Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Phenyl-1-[2-(3-phenylisoquinolin-1-yl)diselanyl]isoquinoline

Venkatesha R. Hathwar, ${ }^{\text {a }}$ K. Prabakaran, ${ }^{\text {b }}$ R. Subashini, ${ }^{\text {b }}$ P. Manivel ${ }^{\text {b }}$ and F. Nawaz Khan ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\text {b }}$ Organic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India
Correspondence e-mail: nawaz_f@yahoo.co.in
Received 20 October 2008; accepted 4 November 2008
Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.043 ; w R$ factor $=0.102$; data-to-parameter ratio $=14.0$.

The complete molecule of the title compound, $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Se}_{2}$, is generated by a crystallographic inversion centre at the midpoint of the $\mathrm{Se}-\mathrm{Se}$ bond. The dihedral angle between the isoquinoline-1-selenol group and the phenyl ring is $14.92(2)^{\circ}$. The herringbone-like packing of the structure is supported by intermolecular $\pi-\pi$ stacking interactions with a shortest perpendicular distance between isoquinoline groups of $3.514 \AA$; the slippage between these ring systems is $0.972 \AA$, and the distance between the centroids of the six-membered carbon rings is 3.645 (3) \AA.

Related literature

For biological properties of organoselenium compounds, see: Mugesh \& Singh (2000). For chemopreventive agents in human cancer therapy, see: Sugie et al. (2000).

Experimental

Crystal data
$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Se}_{2}$
$M_{r}=566.40$
Monoclinic, $C 2 / c$
$a=11.2441$ (17) \AA
$b=17.559$ (3) A
$c=13.248$ (3) \AA
$\beta=115.082$ (2) ${ }^{\circ}$
$V=2369.0(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=3.14 \mathrm{~mm}^{-1}$
$T=290$ (2) K
$0.20 \times 0.14 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.585, T_{\text {max }}=0.703$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043 \quad 158$ parameters
$w R\left(F^{2}\right)=0.102 \quad \mathrm{H}$-atom parameters constrained
$S=1.00$
2207 reflections
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPADST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2124).

References

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Mugesh, G. \& Singh, H. B. (2000). Chem. Soc. Rev. 29, 347-357
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sugie, S., Tanaka, T. \& El-Bayoumy, K. (2000). J. Health. Sci. 46, 422-425.
Watkin, D. J., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supplementary materials

3-Phenyl-1-[2-(3-phenylisoquinolin-1-yl)diselanyl]isoquinoline

V. R. Hathwar, K. Prabakaran, R. Subashini, P. Manivel and F. N. Khan

Comment

Organoselenium compounds are widely used in modern organic synthesis, materials synthesis, biochemistry, photography, ligand chemistry, electroconducting materials and biologically relevant properties like antibacterial, antiviral, antifungal, antiparastic and antiradiation (Mugesh \& Singh, 2000 and references therein). Organoselenium compounds are less toxic and more chemopreventive in comparision with that of inorganoseleniums and natural organoseleniums. Hence, organoseleniums are considered as better candidates of chemopreventive agents for human cancers. (Sugie et al., 2000).

The structure has one half-molecule in the asymmetric unit ($Z=1 / 2$) with the molecule sitting on a crystallographic inversion centre, which is located in the middle of the $\mathrm{Se}-\mathrm{Se}$ bond. The title compound (I) was obtained by a diselenide link, which is formed between Sel and its symmetry equivalent at (3/4, 1/4, 1) (Fig. 1). The angle between the isoquinoline-1selenol moiety and the phenyl ring is $14.92(2)^{\circ}$ indicating that the phenyl ring is twisted with respect to the isoquinoline1 -selenol backbone.

The crystal packing diagram does not have any significant weak intermolecular interactions whereas the herringbone-like packing of the structure (Fig.2) is supported by intermolecular $\pi \cdots \pi\left[C g 2 \cdots C g 2^{\mathrm{ii}}\right.$ with the symmetry code ii $=5 / 2-x, 1 / 2$ $-y, 2-z$.] stacking interactions with a shortest perpendicular distance between isochinoline groups of $3.514 \AA$, the slippage between these ring systems is $0.972 \AA$, the distance between the centroids of the six-membered carbon rings C4/C9 is 3.645 (3) Å. Similarly, another intermolecular $\pi \cdots \pi\left[C g 2 \cdots C g 3{ }^{\text {iii }}\right]$ stacking interaction with a shortest perpendicular distance of $3.768 \AA$ between the two rings and the distance between the centroids of the six-membered carbon rings is 3.917 (3) \AA with the symmetry code $\mathrm{iii}=1-x,-y,-z . C g 2$ and $C g 3$ are the centroids of $\mathrm{C} 4 / \mathrm{C} 9$ ring and $\mathrm{C} 10 / \mathrm{C} 15$ ring, respectively.

