is being hypothesised that the developing adolescent brain is increasingly enlisting long-range connectivity,
allowing improved communication between spatially distant brain regions. The developmental trajectories of
such maturational changes remain elusive. Here, we aim to study how the brain engages in multiple tasks
(working memory, reward processing, and inhibition) at the network-level and evaluate how effects of age across
these tasks are related to each other. We characterise how the brain departs from its functional baseline ar-
chitecture towards task-induced functional connectivity modulations using a novel measure called task potency,
allowing direct comparison between tasks by defining sensitivity to one or multiple tasks. By applying this
method in a sample of healthy participants (N=218) aged 8–30 years, we demonstrate maturational changes in
task-dependent functional co-activation over and above baseline connectivity maturation. Our results provide
evidence for task-specific maturational windows with different cognitive systems probed by different tasks
displaying specific age-range dependencies of strongest developmental change. Our results highlight the use of
task potency for modelling developmental trajectories and the impact of differential maturation across tasks.
This enables better characterisation of cognitive processes disrupted in neurodevelopmental disorders and may
explain the increased level of heterogeneity observed in adolescent population studies.

1. Introduction

Understanding human cognition in adolescent cohorts is invariably
linked to understanding cognitive maturation and brain development.
Multiple theories aimed at modelling development build on the seminal
work of Jean Piaget to explain maturation of cognitive abilities
(Mareschal, 2011). The interactive specialization theory states that
cognitive functions interact in their maturation (Elman et al., 1996;
Johnson, 2011). For instance, the maturation of working memory and
processing speed is predictive of language maturation (Newbury et al.,
2016).
Experimental evidence for the interactive specialization theory

supports its notion that maturation is a combination of planned biolo-
gical, experience-induced, and learning-induced changes (Astle et al.,
2015; Buschkuehl et al., 2012). Neuroconstructivism further proposes
that learning-induced maturation applies to the cellular-, brain net-
work-, and cognitive function-levels. As cognitive functions would not
mature independently, brain networks would also not mature in-
dependently (Newcombe, 2011; Westermann et al., 2007), i.e., devel-
opmental changes in reward processing will impact the development of

inhibition, and would be reflected in neural correlates of this matura-
tional interaction between neural networks. As an example, in ma-
turation of memory, emergence of knowledge can be modelled from
interactions between prior knowledge (Brod et al., 2013). To assess the
idea of co-occurring development, it becomes necessary to investigate
underlying common maturational processes between cognitive func-
tions and their neural correlates.
Task-based fMRI has been instrumental in assessing hypotheses that

relate brain development to such cognitive maturation. However, due
to periods of rapid development during adolescence the use of a single
task across a large age-range to characterise cognitive maturation re-
mains practically challenging. Moreover, many studies examine
changes in a single fMRI task with development, which limits the
generalizability of possible conclusions. In this context, resting state
fMRI has been put forward as a viable alternative as it can be ad-
ministered across ages regardless of cognitive abilities. Although resting
state fMRI allows investigation of the brain’s baseline functional ar-
chitecture (Smith et al., 2009), and can predict task responses (Kelly
et al., 2008; Mennes et al., 2010; Tavor et al., 2016), observed changes
with age in the brain’s resting architecture might not be sufficient to
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explain maturation in cognitive performance. As studies indicate that
task-related connectivity builds on the brain’s baseline functional ar-
chitecture, it is clear that resting state connectivity does not capture all
neural processes that are related to task performance (Kelly et al., 2008;
Mennes et al., 2013a). Therefore, resting state-derived results provide
insight into a different aspect of brain functioning yet cannot substitute
task-based fMRI studies that aimed to link a specific cognitive function
to specific brain areas (Stevens, 2016). Assessing the additional value of
task-fMRI in understanding cognitive maturation requires dissociating
age-related changes in the brain’s baseline architecture from age-re-
lated changes in task-induced neural modulations departing from that
baseline. Ideally, this would incorporate multiple experimental tasks
allowing to obtain insight into task- or function-specific versus
-common patterns of maturation.
Relying on the availability of both resting-state fMRI and task-fMRI

data we use a novel analytical approach to define task-modulated
functional connectivity that enables us to look at common maturational
effects across multiple tasks. Importantly, we index task-induced
modulations independent of generic maturational changes in the brain’s
baseline architecture. More specifically, we focus on so-called task-po-
tency, an index that compares functional connectivity under task per-
formance relative to the brain’s generic baseline functional architecture
as measured using resting-state functional connectivity. This is based on
the idea that engaging in a task causes modification of functional
connectivity away from its baseline status (Kelly et al., 2008; Mennes
et al., 2013a), in a way that allows prediction of the task modality
(Geerligs et al., 2015; Tavor et al., 2016). This is enabled by the idea
that resting state represents the landscape of cognitive states through
fluctuation of large-scale networks (Shen et al., 2015; Shine et al., 2016;
Smith et al., 2009) and allows to capture specificities of an individual
(Mueller et al., 2013; Shen et al., 2017). As task potency is readily
comparable across tasks we can investigate the existence of singular
versus common maturational processes across cognitive functions, al-
lowing us to investigate the idea of co-occurring development. We here
demonstrate that characterisations on the basis of task potency give rise
to interpretable differential developmental trajectories of different
cognitive systems.
Such comparisons between tasks while incorporating resting state

