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Abstract The variance components models for gene–

environment interaction proposed by Purcell in 2002 are

widely used. In both the bivariate and the univariate

parameterization of these models, the variance decompo-

sition of trait T is a function of moderator M. We show that

if M and T are correlated, and moderator M is correlated

between twins as well, the univariate parameterization

produces a considerable increase in false positive moder-

ation effects. A simple extension of this univariate mod-

eration model prevents this elevation of the false positive

rate provided the covariance between M and T is itself not

also subject to moderation. If the covariance between M

and T varies as a function of M, then moderation effects

observed in the univariate setting should be interpreted

with care as these can have their origin in either modera-

tion of the covariance between M and T or in moderation of

the unique paths of T. We conclude that researchers should

use the full bivariate moderation model to study the pres-

ence of moderation on the covariance between M and T. If

such moderation can be ruled out, subsequent use of the

extended univariate moderation model, as proposed in this

paper, is recommended as this model is more powerful than

the full bivariate moderation model.
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Introduction

In the classical twin model, phenotypic variance is

decomposed into genetic and environmental variance

components, which are usually assumed to be homosked-

astic, i.e., constant across relevant environmental or genetic

conditions. Heteroskedasticity will arise if the genetic and/

or environmental variance components vary in size as a

function of a given variable, or moderator. Such a mod-

erator can be truly environmental in nature (e.g., exposure

to radiation from a nuclear plant, the level of iodine in soil

or drinking water1), or be a trait that itself is subject to

genetic influences (e.g., eating or exercise habits, educa-

tional attainment level, personality traits). If moderators

have a limited number of levels, their effects can be

modelled in a multi-group design. However, a multi-group

approach does not naturally account for group order, and

Edited by Stacey Cherny.

S. van der Sluis (&) � D. Posthuma

Complex Trait Genetics, Department of Functional Genomics,

Center for Neurogenomics and Cognitive Research (CNCR),

FALW-VUA, Neuroscience Campus Amsterdam, VU University

Medical Center (VUmc), Amsterdam, The Netherlands

e-mail: s.vander.sluis@vu.nl

S. van der Sluis � D. Posthuma

Complex Trait Genetics, Department of Clinical Genetics,

Center for Neurogenomics and Cognitive Research (CNCR),

FALW-VUA, Neuroscience Campus Amsterdam, VU University

Medical Center (VUmc), Amsterdam, The Netherlands

D. Posthuma

Complex Trait Genetics, Department of Medical Genomics,

Center for Neurogenomics and Cognitive Research (CNCR),

FALW-VUA, Neuroscience Campus Amsterdam, VU University

Medical Center (VUmc), Amsterdam, The Netherlands

C. V. Dolan

Department of Psychology, FMG, University of Amsterdam,

Roeterstraat 15, 1018 WB Amsterdam, The Netherlands

1 Note that such environmental factors could indeed be purely

environmental, but could also in part be subject to genetic influences.

For example, the chance of exposure to radiation may depend on

one’s occupation or residential area, and such social-economic factors

may again be under genetic influence.
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quickly becomes impractical if the moderator is charac-

terized by many levels (i.e., continuous in the extreme

case). As few as, say, 3 or 4 levels may already require a

challenging number of groups, especially if the moderator

differs within twin pairs (i.e., is not ‘shared’), and the

sample includes additional family members (e.g., parents,

siblings, partners). In such circumstances, behavioural

geneticists often turn to the moderation models proposed

by Purcell (2002). The popularity of these model is evident

given its frequent use in twin studies on moderation in the

context of, for instance, cognitive ability (Bartels et al.

2009; Grant et al. 2010; Harden et al. 2007; Johnson et al.

2009a; Turkheimer et al. 2003; van der Sluis et al. 2008),

personality (Bartels and Boomsma 2009; Brendgen et al.

2009; Distel et al. 2010; Hicks et al. 2009a, b; Johnson

et al. 2009b; Tuvblad et al. 2006; Zhang et al. 2009), health

(Johnson and Krueger 2005; Johnson et al. 2010;

McCaffery et al. 2008, 2009), and brain morphology

(Lenroot et al. 2009; Wallace et al. 2006).

In both the univariate and the bivariate moderation

models proposed by Purcell (2002), the moderation effects

are modelled directly on the path loadings of the genetic

(A), shared environmental (C) and nonshared environ-

mental (E) variance components.2 In this moderation

model, the variances of A, C, and E are fixed to 1 (standard

identifying scaling), but the path coefficients are modelled

as (a ? baMi), (c ? bcMi), and (e ? beMi), respectively.

In these expressions for the moderated loadings, a, c and

e are intercepts, i.e., the parts of the variance components

that are independent of moderator M, Mi is the value of the

moderator for a specific twin i, and ba, bc, and be, are the

regression weights of the moderator for the genetic and the

environmental variance components, respectively.3 In the

standard homoskedastic ACE-model, the b coefficients are

assumed to be zero. In the moderation model proposed by

Purcell, the total variance of trait T is thus calculated as:

Var TjMið Þ ¼ aþ baMið Þ2þ cþ bcMið Þ2þ eþ beMið Þ2

ð1Þ

for i = 1, 2, and the expected covariances within MZ and

DZ twin pairs are:

CovMZðT1;T2jM1;M2Þ ¼ ðaþ baM1Þðaþ baM2Þ
þ ðcþ bcM1Þðcþ bcM2Þ

CovDZðT1;T2j M1;M2Þ ¼ :5ðaþ baM1Þðaþ baM2Þ
þ ðcþ bcM1Þðcþ bcM2Þ: ð2Þ

Besides moderating the variance decomposition of trait

T, the moderator itself may be correlated with the trait T

via A, C, and/or E. The full bivariate moderation model

(depicted in Fig. 1a), in which the variances of both trait T

and moderator M, as well as their covariance, are

decomposed into the three sources of variation (A, C,

and E), allows one to test both the presence of moderation

on the variance components unique to trait T, and the

presence of moderation effects on the variance components

common to trait T and moderator M, i.e., on the cross

paths. Investigation of moderation of the covariance

between the M and T, such as modeled via the 3 cross

paths, is of interest if one wishes to understand the nature

of, or the process underlying, the relation between M and

T. With 17 parameters (15 describing the variance part of

the model: 3 parameters unique to the moderator, 6 to

describe the covariance between T and M, and 6 to

describe the variance decomposition unique to T; and 2

parameters describing the means part of the model: the

estimated means of M and T, respectively), this bivariate

moderation model describes the relations between T and M

in great detail. In practice, describing (decomposing) a

small covariance between M and T with as much as 6

parameters, can be computationally challenging, and

solutions can be quite sensitive to starting values. Also,

Rathouz et al. (2008) have shown that this model

sometimes produces spurious moderation effects. More

practically, programs like Mx (Neale et al. 2006) do not

allow the simultaneous modeling of categorical and

continuous variables, which complicates this bivariate

parameterization of T and M if the two variables do not

have the same measurement level.4 Finally, when the

moderator of interest is a family-level variable, i.e., a

variable that is by definition equal for twin 1 and twin 2,

such as socioeconomic status in childhood (SES) or

parental educational attainment level, then a bivariate

parameterization is infeasible as the moderator does not

show any variation within families.

For these reasons, researchers have resorted to what we

call Purcell’s (2002) univariate moderation model (e.g.,

Bartels et al. 2009; Bartels and Boomsma 2009; Dick et al.

2009; Distel et al. 2010; Grant et al. 2010; Harden et al.

