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Abstract: Both Schistosoma spp. (species) and Leishmania spp. are prevalent in Ghana in West
Africa. However, little is known about their local occurrence in immunocompromised individuals.
In the study presented here, the real-time PCR-(polymerase chain reaction-)based screening for
repetitive DNA (deoxyribonucleotide acid) sequences from the genomes of Leishmania (L.) spp. and
Schistosoma (S.) spp. was performed in the serum of HIV-(human immunodeficiency virus-)infected
Ghanaian patients. In 1083 assessed serum samples from HIV-positive and HIV-negative Ghanian
patients, Leishmania spp.-specific DNA was not detected, while the diagnostic accuracy-adjusted
prevalence estimation suggested a 3.6% prevalence of the S. mansoni complex and a 0.5% prevalence
of the S. haematobium complex. Associations of schistosomiasis with younger age, as well as with the
male sex, could be shown but not with an HIV status. Weakly significant signals for the associations
of schistosomiasis with an increased viral load, reduced CD4+ (CD = cluster of differentiation) T cell
count, and a reduced CD4+/CD8+ ratio could be observed but was inconsistently lost in the case of
the stratification on the species complex level. So, it is concluded that factors other than HIV status are
more likely to have influenced the occurrence of Schistosoma spp. infections in the assessed Ghanaian
patients. Potential associations between HIV infection-associated factors, such as the viral load and
the immune status of the patients, for which weak signals were observed in this hypothesis-forming
retrospective assessment, should be confirmed by prospective, sufficiently powered investigations.
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1. Introduction

Both Leishmania (L.) species (spp.) and Schistosoma (S.) spp. are eukaryotic parasitic
pathogens associated with human diseases prevalent in Ghana. Cutaneous leishmaniasis,
in particular, has been described as prevalent in the Ghanaian Ho Municipality in the
Volta Region as well as in the Oti Region and the Taviefe community [1–8]. The Leishmania
enriettii complex could be isolated from the cutaneous lesions of patients from the Ho
District [9], while L. major and L. tropica have been detected in Ghanaian sand flies [10]. The
host competence of local rodents and their role in the transmission cycle of Leishmania spp.
in Ghana is a matter of ongoing academic debate [11]. Although associations between
HIV (human immunodeficiency virus) infections and leishmaniasis are considered as
well established [12,13], associations between cutaneous leishmaniasis in Ghana and HIV
infections are so far poorly characterized.

Focusing on schistosomiasis, both urogenital schistosomiasis, caused by Schistosoma
haematobium [14–26], and intestinal schistosomiasis, caused by S. mansoni [27–29], are com-
mon in Ghana regionally, even with high rates of co-infection with both species [27,29]. Pre-
school-aged children and school children are affected [30–34] with urogenital schistosomiasis-
associated macrohematuria and esoinophilia [35,36]. Seasonal effects exist; in detail, infection
rates with Schistosoma spp. have been reported to be increased in the rainy season in Ghana [37],
and access to safe water sources has been identified as a critical preventive factor [38–42] next
to health education, teaching, and training [43,44]. However, educated awareness cannot
compensate for lacking resources required for self-protection [21]. Of note, the increased
prevalence of schistosomiasis in Ghana was associated with the construction of freshwater
dams [45,46].

Similar to leishmaniasis, little is known so far on the epidemiology of schistosomiasis
in Ghanaian HIV patients. In a previous assessment by the Komfo Anokye Teaching
Hospital in Kumasi, Ghana, a low prevalence of Schistosoma mansoni infections within the
minor one-digit percent range was recorded in patients with HIV, although an overall
increase in the proportion of the intestinal parasite carriage with enteric parasites other
than Schistosoma spp. compared to HIV-negative individuals was reported [47]. Another
study detected increased co-incidence rates of urogenital schistosomiasis and sexually
transmitted infections in Ghana [48], but without particular focus on HIV, calling for
respective assessments.

For both visceral leishmaniasis and schistosomiasis, real-time PCR (polymerase chain
reaction) from the human serum targeting multicopy DNA sequences of the pathogens
has been described as a credible diagnostic procedure. For Leishmania spp., in particu-
lar, real-time PCR targeting kinetoplast DNA (kDNA, DNA = deoxyribonucleotide acid)
has been found to be particularly reliable in a recent comparative test assessment [49].
Multicopy target sequences with proven suitability for the diagnosis of schistosomiasis
from the patients’ serum comprise Sm1-7 for the Schistosoma mansoni complex and Dra1
for the Schistosoma haematobium complex, respectively, for which a multiplex real-time PCR
assay has recently been successfully validated with samples from travel returnees and
migrants [50]. Of note, when applied with samples from a Madagascan high endemicity
setting for S. mansoni, the Sm1-7 assay proved considerably higher sensitivity compared to
the alternative but less repetitive multicopy target ITS2 (internal transcribed spacer) [51].