fMRI by means of the task potency measure offer great potential in the
context of large-scale neuroimaging efforts that include multiple tasks
acquired in large cohorts (e.g., NKI-RS (Nooner et al., 2012), the HCP
Lifespan Project (Glasser et al., 2013), UK Biobank (Miller et al., 2016),
and FCP-INDI (Mennes et al., 2013b)). Instead of analysing individual
task responses independently, task potency focuses on integration
across multiple tasks (Chauvin et al., 2017). Here, we used a local da-
tabase providing three fMRI tasks (working memory, reward processing

and inhibition) acquired alongside a resting-state scan in a large de-
velopmental cohort and assessed the impact of age on task-induced
connectivity modulations. Specifically, we focussed on the relationship
of age effects between tasks and their potentially common underlying
maturational processes.

2. Methods

2.1. Participants

In the current analyses, we use MRI data from healthy control par-
ticipants only (initial N=385) of the NeuroIMAGE sample (Rhein et al.,
2015) who each performed at least one of the following tasks during
fMRI scanning: response inhibition (Stop Signal Task (STOP), (Logan
et al., 1984; Rhein et al., 2015; van Rooij et al., 2015)), reward proces-
sing (REWARD, (Hoogman et al., 2011; Knutson et al., 2001; Rhein et al.,
2015; von Rhein et al., 2015)), spatial working memory (WM, (van Ewijk
et al., 2015; Klingberg et al., 2002; McNab et al., 2008; Rhein et al.,
2015)). In addition, each participant completed a resting state (RS) fMRI
session. fMRI acquisition parameters are shown in Table 1. All partici-
pants also completed an anatomical scan for registration purposes (T1-
weigthed MPRAGE, TR=2730ms, TE=2.95ms, T1=1000ms, flip
angle=7, matrix size=256×256, FOV=256mm, 176 slices with
1mm isotropic voxels).
FMRI scans exhibiting limited brain coverage or excessive head

motio n were excluded from further processing. Limited brain coverage
was defined as having less than 97% overlap with the MNI152 standard
brain after image registration. Applying this criterion excluded 47
subjects. In addition, we excluded from each task those participants
who were among top 5% in terms of head motion as quantified by RMS-
FD, the root mean square of the frame-wise displacement computed
using MCFLIRT (Jenkinson et al., 2002). Applying these criteria re-
sulted in the inclusion of data from 218 healthy controls, comprising
218 resting state acquisitions, 111 STOP acquisitions, 123 REWARD
acquisitions, and 144 WM acquisitions. Participants ranged in age be-
tween 8.6 and 30.5 years; mean=16.9; sd= 3.4; 54.1% were female.
Further details are included in Table 1 and Supplementary Fig. 1.

2.2. fMRI preprocessing

All fMRI acquisitions were processed using tools from FSL 5.0.6.
(FSL; http://www.fmrib.ox.ac.uk/fsl) (Jenkinson et al., 2012; Smith
et al., 2004; Woolrich et al., 2009). We employed the following pipe-
line: removal of the first volumes to allow magnetization equilibration
(Table 1), head movement correction by volume-realignment to the
middle volume using MCFLIRT, global 4D mean intensity

Table 1
fMRI acquisitions parameters.

RS STOP REWARD WM

Image acquisition parameters
General parameters TE= 40ms, FOV=224mm, 37 axial slices, flip angle=80, matrix size= 64×64, in-plane resolution=3.5mm, slice

thickness/gap= 3.0mm/0.5mm
N volumes >260 86 * 4 blocks >300 107 * 4 blocks
TR (ms) 1960b 2340b 2340b 2340
N first volumes rejecteda 5 4 5 3

Participant characteristics
N used in final analyses 218 111 123 144
RMS-FD min-max 0.026–1.930 0.029–0.413 0.027–0.554 0.033–1.504
RMS-FD mean (std) 0.171 (0.224) 0.09 (0.074) 0.13 (0.099) 0.17 (0.23)
Age min–max 8.6–30.5 8.6–27 9.1–23.9 8.6–27
Age mean (std) 17 (3.5) 17.1 (3.5) 16.8 (3.2) 16.8 (3.2)
% female 54.1% 54.0% 57.8% 52.8%

a The number of initial volumes removed from further analyses varied to ensure comparability with earlier studies that used these data. Note that this variation will have very limited
impact on the current analyses.
b some subjects were scanned with a different TR: RS – 1860 for 11 subjects; STOP – 2150 for 10; REWARD – 2150 for 10.
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normalization, spatial filtering with a 6mm FWHM Gaussian kernel.
Subsequently we applied ICA-AROMA, an automated algorithm to de-
tect head motion-related artefacts in single-subject fMRI data based on
independent component analysis. ICA components identified as related
to head motion were subtracted out of the data using fsl_regfilt (Pruim
et al., 2015a,b). Finally, we regressed out mean signals from CSF and
white matter, and applied a 0.01 Hz temporal high-pass filter.
For each participant, all acquisitions were registered to its high-

resolution T1 image using Boundary-Based Registration (BBR) available
in FSL FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). All
high-resolution T1 images were registered to MNI152 space using 12-
dof linear registration available in FLIRT and further refined using non-
linear registration available in FSL FNIRT (Anderson, 2007).