2007; McCaffery et al. 2008, 2009; Taylor et al. 2010;

Timberlake et al. 2006; Turkheimer et al. 2003; Wallace

et al. 2006). In this model, the moderator M is included in

the means model of T as follows:

T1 ¼ b0 þ b1 �M1;

T2 ¼ b0 þ b1 �M2;
ð3Þ

2 We limit our discussion to the ACE model.
3 To ease presentation, we limit ourselves to the linear moderation

model. We note, however, that non-linear effects of the moderator on

variance components A, C and E are discussed by Purcell (2002).

4 Discretizing either variable to render T and M comparable in scale

entails a loss of information and is therefore undesirable.
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where T1 and T2 are the trait values of twins 1 and 2, M1

and M2 are their individual moderator values, b0 is the

intercept, and b1 is the regression weight for moderator M.

The parameters b0 and b1 are assumed to be equal across

twins within a pair, and across zygosity (Fig. 1b). With 8

parameters (6 to describe the variance part of the model: 3

related, and 3 unrelated to the moderator; and 2 parameters

to describe the means model: the regression weight b1 and

the intercept b0), this parameterization is more parsimo-

nious than the bivariate moderation model, and often less

susceptible to computational problems. In addition, low

correlations between M and T, or different measurement

levels of M and T, do not cause problems in this univariate

moderation model.

It is important to realize that the bivariate moderation

model considers the joint distribution of M and T, while the

univariate moderation model considers moderation of the

variance decomposition of T conditional on M. With M

included in the means model of T, the univariate

moderation model does not allow further investigation of

the nature of the covariance between M and T but specif-

ically focuses on the question whether the decomposition

of the variance unique to T depends on M. Entering M in

the means model of T to allow for a main effect is believed

to effectively remove from the covariance model any

(genetic) effects that are shared between trait and moder-

ator (Purcell 2002, p. 563). In essence, the variance com-

mon to M and T is partialled out, and the moderator effects

of M are modeled on the residual variance of T, T0, i.e., the

variance of T that was not shared with M. As a result, the

effects that M has on the variance decomposition of the

residual T0 are believed to be independent of (i.e., not due

to) any (unmodeled) (genetic) correlation between M and T

(Purcell 2002, p. 563).

However, although M1 is indeed unrelated to the for-

M1-corrected residual T01, this residual T01 is not necessarily

uncorrelated to the moderator M2 of the co-twin. In this

paper, we first show that non-zero semi-partial correlations

(a)

(b)

Fig. 1 a Full bivariate moderation model for a twin pair as proposed

by Purcell (2002). Ac, Cc, and Ec are the variance components

common to the moderator M and the trait T; Au, Cu, and Eu are the

variance components unique to T. All latent variables have unit

variance. Path loadings for M are denoted by am, cm, and em. The

loadings of the cross-paths connecting M to T consist of parts that are

unrelated to moderator M, i.e., ac, cc, and ec, and parts that depend on

M via weights bac, bcc, and bec. Similarly, the loadings of the paths

unique to T consist of parts that are unrelated to M, i.e., au, cu, and eu,

and parts that depend on M via weights ba, bc, and be. b Univariate

moderation model for a twin pair as proposed by Purcell (2002). All

latent variables have unit variance. Path loadings for T consist of parts

that are unrelated to moderator M, i.e., a, c, and e, and parts that

depend on M via weights ba, bc, and be. M is also included in the

means model of T, where b0 denotes the intercept and b1 the

regression weight of T on M
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between T01 and M2 can result in a considerable increase in

false positive moderation effects on variance components

A and C, especially if the correlation between T and M

runs fully (or predominantly) via E (rather than via A and/

or C). We subsequently study whether a simple extension

of the univariate moderation model prevents this increase

of false positive rate. In the first part of this paper, we focus

on illustrations and simulations in which the correlation

between trait T and moderator M runs either exclusively via

A, or via C or via E. Although these settings may be

considered quite special, they conveniently simplify the

explanation of the problem of non-zero semi-partial cor-

relations in the univariate moderation model proposed by

Purcell, and clarify how this model would need to be

extended. In the subsequent investigation of the usefulness

of this extended version of the univariate model, the sim-

ulations are extended to more realistic conditions.

Semi-partial correlations

Consider a moderator M and a trait T, both with variance 1

and mean 0, and measured in a sample of MZ and DZ

twins. Suppose that in both M and T, variance components

A, C, and E account for 40%, 30%, and 30% of the vari-

ance, respectively, and that these percentages are stable

across the entire population (i.e., there is no moderation).

This implies that rMZt1,t2 = rMZm1,m2 = .7 and rDZt1,t2 =

rDZm1,m2 = .5. Now suppose that the cross-trait correla-

tion between T and M equals .24 (i.e., rm1,t1 = rm2,t2 =

.24) and that the T–M correlation is either exclusively due

to A (loading cross-path equals
ffiffiffiffiffiffiffi

:15
p

), or to C (loading

cross-path equals
ffiffiffiffi

:2
p

), or to E (loading cross-path equals
ffiffiffiffi

:2
p

; see Fig. 2a–c).

If the relation between T and M runs exclusively via E,

then in both MZ and DZ twins, the cross-trait cross-twin

correlation between M2 (the moderator of twin 2) and T1

(the trait of twin 1) is 0, just as the correlation between M1

and T2 is 0, i.e., rm2,t1 = rm1,t2 = 0. If the correlation

between T and M runs via C, then the correlation between

M2 and T1, and between M1 and T2, is in both MZ and DZ

twins calculated as
ffiffiffiffiffiffiffiffiffiffiffiffi

:3 � :2
p

¼ :24. Finally, if the correla-

tion between T and M runs via A, then this correlation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:4 � :15
p

¼ :24 in MZ twins and
ffiffiffiffi

:4
p
� :5 �

ffiffiffiffiffiffiffi

:15
p

¼ :12 in

DZ twins.

Now suppose that we want to investigate whether M

moderates the variance decomposition of T, and rather than

modeling this in a bivariate model (Fig. 1a), we choose to

include M in the means model of T (Fig. 1b), such that we

can study the moderation effects of M on the variance

decomposition of the residual variance T0. We thus regress

T1 on M1 and T2 on M2, and obtain residuals T01 and T02.

We know that T01 and M1 (and T02 and M2) will be uncor-

related, but what is the correlation between the residual T01
and M2 (or between T02 and M1)? The semi-partial corre-

lation between T01 and M2 (which equals the semi-partial

correlation between T02 and M1), denoted as rm2(t1�m1), is

calculated as5:

rm2ðt1�m1Þ ¼
rt1;m2 � rt1;m1rm1;m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
t1;m1

q : ð4Þ

Table 1 shows the correlations between T1 and M2, and

the semi-partial correlations between T01 and M2 for MZ

and DZ twins in the three different scenarios (i.e., within-

twin correlation between T and M runs either exclusively

via A, exclusively via C, or exclusively via E).

Clearly, as a result of partialling out M1 from T1, the

semi-partial correlation between T01 and M2 is lower than

the correlation between T1 and M2. However, the semi-

partial correlation between T01 and M2 is often not equal to

zero: especially if the correlation between T1 and M2 was

zero to begin with (i.e., if T and M are correlated via E), the

semi-partial correlation between T01 and M2 is quite large

and negative. Estimated across an entire study sample

(while weighing for the MZ/DZ ratio), these non-zero semi-

partial correlations can be quite considerable (e.g., in the

case that T and M are correlated via E), and are likely to

cause problems in the univariate moderation model. After

all, these non-zero semi-partial correlations, whether posi-

tive or negative, will somehow need to be accommodated in

the model. Considering the univariate moderation model as

depicted in Fig. 1b, a non-zero semi-partial correlation

between T01 and M2 is most likely to be accommodated via

the effects that M has on the variance components A and C,

i.e., via ba and bc, as these are the only links between M2

and T01, and M1 and T02, respectively. In Simulation study 1,

we investigated first whether these non-zero semi-partial

correlations do indeed cause problems in the univariate

moderation model. We expect problems to be greatest if the

semi-partial correlation deviates more from zero (i.e., in the

case that T and M are correlated via E). Second, we

investigated whether these problems indeed manifest

themselves mostly through ba and bc.