In this study, sera from Ghanaian HIV-infected patients and a small control group
of sera from Ghanaians without HIV were subjected to a real-time PCR-based screening
for Leishmania spp. [49] and Schistosoma spp. [50,51]. Considering the fact that only cu-
taneous leishmaniasis is known from Ghana [1–11] and the applied Leishmania spp.-specific
kDNA-PCR assay [49] has been evaluated for visceral leishmaniasis only, the Leishmania spp.
screening has to be considered experimental. Thereby, it was speculated that immunosup-
pression associated with an increased replication of the leishmaniae, which cause cutaneous
disease, might be associated with a sufficient amount of pathogen DNA in patient sera to be
measurable in peripheral serum as well but without evidence for this assumption. Pathogen
findings and the recorded cycle threshold (Ct) values within this screening approach were
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tested for a correlation with the immunological status of the patients. By doing so, the
exploratory, hypothesis-forming study intended to contribute to a better understanding
of the epidemiology of leishmaniasis and schistosomiasis in Ghanaian HIV patients. One
underlying hypothesis was that HIV infection-associated immunosuppression might lead
to an increased immunotolerance against parasitic infections and thus to an increased
detection rate of freely circulating parasite DNA in the peripheral blood of the patients.
In line with this, a higher Schistosoma spp. infection intensity was found to be correlated
with HIV infection in a Tanzanian assessment [52]. Also, previous evidence suggests
that Schistosoma spp. infections, particularly in the case of urogenital schistosomiasis, in-
crease the risk of HIV acquisition, as shown in Tanzania, Uganda, and Zimbabwe [53–55],
while HIV infections do not seem to be independent risk factors for the acquisition of
schistosomiasis [56,57].

2. Results
2.1. Qualitative and Quantitative PCR Results

From 1083 assessed serum samples, four samples had to be excluded from the further
assessment due to PCR inhibition, resulting in 1079 included samples. A total of thirty-six
(3.4%) samples tested positive for the S. mansoni complex and five (0.5%) for the S. haematobium
complex. Leishmanial DNA was not detected. Applying the known diagnostic accuracy
estimations [50] for the S. mansoni complex PCR (sensitivity: 0.959, specificity: 0.973) and the
S. haematobium complex PCR (sensitivity: 0.933, specificity: 1) for the calculation of the diag-
nostic accuracy-adjusted prevalence conducting the Rogan&Gladen/Gart&Buck prevalence
estimator as described recently [58–60], adjusted prevalence values of 3.6% for the S. mansoni
complex and 0.5% for the S. haematobium complex were estimated. A semi-quantitative assess-
ment of the recorded cycle threshold (Ct) values resulted in a mean value of 31.6 (standard
deviation SD: 2.2, minimum: 24.1, maximum: 35.7) for the S. mansoni complex and a mean
value of 31.6 (SD: 1.4, minimum: 30.1, maximum: 34.1) for the S. haematobium complex.

2.2. Associations of PCR Positivity with Age, Sex, and HIV Status

Younger age was associated with positive PCR results for Schistosoma spp. on the
genus level as well as for the S. haematobium complex but not with positive PCR results
for the S. mansoni complex. Associations between infections and sex could be shown
for Schistosoma spp. on the genus level, as well as for the S. mansoni complex with a
higher infection rate in the male sex, but not for the S. haematobium complex. With all
Schistosoma mansoni complex infections occurring in HIV-positive patients, there was a
weak significance for an association between S. mansoni complex infections and HIV
positivity. However, such links were neither detectable for the S. haematobium complex nor
Schistosoma spp. on the genus level. The details are provided in Table 1.

Table 1. Associations of Schistosoma spp. with age, sex, and HIV (human immunodeficiency virus)
status of the cohort. Significance was calculated by applying a student’s t-test and Fisher’s two-sided
exact test. Above each assessed parameter, the numbers of cases and percentages are given, for
which the respective parameter was recorded. The total numbers, n, differ from 1079 due to partly
incomplete datasets. p-values ≤ 0.05 were considered as indicators of statistical significance of
differences between the compared groups.