2.3. Region-of-interest analysis

For each functional imaging scan we defined connectivity matrices
using regions defined in a hierarchical whole-brain functional atlas (van
Oort et al., 2017). This atlas contains 185 non-overlapping regions and
was defined through Instantaneous Correlation Parcelation (ICP) ap-
plied to resting state fMRI data of 100 participants of the Human
Connectome Project (HCP; (Glasser et al., 2013)). In short, ICP aims to
parcel larger regions into subregions based on signal homogeneity,
where the optimal number of subregions is determined based on split-
half reproducibility at the cohort level.
Fig. 1 illustrates the hierarchical brain atlas, where areas were

grouped into 11 higher-level networks: 9 resting state networks (vi-
sual1, visual2, motor, right attention, left attention, auditory, default
mode network (DMN), fronto-temporal and striatum), and 2 anatomical
structures (subcortical areas, and cerebellum). These higher-level net-
works respectively contained 19, 12, 22, 22, 18, 8, 18, 13, 7, 23, and 23
subregions.
All analyses were performed in each participant’s native space. To

this end we transformed the atlas to each participant’s native space
using the inverse of the anatomical to MNI152 non-linear warp, and the

inverse of the linear transformation of the functional image to the
participant’s high resolution anatomical image. Voxel-membership in
brain parcels was established on the basis of majority overlap. Areas
that were on average across our population over 50% outside of the
brain were rejected from further analyses. This resulted in the rejection
of one area in brainstem. For consistency, we removed the 5 other
brainstem areas. As a result, we used 179 areas to compute connectivity
matrices, as explained in Section 2.4.

2.4. Connectivity calculation

For each participant and each task (RS, WM, REWARD, STOP) we
calculated 179× 179 connectivity matrices, by cross-correlating the
time series of all regions in our atlas. We obtained each region’s time
series through multivariate spatial regression, using all 179 regions as
regressors and each task’s preprocessed time series as dependent vari-
able. The resulting regional time series were demeaned. For the WM
and STOP task we temporally concatenated the time series of individual
runs. Using these time series, we calculated 179× 179 partial corre-
lation matrices through inverting covariance matrices estimated by the
Ledoit-Wolf normalization algorithm (Ledoit and Wolf, 2004) as im-
plemented in nilearn (http://nilearn.github.io/). Finally, all pair-wise
correlations were Fisher r-to-Z transformed.
To allow comparison of connectivity values between acquisitions,

we normalized the connectivity values within each matrix to fit a
Gaussian distribution (Fig. 2). Importantly, we were cautious not to
affect the tails of the connectivity distributions as these represent the
most interesting connectivity values. Therefore, we modelled the ob-
tained connectivity values per task using a Gaussian-gamma mixture-
model to obtain “mixture-model-corrected” Z-stat values (Feinberg
et al., 2010; Llera et al., 2016). This model fits three curves to represent
the data: a central Gaussian distribution representing the noise and two
gamma distributions on each side of the central Gaussian that represent
the signal as the tails of the data distribution. We used the main
Gaussian, i.e., the one fitting the body of the distribution, to normalize

Fig. 1. 179 areas selected from an ICP-based parcellation of the human brain (van Oort et al., 2017). Each area is coloured in accordance to its overarching network. Eleven large-scale
networks constitute the first level of the parcellation: visual1, visual2, auditory, motor, fronto-temporal (fronto temp), right and left attention (R_attention, L_attention, respectively),
default mode (DMN), cingulum, sub-cortical (sub cort), cerebellum (cereb) networks. We used the 179 regions that are part of the sub-network scale parcellation to obtain functional
fingerprints based on 179×179 correlation matrices.
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our connectivity values with respect to its main distribution (i.e.,
noise), while not taking into account the extremes (i.e., signal). In
practice, we applied the mixture modelling to the upper triangle values
of each connectivity matrix and subsequently normalized the con-
nectivity values by subtracting the mean and dividing by the standard
deviation of the obtained central Gaussian model. As a result, the values
within the normalized, Z-transformed partial correlation matrices are
readily comparable across tasks (Feinberg et al., 2010).
To differentiate connectivity changes induced by task modulation

from changes in the baseline architecture, we standardized each par-
ticipant’s task-based connectivity matrix by the population average
resting state matrix. This effectively allows interpretation of the task-
based connectivity matrices in terms of their deviation from the resting
state baseline connectivity. Accordingly, we can interpret the resulting
values as ‘task potency’, referring to the magnitude of the task-induced
connectivity modulation. We standardized each individual-level con-
nection, i.e. entry in the correlation matrix, by subtracting its own in-
dividual-level connection value obtained during rest. As such, each
task-based pair-wise correlation or edge quantifies how connectivity for
that edge differed from that edge’s connectivity during the resting state.
For each participant we obtained a standardized connectivity matrix for
each of its task acquisitions, further referred to as task potency ma-
trices. For each task, we finally created group-level task potency ma-
trices by averaging across the participant-level matrices.