Simulation study 1

To investigate the effect of partialling out M on T within

each individual twin on the significance of parameters ba,

5 Note the difference between a partial correlation and a semi-partial

correlation. The partial correlation between X and Y given Z, is the

correlation between the residual X0 and the residual Y0, where Z is

partialled out in both variables. The semi-partial correlation is the

correlation between the residual X0 and the uncorrected variable Y,

i.e., Z is partialled out only in X but not in Y.
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bc, and be, we simulated data according to the models

shown in Figs. 2a–c, i.e., with correlations between T and

M running either exclusively via A, exclusively via C, or

exclusively via E. In these simulated data, T and M were

both standard normally distributed. Also, T and M were

correlated, but moderation effects of M on the cross paths

(a) 

(b) 

(c) 

Fig. 2 a–c Bivariate models in

which the correlation of *.24

between moderator M and trait

T either exclusively runs via A

(a), exclusively via C (b), or

exclusively via E (c). The

variance of both trait T and

moderator M are for 40% due to

A, for 30% to C, and for 30%

due to E. All latent variables

have unit variance

174 Behav Genet (2012) 42:170–186
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and on the variance components of the residual of T were

absent. For each scenario, we simulated 2000 datasets each

comprising Nmz = Ndz = 500 pairs. We then fitted to

these datasets the standard univariate moderation model

with moderator M modeled on the means (Fig. 1b), and

then constrained either ba, bc, or be to zero to test for the

significance of each parameter individually, i.e., a 1-df test.

The difference between the -2 log-likelihood of the full

model (the specific moderation parameter estimated freely)

and the -2 log-likelihood of the restricted model (the

specific moderation parameter fixed to 0), denoted as vdiff
2 ,

is v2-distributed. Since moderation parameters ba, bc, and

be were zero in these simulated data, we expect the dis-

tribution of the vdiff
2 as calculated across all 2000 data sets

to follow a central v2(1) distribution. Given an nominal a of

.05, we expected 5% of vdiff
2 test to be significant, i.e.,

larger than the critical value of 3.84.

Figure 3 shows PP-plots for the simulations in which T

and M are correlated via A (upper part), via C (middle part)

or via E (lower part). In these plots, the p-values observed

in the simulations are plotted against the nominal p-values.

The observed p-value for each vdiff
2 -value observed in the

2000 simulations, is calculated as the proportion of the

remaining 1999 vdiff
2 -values that is equal to or larger than

this specific vdiff
2 -value. The nominal p-value for each vdiff

2 -

value observed in the 2000 simulations, is obtained by

reference to the v2(1)-distribution. Deviations from the 45�
line show whether the use of the regular v2(1) test would

result in conservative (above the line) or liberal (below the

line) decision. The figures also show the percentage of hits

calculated across the 2000 simulations. Given a = .05, the

percentage of hits is expected to be close to 5%. Note that

the standard error of the ML estimator of the p-value in the

simulations is calculated as sqrt(p * (1 - p)/N), where

p denotes the percentage of significant tests observed in the

simulations (nominal p-value) given a chosen a, and N the

total number of simulations. The 95% confidence interval

for a correct nominal p-value of .05 (given a = .05) and

N = 2000 thus corresponds to CI-95 = (p - 1.96 * SE,

p ? 1.96 * SE), and thus equals .04–.06. This implies that,

given a = .05, any observed nominal p-value outside the

.04–.06 range should be considered incorrect: p-values

\.04 suggest that the model is too conservative, while p-

values [.06 suggest that the model is too liberal.

The results of Simulation study 1 as depicted in Fig. 3

are summarized in Table 2, which also includes results

for some additional simulations settings. In testing ba

under these three scenarios, the number of false positives

(i.e., vdiff
2 tests [3.84) was inflated if the correlation

between T and M ran via A or C: 6.85 and 7.60%, rather

than 5%, respectively. If the correlation between T and M

ran via E, however, the false positive rate was even more

seriously inflated: 53.23%. This inflation is clearly visible

in Fig. 3 (PP-plot lower left corner). Similar results were

obtained for the tests of bc: if the correlation between T

and M ran via A or C, the false positive rate was 6.85 and

8.75%, respectively, while the false positive rate was

55.33% if the correlation between T and M ran via E. In

testing for the significance of be, the false positive rate

was only significantly elevated if the correlation between

T and M ran via E (7.50%), but not if the correlation ran

via A or C (4.57 and 5.26%, respectively). The additional

simulations summarized in Table 2 show that the false

positive rate of the univariate moderation model is a)

correct if M1 and M2 are unrelated, i.e., when the vari-

ance in M is completely due to nonshared environmental

influences E, b) slightly too low if M1 and M2 are cor-

related 1, i.e., when the variance in M is completely due

to shared environmental influences C, and c) correct if the

covariance between M and T runs in equal proportions

via A, C and E. This latter result shows that the extent to

which the false positive rate of the univariate moderation

model is elevated depends on the specific mix of, or ratio

in which, A, C and E contribute to the covariance

between M and T since the positive and negative semi-

partial correlations as described in Table 1 can more or

less cancel each other out.

Summarizing, Simulation study 1 shows that under the

univariate moderation model, in which T1 is corrected for

M1 only, and T2 is corrected for M2 only, the false positive

rate can be (much) higher than the nominal a-level, espe-

cially if the correlation between T and M runs predomi-

nantly via E.

Table 1 Correlations and semi-partial correlations between M2 and

T1 if the within-twin correlation between T and M runs via A, via C,

or via E

rm2,t1 rm2(t1�m1)

T and M correlated via A

MZ .24 .074

DZ .12 0

T and M correlated via C

MZ .24 .074

DZ .24 .124

T and M correlated via E

MZ 0 -.173

DZ 0 -.124

Note: rm2,t1 denotes the correlation between moderator of twin 2 (M2),

and the trait of twin 1 (T1). rm2(t1�m1) denotes the semi-partial corre-

lation between the moderator of twin 2 (M2) and the trait of twin 1

(T1) corrected for the moderator of twin 1 (M1). In these calculations,

the variances of both T and M were 40%, 30%, and 30% due to A, C,

and E, respectively
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Solution: extension of the univariate moderation

model?

In this section we aim to investigate whether we can solve

the problems that can result from non-zero semi-partial

correlations by extending the univariate moderation

model. An obvious solution is to extend the means model

such that the trait value of twin 1 is not only corrected for

the moderator value of twin 1, but also for any residual

association to the moderator value of the co-twin, as this

would result in a residual T 001 (T 002 ) that is uncorrelated to

both M1 and M2. Taking into account the way regression

coefficients in a multiple regression model with two

predictors are calculated, it is easy to show that the

parameters in the means models should generally also

differ across zygosity.

Fig. 3 PP-plots for the univariate moderation model in Simulation
study 1, in which T and M are correlated exclusively via A (upper
part), exclusively via C (middle part), or exclusively via E (lower
part). Deviations from the 45� line show whether the use of the

regular v2(1) test would result in conservative (above the line) or

liberal (below the line) decision. % hits denotes the percentage of

likelihood-ratio tests smaller than the critical value 3.84 (i.e.,

significant given a = .05). A hit rate of .05 is expected given

a = .05, and given that moderation effects were absent in the data.