Experimental

A mixture of 1-chloro-3-phenylisoquinoline (1 mmol) and selenourea (1.1 mmol) in ethanol was vigorously stirred at ambient temperature for 2 hr . After completion of the reaction as indicated by TLC, solvent was removed and the reaction mixture was poured into water $(10 \mathrm{ml})$ and the product was extracted using ethyl acetate (3 X 10 ml). The combined ethyl acetate extracts were concentrated in vacuo. The resulting crude product was directly charged onto a small silica gel column and eluted with a mixture of ethyl acetate/petroleum ether to get the final product of the diselenide title compound. Brown crystals of (I) were recrystalized from ethylacetate.

Refinement

All the H atoms in (I) were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms.

supplementary materials

Figures

Fig. 1. ORTEP diagram of molecule (I) with 50% probability displacement ellipsoids. The diselenide link is formed between Se 1 and its symmetry equivalent at $(3 / 4,1 / 4,1)$.

Fig. 2. The crystal packing diagram of (I). The dotted lines indicate intermolecular $\pi-\pi$ aromatic stacking interactions. All H atoms have been omitted for clarity. $C g 2$ and $C g 3$ are the centroids of the $\mathrm{C} 4-\mathrm{C} 9$ ring and $\mathrm{C} 10-\mathrm{C} 15$ ring, respectively.

3-Phenyl-1-[2-(3-phenylisoquinolin-1-yl)diselanyl]isoquinoline

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Se}_{2}$
$M_{r}=566.40$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=11.2441$ (17) \AA
$b=17.559$ (3) \AA
$c=13.248(3) \AA$
$\beta=115.082(2)^{\circ}$
$V=2369.0(8) \AA^{3}$
$Z=4$
$F_{000}=1128$
$D_{\mathrm{x}}=1.588 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 948 reflections
$\theta=2.3-24.6^{\circ}$
$\mu=3.14 \mathrm{~mm}^{-1}$
$T=290$ (2) K
Block, brown
$0.20 \times 0.14 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=290(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.585, T_{\text {max }}=0.703$
8668 measured reflections

2207 independent reflections
1516 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=25.5^{\circ}$
$\theta_{\text {min }}=2.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-21 \rightarrow 19$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$

$$
w R\left(F^{2}\right)=0.102
$$

$S=1.00$
2207 reflections
158 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0594 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.66$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Se1	$0.85678(4)$	$0.23078(2)$	$1.05937(3)$	$0.0658(2)$
N1	$0.8556(3)$	$0.35522(16)$	$0.9293(2)$	$0.0532(7)$
C1	$0.9346(4)$	$0.3092(2)$	$1.0051(3)$	$0.0546(9)$
C2	$0.9077(3)$	$0.41108(19)$	$0.8880(3)$	$0.0509(9)$
C3	$1.0405(4)$	$0.4174(2)$	$0.9231(3)$	$0.0590(10)$
H3	1.0741	0.4550	0.8929	0.071^{*}
C4	$1.2651(4)$	$0.3718(3)$	$1.0436(3)$	$0.0732(12)$
H4	1.3018	0.4088	1.0153	0.088^{*}
C5	$1.3442(4)$	$0.3224(3)$	$1.1219(4)$	$0.0837(13)$
H5	1.4347	0.3251	1.1456	0.100^{*}
C6	$1.2919(5)$	$0.2680(3)$	$1.1666(4)$	$0.0815(13)$
H6	1.3474	0.2354	1.2218	0.098^{*}
C7	$1.1602(5)$	$0.2619(2)$	$1.1307(3)$	$0.0745(12)$
H7	1.1262	0.2243	1.1603	0.089^{*}
C8	$1.0740(4)$	$0.3116(2)$	$1.0490(3)$	$0.0556(9)$
C9	$1.1271(4)$	$0.3676(2)$	$1.0047(3)$	$0.0562(9)$
C10	$0.8121(4)$	$0.4607(2)$	$0.8015(3)$	$0.0523(9)$
C11	$0.8492(4)$	$0.5283(2)$	$0.7693(3)$	$0.0617(10)$