2.5. Task-based fingerprints

To focus on maturational change of connections that characterize a
task’s functional fingerprint we selected – for each task – those edges
that showed a relevant deviation from rest (see Fig. 2 right half). To
this end we converted the group-level task potency matrices to Z-
statistic matrices by subtracting the mean and dividing by the stan-
dard deviation calculated for each task matrix. For each task we then
selected those edges with an absolute Z-statistic >=2.3. This
threshold was chosen to represent 2.3 standard deviation from the
Gaussian noise of the baseline distribution, thereby respecting the
logic of sparseness, i.e., strong connectivity modulations occur

infrequently, and corresponding to a p-value of 0.01 for each end of
the task-potency distribution. We refer to those selected edges as task-
modulated edges and to the resulting matrices as task-based finger-
prints. Here, we defined task-based fingerprints at the group-level by
selecting edges in the task potency matrix as averaged across the po-
pulation. Group fingerprints describe each task-potency architecture
and can be used to address common connectivity modulations be-
tween tasks. Note that it is also possible to create fingerprints at the
individual level, i.e., the individual task connectivity matrix adjusted
for its individual resting state connectivity matrix. Individual potency
fingerprints reflect individual variability in the task potency archi-
tecture and can be directly compared to its group-level equivalent. We
did not investigate individual-level potency in this study.

2.6. Investigating effects of age

We investigated age-related effects on task potency based on the
underlying idea that task connectivity modulations that are in common
between tasks reflect underlying common mechanisms. Accordingly,
we investigated age-related effects on the potency of single edges as
well as on an average potency across subgroups of edges. For both
analyses, we used least square fitting to investigate the linear change
with age, thereby maximising the detection of maturational processes
while minimizing the complexity of the model. We applied correction
for multiple comparisons across the tested subgroups of edges by im-
plementing FDR correction (q< 0.05).
The subgroups of edges we used were, for each task, 1) edges

modulated by this task only, 2) edges modulated by this task and one of
the two other tasks, 3) edges modulated by all three tasks. See the Venn-
diagram in Fig. 3 for an overview of potential edge subgroups. We
propose that similar changes with age will be observed across tasks in
connections that they co-modulate. For example, if task potency in one
task increases with age for an edge modulated by more than one task,
we would expect to observe a similar increase with age in all other tasks
modulating this edge.
The average potency across edges within each of the edge subgroups

specified above reflects an average underlying mechanism, but

Fig. 2. Task-potency pipeline. Using the brain parcellation shown in Fig. 1, we calculated 179×179 connectivity matrices for each individual in each task (WM, REWARD, STOP, RS).
From the Fisher r-to-Z transformed partial correlation, we obtained task potency by first normalizing the task and rest connectivity and subsequently subtracting the rest from the task
connectivity. Through population averaging and thresholding the resulting matrices we obtained a task potency fingerprint for each task (WM, REWARD, STOP).
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potentially obscures effects that play at the single edge level. To gain
insight into age effects at the level of single edges we compared the
slope of the linear relationship between age and potency for each edge
within the task-modulation fingerprint of two tasks. Specifically, we
plot the slope of each edge in one task against the corresponding slope
of that edge in the other task. We then fit an ellipsoid on the resulting
scatter plot using least square fitting to quantify the relationship be-
tween the two displayed tasks. If the ellipsoid stretched around the
x= y diagonal axis, it indicates a strong relationship between the two
parameters, which in our case translates into the observation that
connectivity modulation would mature similarly in both tasks. We
conducted this analysis independently in edges shared by the two tasks
or selected in only one task. To quantify the strength of the relationship
we calculated the width/height ratio of the ellipsoid fit. The closer this
ratio is to 1, the rounder the ellipsoid, and the weaker the relationship
between the two tasks.
Finally, at the single edge level, we tested for second order changes

with age, i.e. we tested whether the speed of the maturational changes
varied as a function of age. We assumed that age effects would be
stronger in younger than in older participants. To this end, we modelled
a linear change over a short age window of 1 year including 7 partici-
pants from this window. When more than 7 participants were available
within an age window we randomly selected 7. We moved this window
across our entire population, each time removing the youngest subject
of the window and considering a 1 year age span starting from the age
of the subject immediately following in age. We extracted the absolute
beta value of the linear regression for each window as a marker for the
speed of change with age of the task-potency.

2.7. Disentangling baseline and task-modulation effects

In order to confirm that task-potency changes with age were not
solely driven by changes with age in the baseline (i.e., resting-state
derived) connectivity, we assessed whether age also impacted baseline
connectivity and whether potential age effects on the baseline related to
age effects on task-based connectivity modulations. To this end we also
conducted our age-based analyses on the baseline connectivity, i.e. the
normalized Z-partial correlation extracted from the resting state scan.
We compared age effects obtained for baseline and for task modulation
and evaluated whether both measures were related by correlating the
baseline connectivity score with the task-potency across subjects. At the
edge level, we defined the fingerprint of the baseline connectivity by
selecting edges with |Z|> 2.3. We assessed the correspondence be-
tween age effects on shared selected connections in each task with age-
related changes observed at baseline by least-square fitting an ellipsoid
as done for the comparison between tasks.