Hit rates outside the .04–.06 range should be considered incorrect

(i.e., significantly too low or too high)

176 Behav Genet (2012) 42:170–186
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Consider the regression of T1 on both M1 and M2:

T1 ¼ b0 þ b1 �M1 þ b2 �M2 ð5Þ

where b0 denotes the intercept, and b1 and b2 denote the

regression weight of M1 and M2, respectively. Regression

weight b1 is a measure of the relationship between T1 and

M1 while controlling for M2, and is in the completely

standardized case calculated as

b1 ¼
rt1;m1 � rt1;m2rm1;m2

1� r2
m1;m2

: ð6Þ

Similarly, regression weight b2 is a measure of the

relationship between T1 and M2 while controlling for M1,

and is calculated as

b2 ¼
rt1;m2 � rt1;m1rm1;m2

1� r2
m1;m2

: ð7Þ

Note that b2 = zero, if M1 and M2 are uncorrelated,

because then rm1,m2 = rt1,m2 = 0, in which case this

extension equals the general univariate model. Note also

the similarity between Eqs. 6 and 7 and Eq. 4: the

calculation of the regression weights in multiple

regression with two predictors resembles the calculation

of semi-partial correlations, except for the square root in

the denominator. From Eqs. 6 and 7, it can be seen that b1

and b2 will only be equal across zygosity groups if both

rt2,m1 (= rt1,m2) and rm1,m2 are equal across zygosity, i.e., if

neither M and the relation between M and T are affected by

genetic factors. In all other situations, b1 and b2, and as a

result b0, should be estimated separately in MZ and DZ

twins, allowing their values to differ across zygosity.

Allowing all three betas in the means model to differ across

zygosity will result in a general extended univariate

moderation model, the specification of which is

independent of the nature of the correlations between M

and T and M1 and M2. This extension implies that b0, b1

and b2 need to be different across MZ and DZ groups, so

that the means models for MZ and DZ twins 1 and 2

become:

MZ: T1 ¼ b0;mz þ b1;mz �M1 þ b1;mz �M2;

T2 ¼ b0;mz þ b1;mz �M2 þ b2;mz �M1;
ð8Þ

DZ: T1 ¼ b0;dz þ b1;dz �M1 þ b2;dz �M2;

T2 ¼ b0;dz þ b1;dz �M2 þ b2;dz �M1:
ð9Þ

With 12 parameters (6 to describe the variance part of the

model: 3 related, and 3 unrelated to the moderator; and 6

parameters to describe the means models: 3 for MZ twins,

and 3 for DZ twins), this extended univariate moderation

model is still more parsimonious than the bivariate

moderation model (17 parameters of which 15 concern

the variance decomposition). We conducted Simulation

study 2 to investigate whether the false positive rate of this

extended univariate moderation model is correct, and

comparable to the false positive rate of the full bivariate

moderation model.

Simulation study 2

To investigate whether the extended univariate moderation

model results in the correct false positive rate of 5%, we re-

Table 2 Results Simulation study 1: false positive rates under Purcell’s univariate moderation model

Drop ba Drop bc Drop be

Settings Simulation study 1

r(T,M) = .24 via A only % hits .07 .07 .05

r(T,M) = .24 via C only % hits .08 .09 .05

r(T,M) = .24 via E only % hits .53 .55 .08

Additional simulations

r(T,M) = .24 via A, C and E in equal proportionsa % hits .04 .05 .07

r(T,M) = .62 via A, C and E in equal proportionsb % hits .05 .05 .06

r(M1,M2) = 0c % hits .05 .05 .04

r(M1,M2) = 1d % hits .03 .03 .05

Note: The first three simulation settings are described under Simulation study 1. ba, bc, and be denote the moderation parameters on the variance

components unique to T (see Fig. 1). For all settings, 2000 datasets were simulated and analyzed. % hits denotes the percentage of likelihood-

ratio tests smaller than the critical value 3.84 (i.e., significant given a = .05). A hit rate of .05 is expected given a = .05, and given that

moderation effects were absent in the data. Hit rates outside the .04–.06 range should be considered incorrect (i.e., significantly too low or too

high)

a Loadings of the cross paths for A, C and E all equaled
ffiffiffiffiffiffiffi

:02
p

b Loadings of the cross paths for A, C and E all equaled
ffiffiffiffiffiffiffi

:13
p

c M1 and M2 are uncorrelated between twins, i.e., fully E
d M1 and M2 are correlated 1 between twins, i.e., fully C
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analyzed the data-sets created under Simulation study 1

using the extended univariate moderator model. Again we

tested the significance of moderator parameters ba, bc and

be. As these parameters were simulated to be zero, we

expected the vdiff
2 to be v(1) distributed across the 2000

datasets, independent of whether T and M were correlated

via A, via C, or via E. In addition, these same data sets

were analyzed using the full bivariate moderation model

(as depicted in Fig. 1a) in which all 17 parameters were

estimated freely (Note that we did not use the full bivariate

moderation model to analyze the data with rM1,M2 = 1 or

rM1,M2 = 0 because in practice one would never choose a

bivariate parameterization under these circumstances).

The results for both the extended univariate moderation

model and the full bivariate moderation model are

described in Table 3, and depicted as PP-plots in Fig. 4 for

the extended univariate moderation model. The false

positive rate of the extended univariate moderator model is

in most cases not significantly different from 5%, and

where it is (when variance in M is completely due to C, and

thus rM1,M2 = 1), it is too low, i.e. the test is too conser-

vative. In contrast, the false positive rate of the full

bivariate model is always too low, and significantly lower

than the false positive rate of the extended univariate

model, when testing ba or bc, irrespective of the nature of

the correlation between M and T. Apparently, slight misfit

in the full bivariate moderation model resulting from

dropping one parameter can quite easily be accommodated

by adjustment of the remaining parameters, resulting in a

too low false positive rate. In addition, it is important to

Table 3 Results Simulation study 2: false positive rates under the extended univariate moderation model and the full bivariate moderation model

when the covariance between T and M is not moderated

Drop ba Drop bc Drop be

% hits nsim % hits nsim % hits nsim

rM,T .24 via A

Ext univariate .04 2000 .04 2000 .04 1998

Full bivariate .01 2000 .01 2000 .04 2000

p \ .001 p \ .001 p = .88

rM,T .24 via C

Ext univariate .04 2000 .04 2000 .05 2000

Full bivariate .01 1999 .01 1998 .04 2000

p \ .001 p \ .001 p = .08

rM,T .24 via E

Ext univariate .05 1998 .04 1999 .05 1999

Full bivariate .01 1996 .01 1996 .05 2000

p \ .001 p \ .001 p = .65

rM,T = .24 via A, C and E in equal proportions

Ext univariate .04 2000 .05 2000 .05 2000

Full bivariate .02 2000 .01 2000 .05 2000

p \ .005 p \ .001 p = .43

rM,T = .62 via A, C and E in equal proportions

Ext univariate .05 1998 .05 2000 .05 2000

Full bivariate .02 2000 .02 2000 .05 2000

p \ .001 p \ .001 p = .94

rM1,M2 = 0 (fully E), rM,T = .24

Ext univariate .05 1999 .05 2000 .04 1999

rM1,M2 = 1 (fully C), rM,T = .24

Ext univariate .03 2000 .03 2000 .05 1999

Note: ba, bc, and be denote the moderation parameters on the variance components unique to T (see Fig. 1). nsim denotes the number of data sets

(out of 2000) for which the extended univariate moderation model and the full bivariate moderation model converged without problems. % hits
denotes the percentage (of the nsim converged models) that the likelihood-ratio test was smaller than the critical value 3.84 (i.e., significant given

a = .05). % hits outside the .04–.06 range should be considered incorrect (i.e., significantly too low or too high). The p-values concern p-values

of the binomial test for comparing two proportions, used to test whether the number of hits under the extended univariate moderation model is

significantly different from the number of hits under the full bivariate moderation model. Note that the full bivariate moderation model was not

used to analyze data generated according to the final two settings (rM1,M2 = 0 and rM1,M2 = 1) because one would never use a bivariate model

for data with such a variance–covariance structure
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realize that the variance components unique to trait T under

the bivariate model (Au, Cu and Eu in Fig. 1a) are not the

same as the variance components of the residual T00 in the

extended univariate parameterization. In Appendix 1, we

show how the residual T00 is calculated when M and T are

correlated via A, or C, or E. The fact that the variance

decomposition of T00 is not the same under the bivariate and

the univariate moderation model implies that either model

can constitute a more or less erroneous approximation,

depending on the real data generating process, which is

generally unknown.