H11	0.9360	0.5443	0.8056	0.074^{*}
C12	$0.7610(4)$	$0.5723(2)$	$0.6852(3)$	$0.0729(12)$
H12	0.7884	0.6172	0.6644	0.088^{*}
C13	$0.6320(4)$	$0.5498(3)$	$0.6320(3)$	$0.0755(12)$
H13	0.5724	0.5788	0.5738	0.091^{*}
C14	$0.5918(5)$	$0.4853(3)$	$0.6642(4)$	$0.0812(13)$
H14	0.5039	0.4711	0.6297	0.097^{*}
C15	$0.6803(4)$	$0.4402(2)$	$0.7479(3)$	$0.0678(10)$
H15	0.6515	0.3958	0.7686	0.081^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	$0.0824(3)$	$0.0453(3)$	$0.0779(3)$	$-0.0142(2)$	$0.0420(2)$	$0.00255(19)$
N1	$0.0679(19)$	$0.0398(17)$	$0.0617(18)$	$-0.0123(15)$	$0.0370(16)$	$-0.0059(15)$
C1	$0.071(3)$	$0.041(2)$	$0.060(2)$	$-0.0144(19)$	$0.036(2)$	$-0.0107(19)$
C2	$0.066(2)$	$0.040(2)$	$0.058(2)$	$-0.0114(17)$	$0.0373(18)$	$-0.0113(17)$
C3	$0.073(3)$	$0.055(2)$	$0.059(2)$	$-0.0138(19)$	$0.038(2)$	$-0.0005(19)$
C4	$0.068(3)$	$0.085(3)$	$0.066(3)$	$-0.014(2)$	$0.028(2)$	$0.003(2)$
C5	$0.070(3)$	$0.107(4)$	$0.068(3)$	$-0.009(3)$	$0.023(2)$	$-0.003(3)$
C6	$0.084(3)$	$0.083(3)$	$0.064(3)$	$0.000(3)$	$0.018(2)$	$0.004(2)$
C7	$0.089(3)$	$0.063(3)$	$0.073(3)$	$-0.011(2)$	$0.036(3)$	$0.002(2)$
C8	$0.074(3)$	$0.047(2)$	$0.053(2)$	$-0.0104(19)$	$0.033(2)$	$-0.0098(18)$
C9	$0.067(2)$	$0.056(2)$	$0.051(2)$	$-0.0148(19)$	$0.0311(19)$	$-0.0088(18)$
C10	$0.069(2)$	$0.044(2)$	$0.057(2)$	$-0.0042(18)$	$0.040(2)$	$-0.0073(17)$
C11	$0.074(3)$	$0.052(2)$	$0.076(3)$	$-0.0048(19)$	$0.048(2)$	$-0.003(2)$
C12	$0.099(3)$	$0.055(3)$	$0.084(3)$	$0.007(2)$	$0.058(3)$	$0.012(2)$
C13	$0.083(3)$	$0.079(3)$	$0.069(3)$	$0.015(3)$	$0.036(3)$	$0.005(2)$
C14	$0.077(3)$	$0.087(4)$	$0.074(3)$	$-0.007(3)$	$0.027(2)$	$-0.001(3)$
C15	$0.073(3)$	$0.059(3)$	$0.074(3)$	$-0.012(2)$	$0.034(2)$	$-0.006(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Se} 1-\mathrm{C} 1$	$1.928(4)$
$\mathrm{Se} 1-\mathrm{Se} 1^{\mathrm{i}}$	$2.3439(9)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.301(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.370(4)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.422(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.368(5)$
$\mathrm{C} 2-\mathrm{C} 10$	$1.478(5)$
$\mathrm{C} 3-\mathrm{C} 9$	$1.410(5)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.356(6)$
$\mathrm{C} 4-\mathrm{C} 9$	$1.415(5)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.380(6)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.354(6)$