3. Results

3.1. General effects of age on task-potency for selected edges

For both the STOP and WM task we observed that task-potency
across edges modulated by each task decreased significantly with age.
This suggests that in each of these tasks, as participants mature, their
task-modulation and baseline fingerprint become more similar to each
other (Fig. 3A and B). In addition, we observed a significant decrease
with age in baseline connectivity (Fig. 4).

Fig. 3. Effect of age on edges modulated by each task. Each graph illustrates the effect of age for corresponding edges indicated in the Venn-diagram. A: edges modulated during WM; B:
edges modulated during STOP; C: edges modulated during REWARD; D: edges modulated by WM and STOP; E: edges modulated by all three tasks. All displayed effects, except for C,
reached statistical significance at p< 0.05 after FDR correction. The age effect is calculated by linear regression of age against the average potency over the specified subset of edges. The
average potency decreases significantly with age for edges selected in STOP and WM, in all tasks for edges shared by WM and STOP, and in STOP for edges shared by all three tasks.
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To confirm that the task-potency changes with age were not driven
by changes with age in the baseline connectivity, we correlated the
average potency observed under task modulation to the average con-
nectivity in the baseline condition across the population. The average
was computed independently for edges modulated by the STOP and the
WM task. We observed no correlation between the resting connectivity
and task potency for either task: r(STOP, REST)= 0.026; r(WM,
REST)=−0.054. This suggests that the modulation of connectivity
under task performance shows developmental changes that are in-
dependent of the maturational changes in baseline functional con-
nectivity.

3.2. Effect of age on task-potency for common edges across tasks
fingerprints

To investigate common underlying maturational mechanisms across
tasks, we estimated the effect of age on average potency across selected
edges modulated by multiple tasks. Edges modulated by both the STOP
and the WM task showed a significant decrease in average potency as
measured under STOP and WM modulation (Fig. 3D). To investigate
whether the age effect is specific to tasks modulating theses edges, we
also assessed the average potency of these edges in the REWARD task.
While REWARD-related edges did not show a significant change with
age in the average potency across selected edges, average REWARD-
potency across selected edges shared by STOP and WM shows a sig-
nificant decrease with age (Fig. 3D). The observation that edges sen-
sitive to both WM and STOP also show an age effect under REWARD,
although they are not sensitive to modulation by this task, suggests that
maturation of task-modulation in one task can be transferred across
tasks.
Such common effect of age could be due to the maturation of a

subgroup of edges modulated by all three tasks. However, edges shared
between all three tasks showed a decrease in average potency with age
in the STOP task only (Fig. 3E). This result indicates that the age effect
detected in edges modulated by STOP and WM is not dependent on
shared selected edges with REWARD and supports the idea that task-
connectivity modulation can be identical between tasks, even if the
edges are not strongly modulated by each of the tasks. Additionally, the
STOP task is the only task showing an age effect in edges shared by all
tasks, which indicates existence of maturational processes attributed to
a single task.

3.3. Visualization of areas related to shared edges between tasks showing an
age effect

Fig. 5 illustrates which areas are related to the edges exhibiting the

top 5% strongest age effects across the edges modulated by both WM
and STOP for which we observed age-related effects in all three tasks
(see Fig. 3E). When comparing the edge representation in Fig. 5A, B,
and C it is clear that, within the edges modulated by both STOP and
WM, all three tasks displayed the strongest age effects between areas of
visual1, fronto-temporal, cingulum, DMN, attention, and cerebellum
networks. Of note, a subset of the displayed edges is not strongly
modulated under REWARD, we have created separate visualizations of
the strongest age effect for edges modulated by all tasks and for edges
modulated under STOP and WM only. For these we refer to Supple-
mentary Fig. 5a and b. Comparison of these separate figures enables
differentiation of whether similarity across tasks is due to shared
modulation. As the similarity between tasks generalized to both subsets
of edges (Supplementary Fig. 5a and b), the current results suggest non-
independence of age effects between these tasks, especially at the level
of larger networks.

3.4. Effect of age on potency at the single edge level

The age effect on the average potency of edge subgroups as pre-
sented in Section 3.2 does not provide fine-grained information about
single edges. Here, we quantify the similarity of the age effect between
tasks by estimating the age effect for each single edge and subsequently
comparing between tasks. To this end, we computed the effect of age
for all selected edges in each task. Using edges related to a pair of tasks,
we conducted two comparisons of their age effects: 1) between edges
shared by that pair of tasks, and 2) between edges modulated by only
one task within the pair. We assessed this relationship by fitting ellip-
soids to a scatter plot of the data. When edges showed related age ef-
fects between tasks we expected to observe an ellipsoid elongated along
the diagonal where x= y. As shown in Fig. 6, first column, we observed
an ellipsoid around the diagonal axis for edges shared between each
pair of tasks (average 9.75 ° deviation from x=y axis with an average
width/height ratio of the ellipsoid of 0.75).
For edges only selected in one of the two tasks, we expected that

correspondence between the age effects would be less strong, resulting
in rounder ellipsoids. As evident in the two middle columns of Fig. 6 we
indeed observed rounder ellipsoids with a width/height ratio closer to
1, yet with a conserved orientation towards the x= y diagonal. This
result supports the idea that task connectivity modulations share ma-
turational processes that also impact modulation from tasks that are
involved in a different task fingerprint.
To add further verification that the age effect on task modulation