S.
mansoni
Positive

S.
mansoni
Negative

p-Value

S.
haemato-

bium
Positive

S. haemato-
bium

Negative
p-Value

S. mansoni
and/or

S. haematobium
Positive

S. mansoni
and/or

S. haematobium
Negative

p-Value

n (%) 36 (3.4) 1014 (96.6) 5 (0.5) 1045 (99.5) 41 (3.9) 1009 (96.1)
Age in years ± SD 37.1 ± 7.2 39.6 ± 10.0 0.1432 27.2 ± 4.8 39.6 ± 9.9 0.0040 35.9 ± 7.7 39.7 ± 10.0 0.0165

n (%) 36 (3.4) 1015 (96.6) 5 (0.5) 1046 (99.5) 41 (3.9) 1010 (96.1)
Male, n (%) 17 (47.22) 245 (24.14) 0.003 2 (40.00) 260 (24.86) 0.603 19 (46.34) 243 (24.06) 0.003

n (%) 36 (3.4) 1036 (96.6) 5 (0.5) 1067 (99.5) 41 (3.8) 1031 (96.2)
HIV positive, n (%) 36 (100.00) 933 (90.06) 0.042 3 (60.00) 966 (90.53) 0.075 39 (95.12) 930 (90.20) 0.420

n = number; SD = standard deviation.
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2.3. Associations of PCR Positivity with HIV Viral Load, CD4+ (CD = Cluster of Differentiation)
T Cell Count, and CD4+/CD8+ Ratio

PCR positivity for Schistosoma spp. on the genus level, as well as for the S. haematobium
complex but not for the S. mansoni complex, was weakly associated with a higher HIV viral
load. Associations of reduced CD4+ T cell counts with PCR positivity for Schistosoma spp.
on the genus level, for the S. mansoni complex, and for the S. haematobium complex were
observed. Finally, a lower CD4+/CD8+ ratio was associated with the positivity of PCR for
the Schistosoma haematobium complex spp., while the calculated weak significance was lost
on the genus level and for the S. mansoni complex. The details are provided in Table 2.

Table 2. Associations of Schistosoma spp. (species) with the HIV (human immunodeficiency virus)
viral load, CD 4+ (CD = cluster of differentiation) T cell count, and CD4+/CD8+ ratio of the HIV-
positive patients. Significance was calculated by applying the Wilcoxon rank-sum (Mann–Whitney)
testing. Above each assessed parameter, the number of cases and percentages are given, for which
the respective parameter was recorded. p-values ≤ 0.05 were considered as indicators of statistical
significance of the differences between the compared groups.

S. mansoni
Positive

S. mansoni
Negative

p-
Value

S. haema-
tobium
Positive

S. haemato-
bium

Negative

p-
Value

S. mansoni
and/or S.
haemato-

bium
Positive

S. mansoni
and/or S.
haemato-

bium
Negative

p-
Value

n (%) 35 (3.8) 886 (96.2) 3 (0.3) 918 (99.7) 38 (4.1) 883 (95.9)
CD4+ T cell
count/µL,

median (IQR)

280.0
(69.0–397.0)

398.0
(196.0–623.0) 0.0017 47.0

(8.0–66.0)
392.5

(189.0–610.0) 0.0094 244.0
(58.0–392.0)

398.0
(197.5–629.0) 0.0002

n (%) 27 (4.2) 622 (95.8) 30 (4.6) 619 (95.4)
CD4+/CD8+ T cell
ratio, median (IQR)

0.30
(0.17–0.81)

0.42
(0.21–0.75) 0.3277 0.1

(0.0–0.1)
0.4

(0.2–0.7) 0.013 0.25
(0.14–0.50)

0.42
(0.21–0.75) 0.0837

n (%) 34 (3.9) 841 (96.1) 3 (0.3) 872 (99.7) 37 (4.2) 838 (95.8)
Viral load, log10

copies/mL,
median (IQR)

4.8
(2.0–5.5)

3.9
(1.6–5.2) 0.1263 5.5

(5.2–6.1)
4.0

(1.6–5.2) 0.0374 5.0
(3.1–5.5)

3.9
(1.6–5.2) 0.0382

n = number. IQR = interquartile range.

2.4. Correlations of Cycle Threshold (Ct) Values with HIV Viral Load and CD4+ Cell Count

During the correlation of the cycle threshold (Ct) values and HIV viral load, as well
as the CD4+ T cell count, a significant positive correlation could be shown for the HIV
viral load and the Ct values of the S. haematobium complex only. The details are provided
in Table 3.

Table 3. Correlations (Spearman’s rho) of cycle threshold (Ct) values of the real-time PCRs targeting
the S. mansoni complex and S. haematobium complex with the HIV (human immunodeficiency virus)
viral load and CD4+ (CD = cluster of differentiation) cell count.