Summarizing the results of Simulation study 2, we

conclude that the extension of the univariate moderation

model avoids the inflated false positive scores that were

observed for the standard univariate moderation model,

while the full bivariate moderation model actually proved

Fig. 4 PP-plots for the extended univariate moderation model in

Simulation study 2, in which T and M are correlated exclusively via A

(upper part), exclusively via C (middle part), or exclusively via E

(lower part). Deviations from the 45� line show whether the use of the

regular v2(1) test would result in conservative (above the line) or

liberal (below the line) decision. % hits denotes the percentage of

likelihood-ratio tests smaller than the critical value 3.84 (i.e.,

significant given a = .05). A hit rate of .05 is expected given

a = .05, and given that moderation effects were absent in the data.

Hit rates outside the .04–.06 range should be considered incorrect

(i.e., significantly too low or too high)
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too conservative. However, Simulation studies 1 and 2

concerned scenarios in which the covariance between M

and T was itself not subject to moderation, i.e., bac, bcc, and

bec on the cross paths between M and T in Fig. 1a were

fixed to 0. That is, the covariance between M and T did not

dependent on the level of M. In practice, however, it is

possible that the covariance between M and T fluctuates as

a function of M. Simulation study 3 was conducted to

investigate the false positive rate of the extended univariate

and the full bivariate moderation models in the context of

data in which the covariance between M and T is moder-

ated. These simulations are of specific interest since

moderator-dependent variation in the strength of the

covariance between M and T is not well accommodated by

the estimated regression parameters b0,MZ, b1,MZ, b2,MZ,

b0,DZ, b1,DZ, and b2,DZ in Eqs. 8 and 9, and problems are

therefore to be expected for the extended univariate mod-

eration model.

Simulation study 3

We again simulated data for standard normally distributed

moderator M and trait T in 500 MZ and 500 DZ twin pairs.

Suppose again that A, C, and E account for 40%, 30%, and

30%, respectively, of the variance in M. The parts of the

cross paths between M and T that do not depend on M (ac,

cc, and ec in Fig. 1a) are all set to .05, and A, C, and E

unique to T (au, cu, and eu in Fig. 1a) are set to .35, .25 and

.25, respectively. That is, if moderation is fully absent, the

correlation between M and T equals .39, while genetic and

(common) environmental effects explain 40%, 30% and

30% of the variance in T, respectively. We now introduce

moderation on the cross paths by setting either bac, bcc, or

bec to .10. Moderation on the unique parts of T is, however,

absent (i.e., ba, bc, and be in Fig. 1a are set to 0). For each

of these settings we simulated 2000 data sets. Note that we

deliberately choose the moderation parameters on the cross

paths to be quite substantial: if the false positive rate of the

extended univariate model is affected by moderation of the

cross paths, then we are sure to pick it up. If the false

positive rate of the extended univariate model is not

affected by moderation of the cross paths, then the size of

this moderation should not matter.

We then fitted to these datasets a) the full bivariate

moderation model including all 17 parameters, and b) the

extended univariate moderation model in which both

moderators M1 and M2 are modeled on the means with

means parameters differing across zygosity (Eqs. 8 and 9).

Table 4 Results Simulation study 3: false positive rates under the extended univariate moderation model and the full bivariate moderation model

when the covariance between T and M is moderated

Drop ba Drop bc Drop be

% hits nsim % hits nsim % hits nsim

Baseline: bac = bcc = bec = 0

Ext univariate .05 1999 .05 2000 .05 1999

Full bivariate .02 2000 .01 2000 .05 2000

p \ .001 p \ .001 p = .42

bac = .10; bcc = bec = 0

Ext univariate .18 1998 .18 1999 .08 1996

Full bivariate .03 2000 .02 2000 .06 2000

p \ .001 p \ .001 p \ .01

bcc = .10; bac = bec = 0

Ext univariate .13 2000 .13 1999 .07 1999

Full bivariate .02 2000 .02 2000 .05 2000

p \ .001 p \ .001 p \ .01

bec = .10; bac = bcc = 0

Ext univariate .23 2000 .23 1998 .08 1997

Full bivariate .02 2000 .01 2000 .04 2000

p \ .001 p \ .001 p \ .001

Note: ba, bc, and be denote the moderation parameters on the variance components unique to T; bac, bcc, and bec denote the moderation

parameters on the cross paths between M and T (see Fig. 1). nsim denotes the number of data sets (out of 2000) for which the extended univariate

moderation model and the full bivariate moderation model converged without problems. % hits denotes the percentage (of the nsim converged

models) that the likelihood-ratio test was smaller than the critical value 3.84 (i.e., significant given a = .05). % hits outside the .04–.06 range

should be considered incorrect (i.e., significantly too low or too high). The p-values concern p-values of the binomial test for comparing two

proportions, used to test whether the number of hits under the extended univariate moderation model is significantly different from the number of

hits under the full bivariate moderation model
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Within these models we constrained either ba, bc, or be to

zero to test for the significance of each parameter indi-

vidually, i.e., a 1-df test. Since moderation parameters ba,

bc, and be were simulated as 0 in these data, we expect the

distribution of the vdiff
2 as calculated across all 2000 data

sets to follow a central v2(1) distribution. Given an nominal

a of .05, we expected 5% of vdiff
2 test to be significant, i.e.,

larger than the critical value of 3.84.

The results of these simulations are summarized in

Table 4. When moderation on the cross paths is absent

(Baseline: bac = bcc = bec = 0), the false positive rate of

the extended univariate model is correct, while the false

positive rate of the full bivariate model is deflated for bau

and bcu. The false positive rate of the full bivariate model,

however, remains largely unchanged when moderation on

the cross paths is introduced. In contrast, the false positive

rate of the extended univariate model becomes consider-

ably inflated, especially for ba and bc. Clearly, when the

covariance between M and T is not stable across levels of

M, the sample-wise regression coefficients b0,MZ, b1,MZ,

b2,MZ, b0,DZ, b1,DZ, and b2,DZ in Eqs. 8 and 9 do not suf-

ficiently accommodate the varying association between M

and T. As a result, the remaining moderation, which is

actually located on the cross paths, is now picked up in the

extended univariate moderation model as if it were located

on the unique paths of T. Additional simulations (not

shown), in which either bac, bcc or bec equaled .10 while

the other two cross path moderation parameters equaled

.05, showed even higher hit rates for the extended uni-

variate model (up to 65%), while the hit rate of the full

bivariate moderation model remained .05 or lower.

In summary, the results of Simulation study 3 show that

the extended univariate moderation model can be used as a

moderation detection method, but is not very suited to

establish the exact location of the moderation as it cannot

distinguish moderation on cross paths from moderation on

the unique paths of T.

False negatives

We have shown that the false positive rate (i.e., type I error

rate) is correct under the extended univariate moderation

model, but only if the covariance between M and T is free

of moderation by M. We now address the false negative

rate, i.e., the type II error, of the extended univariate

moderation model compared to the full bivariate model. In

a fourth and fifth simulation study, we investigate whether

the false negative rate of the extended univariate modera-

tion model is comparable to the false negative rate of the

bivariate moderation model when the covariance between

M and T is not subject to moderation (Simulation study 4)

or when this covariance is subject to moderation as well

(Simulation study 5).