(Fig. 3) was not related to the age effect on baseline connectivity
(Fig. 4), we compared the baseline and the task modulation age effects
at the edge level. We expected that the ellipsoid would show a reduced
or absent orientation towards the diagonal as a marker of un-related
maturational processes. Using edges selected in the task modulation
fingerprint and in the baseline fingerprint, we displayed the effect of
age on the resting state connectivity against the effect of age on the task
potency for each edge and observed that the resulting ellipsoid fit
showed no specific orientation and a strong elongation over the task
modulation axis (see Fig. 6 right column). This indicates that age effects
observed for task potency and baseline connectivity were not related,
suggesting that different maturational processes impact task modula-
tion and resting connectivity.

3.5. Developmental dynamics at the individual edge level

To assess the dynamics of the observed age effect across the age
range of our population we modelled the linear change with age using a
sliding window approach. Fig. 7, illustrates the maturational dynamics
as indexed by the average slope of the effect of age across the selected
edges per task. All tasks (Fig. 7A–C) showed a non-linear trajectory
across their maturational window. Compared to STOP, both REWARD
and WM exhibited stronger age-related effects before age 15 (Fig. 7B &

Fig. 4. Effect of age on baseline, i.e., resting state connectivity. Age is linearly regressed
against the average normalized Z partial correlation over edges selected in the resting
state fingerprint. Connectivity decreases significantly with age at p< 0.05.
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C). In contrast (Fig. 7A), the STOP task exhibited overall slower and
more linear maturational dynamics continuing until age 18, suggesting
more gradual maturational effects across our age range. This difference
between tasks in the timing of maturational changes suggests that brain
activity related to each task has a specific maturational window
(Fig. 7D). Combined with the finding that maturation is related be-
tween tasks at the edge level (Fig. 6), the observation that the ma-
turational dynamics have different timing is consistent with the idea

that maturation in one task can influence maturation of another task.
Here, we can speculate that faster developmental changes of WM and
REWARD-related circuitry until age 15 potentially influences the con-
tinued STOP task maturation actually requiring smaller (but prolonged)
developmental changes.
The resting state connectivity also exhibited more gradual dy-

namics, with the strongest maturational changes occurring before age
17 (Fig. 7E). Importantly, the difference in amplitude of change

Fig. 5. Top 5% areas showing the strongest linear age effects across edges modulated by STOP and WM tasks (darkest subgroup in the Venn-diagram, see also Fig. 3c). The linear age
effect per edge, averaging and selection of the top 5% areas are done independently for each task and represented in A for WM, B for STOP, and C for REWARD. Circles represent the edges
included in the top 5% area selection. Thicker edges in the circles represent those edges that formed a connection between two areas within the top selection.
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between tasks and RS cannot be interpreted as the input data are of
different nature, i.e., task potency (adjusted for rest) versus functional
connectivity.

4. Discussion

We introduced task potency as a sensitive feature to study brain
involvement in cognitive tasks across development. The feature is re-
flecting connectivity modulations under performance of a task relative

to functional connectivity observed during a resting state. To study
development, task potency enables dissociating changes with age in the
brain’s baseline functional connectivity architecture from changes with
age in functional connectivity as elicited across multiple tasks.
We observed task-specific maturation independent of age-related

effects on the baseline (i.e., resting state) connectivity patterns (Figs. A,
B, and). For STOP and WM (Fig. 3D), we observed that task potency
decreased with age. At the same time, we observed that between-region
resting state functional connectivity also decreased with age, thereby

Fig. 6. Relationship of age-effects between tasks for specific or common edges. A linear regression against age is computed for each edge in the task potency of each task. The beta
parameters corresponding to the slope of the linear regression are extracted for each edge and related between two tasks. Edges displayed in the left column are edges selected in both
tasks included in the plot, the two central columns display correspondence for edges selected in only one of the two tasks of the plot. The right column displays correspondence for edges
selected in the baseline fingerprint (i.e. the resting state z partial correlation) versus one of the tasks. An ellipsoid is fit over the points in the scatter plot and two values are extracted from
the ellipsoid: the deviation from 45° (i.e., x= y) for the main axis of the ellipsoid and the elongation of the ellipsoid (i.e. width divided by height). Bar plots on the bottom illustrate these
parameters for each of the left (black), the two central (grey), and the right column (blue).
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replicating previous studies (Stevens et al., 2009). Importantly, we
showed that the age-related effects on task potency were not related to
the resting state maturation, both at the level of task-specific edges, as
well as at the single edge level (Fig. 6).
Decreasing task potency with age indicates that the task-based and