CD4+ T Cell Count
n, rho, p Value

Viral Load
n, rho, p Value

S. mansoni complex specific real-time PCR 35, 0.1521, 0.3830 34, −0.4697, 0.0051

S. haematobium complex specific real-time PCR 5, −0.8, 0.1041 3, 1.0000, <0.001
n = total number. rho = Speraman’s rho indicating correlation.

3. Discussion

The study was performed to search for associations between systemic Schistosoma
spp. infections and Leishmania spp. infections and the HIV status in a Ghanaian study
population with a high proportion of HIV infections. As expected for Ghana, the majority
of individuals were free of active schistosomiasis, as indicated by the serum PCR, and no
hints of the DNA of systemically circulating leishmaniae were found. As similarly seen
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in a previous study [47], a low portion of schistosomiasis within the one-digit percent
range was observed, and only a weak association of HIV positivity and active S. mansoni
complex infections could be demonstrated, which disappeared as soon as the results of
the S. haematobium complex screening were added. Consequently, the HIV status is—if
any—only a weak predictor of Schistosoma spp. infections in Ghana, even weaker than
the observed association with the male sex and younger age. This is well in line with
the previous results from Angola, Kenya, and Zambia [56] and quite plausible, as there
is no obvious reason why the mode of infection in the case of schistosomiasis should be
influenced by the immunological status of the individuals at risk, although one might
speculate that poor socio-economic conditions might predispose them for higher risks of
acquiring HIV and schistosomiasis.

Focusing on HIV-specific infection- and immune parameters, tendencies of a higher
viral load, lower CD4+ T cell count, and lower CD4+/CD8+ ratio with schistosomiasis
were observed. However, the significance is low and not consistent for both Schistosoma
species complexes. The observed positive correlation between the cycle threshold values of
the S. haematobium complex PCR and the HIV viral load, suggesting associations between
low parasitemia and high viremia, makes the interpretation of those results difficult as
well. The study is in line with the previous results suggesting higher CD8+ cell counts
in HIV patients co-infected with helminths [61,62], as indicated by the recorded lower
CD4+/CD8+ ratio. The observed lower CD4+ T cell count, however, is in contrast to the
previous studies indicating either comparable [62,63] or even higher CD4+ cell counts [64]
in HIV patients co-infected with schistosomes. Also, the findings of the present study are
in contrast with a previous study which did not find any hints for higher HIV virus loads
in patients with helminth infections [65], however, without a specific focus on schistosomes
alone. Considering the partly weak significance levels, as observed in the here-described
exploratory assessment, the relevance of these findings is, however, questionable, and
confirmation by sufficiently powered confirmatory assessments is required.

Altogether, the observed Ct values were not in an unexpected range. In a recent
screening with a Madagascan population, in which the HIV rate was extremely low [66],
quite similar Ct values for the S. mansoni complex were observed by applying the same
real-time PCR assay [51]. Although other factors, such as the worm load in the patients’
blood, also affect the measures of the Ct values, it seems justified that a relevant effect of
HIV positivity on the measured Ct values is not very likely. This finding is in contrast with
a previous assessment which suggested higher Schistosoma spp. infection intensities in
HIV-positive individuals in Tanzania [52]. A possible explanation for the discrepancy might
comprise socio-economic differences in Ghanaian and Tanzanian HIV patients, potentially
resulting in a stronger poverty-related need for risk exposure to schistosome-contaminated
surface water by Tanzanian HIV patients. However, the available data are insufficient to
verify or falsify this hypothesis.