Simulation study 4

Data were simulated as described in Simulation study 1,

with moderation on the cross paths being absent. We now,

however, introduced moderation on the paths unique to T,

with moderation parameters being either ba = .08, or

bc = .10, or be = .035 (As shown in Table 5, the power to

detect moderation on E variance is much greater than the

power to detect moderation of A or C variance, which is

why be was chosen much smaller than both ba and bc).

Note that the effect size of the chosen moderation param-

eters depends on the nature of the correlation between T

and M. For example, ba was set at .08. If the correlation ran

via C or E, then the genetic variance of trait T was cal-

culated as (
ffiffiffiffi

:4
p

? .08 * M)2. If the correlation between T

and M ran via A, however, then the genetic variance of T

was calculated as .15 ? (
ffiffiffiffiffiffiffi

:25
p

? .08 * M)2, where .15 is

associated with the cross-path relating T and M.

For each of these 9 settings (rt,m runs via A, C or E, and

moderation is present on either A, C, or E) we simulated

2000 datasets and analyzed these using either the full

bivariate moderation model (estimating moderation

parameters on the cross paths as well as on the paths unique

to T) or the extended univariate moderation model (esti-

mating moderation on the variance components of the

residual T00). We then tested whether the moderation

parameter of interest (either ba, or bc, or be) was significant

given a = .05.

The results of these simulations are presented in

Table 5. In 5 out of 9 scenarios, the power of the extended

univariate moderation model was significantly higher than

the power of the full bivariate moderation model. Note that

we can indeed speak of higher power because we know

from the results of Simulation study 2 that the false positive

rate of neither models is inflated. The lower power of the

full bivariate moderation model is probably due to the

variance being decomposed into as many as 15 parameters,

compared to the 6 of the extended univariate moderation

model: misfit resulting from fixing one of the moderation

parameters to zero can more easily be absorbed by the

remaining 14 parameters.

Simulation study 5

Data were simulated as described in Simulation study 3

with covariance between M and T running via A, C and E,

and moderation on the cross paths was introduced by set-

ting either bac, bcc, or bec to .10 (see Table 6 for description

of the scenarios). Moderation on the unique parts of T was
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now simulated to be present as well, with moderation

parameters being either ba = .08, or bc = .10, or

be = .035 (as in Simulation study 4). For each scenario, we

simulated 2000 datasets and analyzed these using both the

full bivariate moderation model (estimating moderation

parameters on the cross paths as well as on the paths unique

to T) and the extended univariate moderation model

(estimating moderation on the variance components of the

residual T00). We then tested whether the moderation

parameter of interest (either ba, or bc, or be) was significant

given a = .05.

The results of these simulations are presented in

Table 6. In all scenarios, the extended univariate modera-

tion model picks up moderation more often than the full

bivariate moderation model. However, these results can,

except for the Baseline model, not be interpreted as the

extended univariate moderation model having more power

than the full bivariate moderation model. Given the results

of Simulation study 3, which showed that the extended

moderation model picks up the moderation on the cross

paths as if it is moderation on the unique paths, we con-

clude that the power of the extended univariate moderation

model is too high, or at least that the location of the

moderation that is detected, is uncertain. That is, ba, bc,

and be are biased in the extended univariate moderation

model because the moderation on the cross paths (bac, bcc,

and bec) is not adequately accommodated by the regression

coefficients in the means part of the model.

Discussion

In this paper, we showed that the univariate moderation

model proposed by Purcell (2002) produces (highly)

inflated false positive rates if the moderator M is correlated

between twins, and M and T are correlated as well. We

investigated an extension of this model as a solution to this

problem, and conclude that the extended univariate mod-

eration model works well, but only if moderation on the

covariance between M and T is absent. Moderation of the

covariance between M and T is, however, not accommo-

dated adequately in the extended univariate moderation

model, and as a result, moderation of the covariance is

picked up as moderation on the variance components

unique to T. In the absence of moderation of the covariance

between M and T, the extended univariate moderation

model is actually more powerful than the full bivariate

moderation model, but in the presence of moderation of the

covariance between M and T, the extended univariate

moderation model detects moderation of the variance

components unique to T, as such misspecifying the actual

location of the moderation.

Fortunately, most published papers in which the uni-

variate moderation model was used concern moderation

effects of family-level moderators such as SES, parental

educational attainment level, or the age of the twins, i.e.,

variables that are by definition equal in both twins. As we

have shown, non-zero semi-partial correlations are not a

Table 5 Results Simulation study 4: false negative rates under the extended univariate moderation model and the full bivariate moderation

model when the covariance between T and M is not moderated

Drop ba Drop bc Drop be

% hits nsim % hits nsim % hits nsim

T and M correlated via A

Ext univariate .20 1999 .31 1998 .48 2000

Full bivariate .07 1998 .21 2000 .50 2000

p \ .001 p \ .001 p = .47

T and M correlated via C

Ext univariate .27 1999 .16 1999 .47 2000

Full bivariate .25 2000 .03 1998 .48 2000

p = .18 p \ .001 p = .95

T and M correlated via E

Ext univariate .48 1999 .47 1999 .91 1997

Full bivariate .25 1998 .28 1989 .91 2000

p \ .001 p \ .001 p = .83

Note: ba, bc and be denote the moderation parameters on the variance components unique to T (see Fig. 1). nsim denotes the number of data sets

(out of 2000) for which the extended univariate moderation model and the full bivariate moderation model converged without problems. % hits
denotes the percentage (of the nsim converged models) that the likelihood-ratio test was smaller than the critical value 3.84 (i.e., significant given

a = .05). % hits outside the .04–.06 range should be considered incorrect (i.e., significantly too low or too high). The p-values concern p-values

of the binomial test for comparing two proportions, used to test whether the number of hits under the extended univariate moderation model is

significantly different from the number of hits under the full bivariate moderation model
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problem in that case and the false positive rate is rather too

low than too high (i.e., the model is slightly conservative).

In a few published papers, however, moderators were

studied that did show variation between twins (e.g.,

McCaffery et al. 2008, 2009; Timberlake et al. 2006:

moderators under study were educational attainment level

of the twins, exercise level of the twins, and the twins’ self-

reported religiosity, respectively). Whether the moderation

effects reported in these papers are genuine or spurious

(i.e., the result of non-zero semi-partial cross-trait cross-

twin correlations) depends, as we have shown, on the

nature of the correlation between T and M, on the nature of

the correlation between M1 and M2, and on the absence or

presence of moderation of the covariance between M and

T. Re-analysis of these data using the full bivariate mod-

eration model, or the extended univariate moderation

model if the presence of moderation of the covariance has

been excluded, is advised. Overall, we conclude that

researchers should use the full bivariate moderation model

to study the presence of moderation on the covariance

between M and T. If such moderation can be ruled out,

subsequent use of the extended univariate moderation

model is recommended as this model is more powerful than

the full bivariate moderation model.
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Appendix 1

In this appendix we derive the residual covariance matrix

of T00 in MZ and DZ twins after partialling out the effects of

M1 and M2.