resting state connectivity architectures converge with age, allowing
reduced switching costs to transition from a baseline state towards a
task state. The convergence between task-based and resting state con-
nectivity exhibited task-specificity, i.e., the REWARD task showed a
different developmental trajectory relative to WM and STOP. This result
replicates earlier findings from a meta-analysis where reward tasks
showed significantly different task-dependant connectivity compared to
task-independent resting state connectivity in adults (Kellermann et al.,
2013). Note that the absence of a task-independent maturational effect,
does not exclude the possibility of common maturational processes that
are shared between select tasks, e.g., observed that STOP and WM
showed a similar age effect as their average potency in the subset of
edges shared by these two tasks decreased with age (Fig. 3D). This
decrease of task potency shared by the two tasks supports the idea of a
shared underlying neural maturational process, located in a subset of
edges modulated by both tasks. Moreover, this common maturational
process did extend to REWARD, as the average potency of edges shared
by the STOP and WM tasks also exhibited decreasing potency with age
in REWARD. Such co-maturation could be converging towards or sup-
ported by an architecture of flexible multi-task hubs as observed by
Cole and colleagues (Cole et al., 2013).
By comparing common modulations across tasks, task potency en-

abled to define edges involved in the maturation of multiple cognitive
functions. This allows developing new hypotheses to study how cog-
nitive functions relate to one another. For example, if two related
cognitive functions mature over two different time windows, the cog-
nitive function that matures earlier will impact the maturation of the
second one. We observed support for such hypothesis by investigating
the difference in maturational dynamics between tasks. Specifically, we
observed that REWARD and WM exhibited the strongest maturational
changes at earlier ages compared to the STOP task (Fig. 7). However,
without a larger observation window, we cannot distinguish whether
the STOP task simply displays a more gradual change across develop-
ment or whether its strongest maturational changes happened in earlier
developmental phases. Longitudinal data across a larger age window,
would be required to allow investigating whether the bigger individual
age effects in WM and REWARD require smaller maturational changes
in the STOP task. The difference in timing of maturation between re-
ward processing and inhibition relates to the idea that motivation and
executive control interact during maturation through alterations in the
communication between striatum and prefrontal cortex (PFC)
(Somerville and Casey, 2010). In the context of detecting salient en-
vironmental cues during adolescence, striatum, involved in early tem-
poral coding of reward, would trigger bottom-up maturation of the
connection between striatum and PFC. In contrast, top-down connec-
tions from PFC to striatal areas, reflecting cognitive control, mature
only afterwards. Corroborating this idea, we showed connectivity
modulation between areas typically involved in executive functioning
(Chung et al., 2014; Diamond, 2013) exhibited the strongest age-related
effects (Fig. 5). This result is in accordance the fact that executive
functioning, being strongly associated to PFC functioning, is one of the
cognitive functions that is thought to mature late, not reaching com-
pletion until early adulthood (Carriedo et al., 2016). Accordingly,
through comparison of appropriate tasks and age-windows, task po-
tency could be used, for instance, to predict inhibition-specific ma-
turational changes related to PFC maturation. Yet, in this context, we
highlight that our approach assumes that our normalisation approach
allows isolating task-driven connectivity changes. However, the se-
paration of exogenously-driven modulations from low-frequency fluc-
tuations found in both resting state and task-related fMRI timeseries
remains a matter of active empirical examination. While, the current

Fig. 7. Average speed of change with age of task potency for STOP (A), REWARD (B), and
WM (C). Each plot illustrates the absolute beta-parameters for each window in the sliding-
average calculation. For each task we fit a 2nd order polynomial to model the rate of
change across development. Graph D overlays each task’s 2nd order fit to allow com-
parison between tasks. Finally, E illustrates the rate of change for RS. Note that due to
different input to the regression models, the amplitude for RS should not be directly
compared to the amplitude for the other plots.
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results fit this presumption, it will require additional research of the
neurophysiological basis of connectivity and its complex relationship to
cross-correlated BOLD signal dynamics throughout the brain to know
whether this assumption is fully supported.
Linking changes in connectivity to behavioural changes would

provide more insight into how potentiation of edges matters for the
maturation of cognitive functioning. Supplementary Fig. 8 illustrates
the maturational dynamics for the most typical behavioural parameter
in each task. Similar to the maturational dynamics observed for task
potency (Fig. 7), the behavioural parameter for the STOP task (i.e.,
SSRT) did exhibit a more gradual change across the age window of our
sample. In comparison, the behavioural parameters for REWARD (re-
ward-related speeding) and WM (error rate) exhibited faster develop-
mental changes in earlier ages. Our results corroborate behavioural
studies providing evidence for maturation of cognitive abilities across
our age range. For spatial working memory, a strong increase in the
number of remembered items occurs between 11 and 15 years old
(Conklin et al., 2007), while response inhibition exhibits a gradual in-
crease in performance until adult-level performance is reached around
age 15 (Luna et al., 2004; van den Wildenberg and van der Molen,
2004). In addition, studies showing that maturation of reward proces-
sing can influence maturation of inhibition provide evidence for un-
derlying common neural correlates of both cognitive process (Geier and
Luna, 2012; Geier et al., 2010). However, it is clear that we cannot
assume that these different behavioural metrics integrate the same
biological underlying processes. A reaction time and an error rate will
reflect a different integration of the processes involved in proper task
performance. To address the relativeness of task at the behavioural
level, common mental processes across task need to be defined
(Poldrack et al., 2011).
A common concern for developmental studies that make use of