The study has a number of limitations. Due to the known uneven geographical dis-
tribution of schistosomiasis in Ghana [14–29], the resulting low overall prevalence made
any conclusions on significant associations challenging. However, big differences would
most likely not have gone undetected. Second, the medical history of deworming ther-
apy of the study population was not available. The frequency of previous therapeutic
interventions might be a difficult-to-control source of bias because PCR becomes negative
if active infection is therapeutically cured, leading to a lower prevalence estimation of
previous infections. To estimate the relevance of this bias, a parallel serological assessment
of the samples, as performed in a previous study [51], would have been an option because
serology also indicates previous, already successfully cured infections. This was, however,
unfeasible due to the financial restrictions of this investigator-initiated study. Third, the
uneven proportion of HIV-positive and HIV-negative study participants was a random
effect resulting from the composition of the previous studies from which the assessed
residual sample materials were taken for this retrospective assessment [52,53]. Accordingly,
no case number estimations for the proof of the assumed effects could be performed, and
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the study has to be considered hypothesis-forming. Fourth, parasitic infections, such as
schistosomiasis, are affected by external influences, such as seasonality, as stated above,
which has not been specifically addressed in this study. However, (a) the study did not
discriminate between acute and chronic infections, and (b) all of the compared groups were
exposed to similar exposition conditions, which limits the relevance of such influences.
Fifth, the samples’ age of 10 years at the time of the assessment may have resulted in DNA
degradation and—associated with this—in an underestimation of the prevalence of the
assessed parasitic infections. However, as optimal storage conditions were ensured by
the deep-freezing of the samples at −80 ◦C, the quantitative dimension of this problem
was considered to be low. Sixth, due to the hypothesis-forming, exploratory approach
of the study and the restricted number of available datasets, the bio-statistic assessments
were restricted to simple statistic approaches. In line with this, a standardized significance
threshold of a p ≤ 0.05 was accepted for each hypothesis, thus accepting that many sig-
nificances were weak and would have lost presence if correcting for multiple testing, e.g.,
by applying the Bonferroni–Holm method, would have been applied. Larger-sized and,
thus, sufficiently powered confirmatory studies will be necessary to confirm or exclude the
observed hypotheses. The data as described in this study may serve for inclusion in sample
size calculations depending on the chosen endpoint of such confirmatory assessments.

4. Materials and Methods
4.1. Patients and Patient Samples

The study was performed with a group of 1095 HIV-positive Ghanaian patients
and a smaller comparison group of 107 HIV-negative Ghanaian blood donors. Residual
serum samples that had been taken in the course of the previous studies, as detailed
elsewhere [67–71], were available for 1083 individuals (980 HIV positive and 103 HIV
negative). Clinical information comprised age, sex, HIV status, and the HIV patients’ im-
munological situation as expressed by the CD4+ lymphocyte count, the CD4+/CD8+ ratio,
and the HIV viral load of the HIV-positive patients from the previous assessments [67,68].
Serum samples had been stored at −80 ◦C prior to the analyses.

4.2. Diagnostic Procedures

Nucleic acid extraction was performed by applying the EZ1 Virus Mini Kit v2.0 Kit
(Qiagen, Hilden, Germany) on an automated EZ1 Advanced system (Qiagen, Hilden, Germany),
an approach that had already allowed the successful detection of Leishmania spp. kDNA in serum
samples of patients with visceral leishmaniasis [49]. The extractions were performed di-
rectly prior to the PCR assessments after 10 years of deep-frozen storage of the serum
samples at −80 ◦C. Afterward, the eluates were assessed by Leishmania spp.-specific kDNA
real-time PCR [49] and by a triplex real-time PCR targeting the S. mansoni complex-specific
Sm1-7 sequence, the S. haematobium complex-specific Dra1 sequence [50], and a Phocid
herpes virus (PhHV) sequence that was added as a plasmid to the samples prior to nucleic
acid extraction, thus allowing combined extraction and inhibition control assessment as
described before [72]. Both PCR assays were run on RotorGene Q cyclers (Qiagen, Hilden,
Germany) or magnetic induction cyclers (MIC, Bio Molecular Systems Ltd., London, UK)
exactly as detailed before with open access published protocols [49,50]. Each run was
accompanied by a plasmid-based positive control and a PCR-grade water-based negative
control, also as described in [49,50]. By applying diagnostic conditions identical to the
laboratory’s diagnostic routine, standardized quality was ensured.

4.3. Statistical Assessment

First, the recorded prevalence of Leishmania spp., the S. mansoni complex, and the
S. haematobium complex was assessed for the population and associated with age, sex, HIV
status, and immunological status in a descriptive assessment. Second, a diagnostic accuracy-
adjusted prevalence estimation was conducted, as described elsewhere [60,73]. Third, a
correlation between the immunologically relevant parameters, i.e., the CD4+ lymphocyte
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count and HIV virus load, on the one hand and the recorded pathogen-specific cycle
threshold (Ct) values on the other hand was attempted. The calculations were conducted
using the software Stata/IC 15.1 for Mac 64-bit Intel (College Station, TX, USA).

5. Conclusions

In spite of the above-mentioned limitations, the assessment provided the first insights
into potential associations between schistosomiasis and HIV status in Ghana. The results
suggest only weak associations, making the influence of factors other than the HIV status
on schistosomiasis highly likely. Weakly significant signs of potential associations between
schistosomiasis and unfavorable factors, such as a high viral load and reduced CD4+ T
cell count, have to be considered as hypothesis-forming only and should be re-assessed
by sufficiently powered prospective studies. This is particularly the case because a recent
review only partially confirmed the results of the assessment [57], while, however, the
overall evidence is still low.
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