$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.408(5)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 8-\mathrm{C} 9$	$1.402(5)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.383(5)$
$\mathrm{C} 10-\mathrm{C} 15$	$1.392(5)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.373(5)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{C} 12-\mathrm{C} 13$	$1.375(5)$
$\mathrm{C} 12-\mathrm{H} 12$	0.9300
$\mathrm{C} 13-\mathrm{C} 14$	$1.354(6)$
$\mathrm{C} 13-\mathrm{H} 13$	0.9300
$\mathrm{C} 14-\mathrm{C} 15$	$1.381(5)$
$\mathrm{C} 14-\mathrm{H} 14$	0.9300
$\mathrm{C} 15-\mathrm{H} 15$	0.9300

sup-4

supplementary materials

C1-Se1-Se1 ${ }^{\text {i }}$	92.40 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	119.0 (3)
N1-C1-C8	124.9 (3)
N1-C1-Se1	117.5 (3)
C8-C1-Se1	117.6 (3)
C3-C2-N1	120.8 (3)
C3-C2-C10	123.1 (3)
N1-C2-C10	116.0 (3)
C2-C3-C9	120.6 (3)
C2-C3-H3	119.7
C9-C3-H3	119.7
C5-C4-C9	120.5 (4)
C5-C4-H4	119.7
C9-C4-H4	119.7
C4-C5-C6	120.7 (4)
C4-C5-H5	119.7
C6-C5-H5	119.7
C7-C6-C5	120.4 (4)
C7-C6-H6	119.8
C5-C6-H6	119.8
C6-C7-C8	121.0 (4)
C6-C7-H7	119.5
C8-C7-H7	119.5
C9-C8-C7	118.7 (4)
C2-N1-C1-C8	-0.6 (5)
C2-N1-C1-Se1	-179.3 (2)
Se1 ${ }^{\text {i }}$ - $\mathrm{Se} 1-\mathrm{C} 1-\mathrm{N} 1$	0.9 (3)
Se1 ${ }^{\text {i }}$ - $\mathrm{Se} 1-\mathrm{C} 1-\mathrm{C} 8$	-177.9 (3)
C1-N1-C2-C3	1.8 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 10$	179.4 (3)
N1-C2-C3-C9	-1.5 (5)
C10-C2-C3-C9	-178.9 (3)
C9-C4-C5-C6	-1.3 (7)
C4-C5-C6-C7	1.9 (7)
C5-C6-C7-C8	-1.5(7)
C6-C7-C8-C9	0.4 (6)
C6-C7-C8-C1	179.2 (4)
N1-C1-C8-C9	-0.9 (5)
$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	177.8 (2)
N1-C1-C8-C7	-179.7 (3)
$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	-1.1 (5)
C7-C8-C9-C3	-179.9 (3)
C1-C8-C9-C3	1.2 (5)

C9-C8-C1	116.1 (3)
C7-C8-C1	125.2 (4)
C8-C9-C3	118.6 (3)
C8-C9-C4	118.7 (4)
C3-C9-C4	122.7 (4)
C11-C10-C15	117.3 (4)
C11-C10-C2	122.0 (3)
C15-C10-C2	120.7 (3)
C12-C11-C10	121.6 (4)
C12-C11-H11	119.2
C10-C11-H11	119.2
C11-C12-C13	119.8 (4)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.1
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	120.1
C14-C13-C12	120.0 (4)
C14-C13-H13	120.0
C12-C13-H13	120.0
C13-C14-C15	120.6 (4)
C13-C14-H14	119.7
C15-C14-H14	119.7
C14-C15-C10	120.7 (4)
C14-C15-H15	119.7
C10-C15-H15	119.7
C7-C8-C9-C4	0.1 (5)
C1-C8-C9-C4	-178.8 (3)
C2-C3-C9-C8	-0.1 (5)
C2-C3-C9-C4	179.9 (3)
C5-C4-C9-C8	0.3 (6)
C5-C4-C9-C3	-179.7 (4)
C3-C2-C10-C11	-16.2 (5)
N1-C2-C10-C11	166.3 (3)
C3-C2-C10-C15	163.0 (3)
N1-C2-C10-C15	-14.5 (5)
C15-C10-C11-C12	-2.3 (5)
C2-C10-C11-C12	176.9 (3)
C10-C11-C12-C13	0.9 (6)
C11-C12-C13-C14	1.5 (6)
C12-C13-C14-C15	-2.2(7)
C13-C14-C15-C10	0.7 (6)
C11-C10-C15-C14	1.6 (6)
C2-C10-C15-C14	-177.7 (3)

Symmetry codes: (i) $-x+3 / 2,-y+1 / 2,-z+2$.

supplementary materials

Fig. 1

Fig. 2