functional MRI data is the impact of head motion (Satterthwaite et al.,
2012). During preprocessing we have used ICA-AROMA to mitigate
effects of participant head motion on the collected data (Pruim et al.,
2015a,b; for an independent evaluation of ICA-AROMA see e.g., Ciric
et al., 2017). However, as some younger subjects showed highest head
motion (see Supplementary material Fig. 2), and given that it has been
shown that head motion is heritable (Engelhardt et al., 2017), it is
possible that head motion might relate to underlying biological features
of interest and will accordingly exhibit maturational changes. To ac-
count for this potential interaction effect and to further validate our
results, we replicated all results using a linear model including both age
and head motion. Results can be found in Supplementary Figs. 3, 4, 6,
and 7. Overall, results were comparable between the different models,
with limited changes in some relationships not reaching significance
anymore, while others did reach significance when including head
motion in the model. These changes can be due to the use of a more
complex model, and to amplification of the age effect when movement-
related variance is modelled out, helping some age effects to reach
significance.
Observing neural mechanisms of maturation that affect multiple

tasks and their associated cognitive functions provides support for the
interactive specialization theory (Elman et al., 1996; Johnson, 2011)
and neuroconstructivism (Newcombe, 2011; Westermann et al., 2007),
two related developmental theories stating that cognitive functions
interact in their maturation. Our results corroborate earlier experi-
mental evidence supporting the notion that maturation is a combina-
tion of planned biological, experience-induced, and learning-induced
changes (Astle et al., 2015; Buschkuehl et al., 2012). Neuroconstructi-
vism in particular proposes that learning-induced maturation applies to
the cellular-, brain network-, and cognitive function-levels. As cognitive
functions would not mature independently, brain networks would also
not mature independently (Newcombe, 2011; Westermann et al.,
2007), i.e., developmental changes in reward processing will impact the
development of inhibition, and would be reflected in neural correlates
of this maturational interaction between neural networks. We observed

an age effect on REWARD-related potency in edges that showed strong
task involvement and a strong age effect in the STOP and WM tasks
(Fig. 3c). The observation that these edges were not strongly involved
in REWARD processing suggests that theses edges are trained, i.e. ma-
tured, by STOP and WM performance. This training then impacts these
edges’ connectivity as observed under REWARD processing. We could
not differentiate whether the age-related effects on the edges shared by
STOP and WM tasks represent a common maturational mechanism or
maturation of an independent cognitive function involved in all three
tasks that would be evolving on its own (McNab et al., 2008). Long-
itudinal investigations would further enable to better understand
variability in maturation between individuals and the specificity of
task-related maturational processes. In this context, longitudinal mea-
surement of resting state is of key importance to compare local age
effects relative to local variability in resting state that is influenced by
individual characteristics, experimental manipulations, or environ-
mental factors. Accordingly, we encourage to obtain resting state data
in the same session as the task scans (see also Chauvin et al., 2017).
Future investigations could examine why a reduction in task-in-

duced connectivity modulations is a marker of brain maturity, possibly
distinguishing effects of changes at the neurophysiological level from
changes in the brain’s response to a task. In connectivity studies, some
authors interpret a reduction with age of resting state connectivity as a
reduced need for energy for a network to function and a more efficient
integration of information (Stevens et al., 2009). This interpretation can
also apply to task potency: a reduced switch from the baseline when
engaging in a task can reflect a more efficient integration of informa-
tion. This would support the idea that executive function performance
is associated to higher flexibility in connectivity, allowing more fre-
quent switching from one connectivity state to another (Nomi et al.,
2017). A lower task potency request facilitates such flexibility by
making switching between rest and task less costly. We can hypothesise
that a reduced need of modulation to reach the requested connectivity
state would be beneficial for a better performance by reducing the cost
of involvement in executive tasks. This hypothesis would need further
validation. Investigating this hypothesis in the context of ADHD could
provide such validation as it has been theorized that individuals with
ADHD have difficulty in energizing their brain activity (Sergeant,
2005). We could investigate whether impairment of ADHD participants
in executive functioning is linked to higher task potency levels dis-
played during tasks. If so, we could predict under what cognitive load
or when ADHD participants would experience cognitive fatigue as the
demand for task-induced modulations becomes too high. In general,
investigation of cognitive impairment in developmental disorders such
as ADHD is intrinsically linked to understanding deviant task-related
modulations related to differences in the baseline brain architecture
due to age effects and/or clinical representations. The task potency
framework is well suited to enable researchers to detect and understand
differences linked to cognitive performance in various domains of im-
pairment, thereby tapping into both cortical and subcortical networks.
In conclusion, understanding how human cognition matures, re-

quires defining not only functional connectivity changes in the baseline,
but also changes in functional connectivity that is modulated by tasks
(Stevens, 2016). Our study shows that task potency defined as the
difference in connectivity modulation between rest and task is a pro-
mising neural correlate to study cognitive development.
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