Table 6 Results Simulation study 5: false negative rates under the extended univariate moderation model and the full bivariate moderation

model when the covariance between T and M is moderated

Drop ba Drop bc Drop be

% hits nsim % hits nsim % hits nsim

Baseline: bac = bcc = bec = 0

Ext univariate .29 2000 .34 1996 .56 1999

Full bivariate .25 2000 .26 1999 .57 2000

p \ .01 p \ .001 p = .72

bac = .10; bcc = bec = 0

Ext univariate .35 1989 .17 1997 .07 1998

Full bivariate .23 2000 .03 2000 .05 2000

p \ .01 p \ .001 p = .01

bcc = .10; bac = bec = 0

Ext univariate .14 1996 .45 1995 .07 1998

Full bivariate .04 2000 .25 2000 .05 2000

p \ .01 p \ .001 p = .03

bec = .10; bac = bcc = 0

Ext univariate .22 1996 .22 1998 .50 1995

Full bivariate .02 2000 .01 2000 .57 2000

p \ .01 p \ .001 p \ .001

Note: ba, bc, and be denote the moderation parameters on the variance components unique to T; bac, bcc, and bec denote the moderation

parameters on the cross paths between M and T (see Fig. 1). nsim denotes the number of data sets (out of 2000) for which the extended univariate

moderation model and the full bivariate moderation model converged without problems. % hits denotes the percentage (of the nsim converged

models) that the likelihood-ratio test was smaller than the critical value 3.84 (i.e., significant given a = .05). % hits outside the .04–.06 range

should be considered incorrect (i.e., significantly too low or too high). The p-values concern p-values of the binomial test for comparing two

proportions, used to test whether the number of hits under the extended univariate moderation model is significantly different from the number of

hits under the full bivariate moderation model
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Solve T00

Let us suppose that T and M are correlated exclusively via

C. The expected variance–covariance matrix of M1, M2, T1

and T2 in the MZ twins is:

Rtot;MZ ¼
RM RMT

RTM RT

� �

¼

a2
1 þ c2

1 þ e2
1 a2

1 þ c2
1 c12c1 c12c1

a2
1 þ c2

1 a2
1 þ c2

1 þ e2
1 c12c1 c12c1

c12c1 c12c1 a2
2 þ c2

2 þ c2
12 þ e2

2 a2
2 þ c2

2 þ c2
12

c12c1 c12c1 a2
2 þ c2

2 þ c2
12 a2

2 þ c2
2 þ c2

12 þ e2
2

2

6

6

6

4

3

7

7

7

5

and, in the DZ twins:

Rtot;DZ ¼
RM RMT

RTM RT

� �

¼

a2
1 þ c2

1 þ e2
1 :5a2

1 þ c2
1 c12c1 c12c1

:5a2
1 þ c2

1 a2
1 þ c2

1 þ e2
1 c12c1 c12c1

c12c1 c12c1 a2
2 þ c2

2 þ c2
12 þ e2

2 :5a2
2 þ c2

2 þ c2
12

c12c1 c12c1 :5a2
2 þ c2

2 þ c2
12 a2

2 þ c2
2 þ c2

12 þ e2
2

2

6

6

6

4

3

7

7

7

5

Note that all elements in RTM = RMT are equal (c12c1):

i.e., when the correlation between M and T runs via C, then

rt1,m1 = rt1,m2 = rt2,m1 = rt2,m2. We use R�T to denote the

covariance matrix of T after correction for M1 and M2.

Without loss of generalization, we assume that T and M are

both standardized:

VarðMÞ ¼ a2
1 þ c2

1 þ e2
1 ¼ 1

VarðTÞ ¼ a2
2 þ c2

2 þ c2
12 þ e2

2 ¼ 1

R�T then equals:

R�T ¼ RT � RTMR�1
M Rt

TM ¼ RT � RD;

where superscript t denotes transposition and -1 denotes

the inversion.

It can be shown that

RD;MZ ¼
2c2

12
c2

1

1þa2
1
þc2

1

2c2
12

c2
1

1þa2
1
þc2

1

2c2
12

c2
1

1þa2
1
þc2

1

2c2
12

c2
1

1þa2
1
þc2

1

2

4

3

5; and RD;DZ

¼
2c2

12
c2

1

1þ:5a2
1
þc2

1

2c2
12

c2
1

1þ:5a2
1
þc2

1

2c2
12

c2
1

1þ:5a2
1
þc2

1

2c2
12

c2
1

1þ:5a2
1
þc2

1

2

4

3

5:

Note that all elements in RD,MZ are equal because all

elements in RTM = RMT are equal (c12c1). Likewise, all

elements in and RD,DZ are equal, yet different from the

elements in RD,MZ when the variable for which the trait

is corrected is itself influenced by genetic factors (in

the denominator a1
2 for MZ twins versus .5a1

2 for DZ

twins). We can now calculate R�T for both MZ and DZ

twins:

R�T;MZ ¼
a2

2 þ c2
2 þ c2

12 þ e2
2 a2

2 þ c2
2 þ c2

12

a2
2 þ c2

2 þ c2
12 a2

2 þ c2
2 þ c2

12 þ e2
2

" #

�
2c2

12
c2

1

1þa2
1
þc2

1

2c2
12

c2
1

1þa2
1
þc2

1

2c2
12c2

1

1þa2
1
þc2

1

2c2
12c2

1

1þa2
1
þc2

1

2

6

4

3

7

5

¼
1� 2c2

12
c2

1

1þa2
1
þc2

1

ða2
2 þ c2

2 þ c2
12Þ �

2c2
12

c2
1

1þa2
1
þc2

1

ða2
2 þ c2

2 þ c2
12Þ �

2c2
12

c2
1

1þa2
1
þc2

1

1� 2c2
12

c2
1

1þa2
1
þc2

1

2

6

4

3

7

5

and

R�T ;DZ ¼
a2

2 þ c2
2 þ c2

12 þ e2
2 :5a2

2 þ c2
2 þ c2

12

:5a2
2 þ c2

2 þ c2
12 a2

2 þ c2
2 þ c2

12 þ e2
2

" #

�
2c2

12
c2

1

1þ:5a2
1
þc2

1

2c2
12

c2
1

1þ:5a2
1
þc2

1

2c2
12

c2
1

1þ:5a2
1
þc2

1

2c2
12

c2
1

1þ:5a2
1
þc2

1

2

6

4

3

7

5

¼
1� 2c2

12
c2

1

1þ:5a2
1
þc2

1

ð:5a2
2 þ c2

2 þ c2
12Þ �

2c2
12

c2
1

1þ:5a2
1
þc2

1

ð:5a2
2 þ c2

2 þ c2
12Þ �

2c2
12

c2
1

1þ:5a2
1
þc2

1

1� 2c2
12

c2
1

1þ:5a2
1
þc2

1

2

6

4

3

7

5

Because RD differs across zygosity, the diagonal elements

of R�T also differ across zygosity, i.e., MZ and DZ twins have

different residual variances. The extent of the difference

depends on the extent to which the moderator is affected by

genetic factors (i.e., the residual variances of MZ and DZ

twins will be more different if the genetic influences on M are

larger, i.e., if a1
2 is larger), and the nature of the correlation

between T and M, i.e., the elements in RTM.

If T and M are correlated via C, all elements in RTM are

identical (i.e., c12c1). If T and M are exclusively correlated

via E, then RTM is again identical for MZ and DZ twins,

and equals:

RTM ¼
e12e1 0

0 e12e1

� �

:

It can be shown that:

RD;MZ ¼
e2

21

1þa2
1
þc2

1

�e2
21

�e2
21

e2
21

1þa2
1
þc2

1

2

6

4

3

7

5

; and

RD;DZ ¼

e2
21

e2
1

1� 1
2
a2

1
þc2

1ð Þ2
�e2

21
e2

1
1
2
a2

1
þe2

1

�e2
21

e2
1

1
2
a2

1
þe2

1

e2
21

e2
1

1� 1
2
a2

1
þc2

1ð Þ2

2

6

6

4

3

7

7

5

; and that

R�T ;MZ ¼
1� e2

21

1þa2
1
þc2

1

a2
2 þ c2

2 þ e2
21

a2
2 þ c2

2 þ e2
21 1� e2

21

1þa2
1
þc2

1

2

6

4

3

7

5

; and

R�T ;DZ ¼
1� e2

21
e2

1

1� 1
2
a2

1
þc2

1ð Þ2
1
2
a2

2 þ c2
2 þ

e2
21

e2
1

1
2
a2

1
þe2

1

1
2
a2

2 þ c2
2 þ

e2
21

e2
1

1
2
a2

1
þe2

1

1� e2
21

e2
1

1� 1
2
a2

1
þc2

1ð Þ2

2

6

6

4

3

7

7

5
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If T and M are exclusively correlated via A, then RTM is

not equal across zygosity:

RTM;MZ ¼
a12a1 a12a1

a12a1 a12a1

� �

; and

RTM;DZ ¼
a12a1 :5 � a12a1

:5 � a12a1 a12a1

� �

and it can be shown that:

RD;MZ ¼
2ða2

21
a2

1
Þ

1þa2
1
þc2

1

2ða2
21

a2
1
Þ

1þa2
1
þc2

1

2ða2
21

a2
1
Þ

1þa2
1
þc2

1

2ða2
21

a2
1
Þ

1þa2
1
þc2

1

2

6

4

3

7

5

; and

RD;DZ ¼
a2

21
a2

1
11

4
�a2

1
�c2

1ð Þ
3
4
a4

1
þc2

1
e2

1
þ1

a2
21

a2
1

1�5
8
a2

1
þ10

8
c2

1ð Þ
3
4
a4

1
þc2

1
e2

1
þ1

a2
21

a2
1

1�5
8
a2

1
þ10

8
c2

1ð Þ
3
4
a4

1
þc2

1
e2

1
þ1

a2
21

a2
1

11
4
�a2

1
�c2

1ð Þ
3
4
a4

1
þc2

1
e2

1
þ1

2

6

4

3

7

5

;

and that

R�T;MZ ¼
1� 2ða2

21a2
1Þ

1þa2
1
þc2

1

a2
2 þ c2

2 �
2ða2

21a2
1Þ

1þa2
1
þc2

1

a2
2 þ c2

2 �
2ða2

21
a2

1
Þ

1þa2
1
þc2

1

1� 2ða2
21

a2
1
Þ

1þa2
1
þc2

1

2

6

4

3

7

5

; and

R�T;DZ ¼
1� a2

21
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1
11

4
�a2

1
�c2

1ð Þ
3
4
a4

1
þc2

1
e2

1
þ1

1
2
a2
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2 �
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a2
1
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8
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8
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3
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:

Implication for the variance decomposition

of the residual of T

Now that we know how the residual variances are calcu-

lated under the extended univariate moderation model

when correlations between M and T run exclusively via A,

C or E, we can fill in the values used in Simulation studies

1 and 2 to study the differences in variance decomposition

between the full bivariate model and the extended uni-

variate model (moderation is assumed absent).

In all these simulations we assumed

for MZ twins RM;MZ ¼ RT ;MZ ¼
1 :7
:7 1

� �

and for DZ twins RM;DZ ¼ RT ;DZ ¼
1 :5
:5 1

� �

:

Simulation settings when T and M are correlated via C

(Notation/parameter names as used in Fig. 1a, settings as

depicted in Fig. 2b):

MODERATOR am =
ffiffiffiffi

:4
p

; cm =
ffiffiffiffi

:3
p

; em =
ffiffiffiffi

:3
p

, such

that Am = .4, Cm = .3, and Em = .3

CROSS PATHS ac = 0; cc =
ffiffiffiffi

:2
p

; ec = 0

TRAIT au =
ffiffiffiffi

:4
p

; cu =
ffiffiffiffi

:1
p

; eu =
ffiffiffiffi

:3
p

such

that Au = .4, Cu = .1 and Eu = .3

For both MZ and DZ twins, RTM equals:

RTM ¼
ffiffiffiffi

:3
p ffiffiffiffi

:2
p ffiffiffiffi

:3
p ffiffiffiffi

:2
p

ffiffiffiffi

:3
p ffiffiffiffi

:2
p ffiffiffiffi

:3
p ffiffiffiffi

:2
p

� �

:

The residual variance–covariance matrices equal

R�T ;MZ ¼
:9294118 :6294118

:6294118 :9294118

� �

; and

R�T ;DZ ¼
:92 :42

:42 :92

� �

:

These residual matrices can be read into a program like

Mx (Neale et al. 2006) and would subsequently under the

extended univariate model yield unstandardized estimates

of Au, Cu and Eu of .4028, .2218, and .2993, respectively.

The corresponding values of Au, Cu and Eu in the bivariate

model are .4, .1, and .3.

Simulation settings when T and M are correlated via E

MODERATOR am =
ffiffiffiffi

:4
p

; cm =
ffiffiffiffi

:3
p

; em =
ffiffiffiffi

:3
p

, such

that Am = .4, Cm = .3, and Em = .3

CROSS PATHS ac = 0; cc = 0; ec =
ffiffiffiffi

:2
p

TRAIT au =
ffiffiffiffi

:4
p

; cu =
ffiffiffiffi

:3
p

; eu =
ffiffiffiffi

:1
p

such

that Au = .4, Cu = .3 and Eu = .1

So for both MZ and DZ twins, RTM equals:

RTM ¼
ffiffiffiffi

:3
p ffiffiffiffi

:2
p

0

0
ffiffiffiffi

:3
p ffiffiffiffi

:2
p

� �

:

such that the residual variance–covariance matrices equal

R�T ;MZ ¼
:882352 :782353

:782352 :882352

� �

; and R�T ;DZ ¼
:92 :54

:54 :92

� �

:

When these residual matrices are read into Mx, we get

under the extended univariate model unstandardized

estimates of Au, Cu and Eu of values .5555, .2482, and

.1001, respectively. The corresponding values of Au, Cu

and Eu in the bivariate model are .4, .3, and .1.

Simulation settings when T and M are correlated via A

MODERATOR am =
ffiffiffiffi

:4
p

; cm =
ffiffiffiffi

:3
p

; em =
ffiffiffiffi

:3
p

, such

that Am = .4, Cm = .3, and Em = .3

CROSS PATHS ac =
ffiffiffiffiffiffiffi

:15
p

; cc = 0; ec = 0

TRAIT au =
ffiffiffiffiffiffiffi

:25
p

; cu =
ffiffiffiffi

:3
p

; eu =
ffiffiffiffi

:3
p

such

that Au = .25, Cu = .3 and Eu = .3

for MZ and DZ twins, RTM equal:

RTM;MZ ¼
ffiffiffiffi

:4
p ffiffiffiffiffiffiffi

:15
p ffiffiffiffi

:4
p ffiffiffiffiffiffiffi

:15
p

ffiffiffiffi

:4
p ffiffiffiffiffiffiffi

:15
p ffiffiffiffi

:4
p ffiffiffiffiffiffiffi

:15
p

� �

; and RTM;DZ

¼
ffiffiffiffi

:4
p ffiffiffiffiffiffiffi

:15
p

:5 �
ffiffiffiffi

:4
p ffiffiffiffiffiffiffi

:15
p

:5 �
ffiffiffiffi

:4
p ffiffiffiffiffiffiffi

:15
p ffiffiffiffi

:4
p ffiffiffiffiffiffiffi

:15
p

� �

:
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The residual variance–covariance matrices equal

R�T ;MZ ¼
:9294118 :6294118

:6294118 :9294118

� �

; and

R�T ;DZ ¼
:94 :47

:47 :94

� �

:

When these residual matrices are read into Mx, we would

get under the extended univariate model unstandardized

estimates of Au, Cu and Eu of values .3372, .2975, and .3004,

respectively. The corresponding values of Au, Cu and Eu in

the bivariate model are .25, .3, and .3.
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