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ABSTRACT: As a nonrenewable resource, phosphate rock is an important support
for the development and survival of the national economy. The regional distribution
and output of phosphate rock in China are extremely uneven, and the amount of
high-quality ore resources is relatively poor, which seriously restricts the development
and utilization of phosphate rock resources in China. This paper briefly summarizes
the distribution characteristics of phosphate rock resources and summarizes the
characteristics and research progress of Ediacaran-early Cambrian phosphorus
mineralization types, geological characteristics, and deposit genesis of the Yangtze
platform in South China. The Ediacaran-early Cambrian sedimentary phosphorite
deposits in China are mainly distributed in Yunnan, Guizhou, Hubei, Sichuan and
Hunan provinces of the Yangtze platform, in which the early Cambrian phosphate
deposits are also rich in rare earth elements, associated with uranium, nickel,
molybdenum, vanadium, and other beneficial metal elements. The increase of
atmospheric oxygen content at the Ediacaran-Cambrian boundary may have
promoted the extensive oxygenation of the late Neoproterozoic oceans, so the
Ediacaran-early Cambrian oceans generally showed a reductive environment, and
there may be dynamic chemical stratification of the oxidation zone-sulfide zone-iron
zone. Up to the early Cambrian, the redox stratified structure of Precambrian seawater may still be inherited, showing that the
surface water is an oxidizing environment, changing to a reduction environment, and even wedge-shaped sulfide water is developed
at the bottom of the deep basin. The main phosphorus sources are deep phosphorus-rich seawater, continental weathering, and deep
hydrothermal activity of Ediacaran-early Cambrian marine sedimentary phosphorite deposits in South China. The genetic
mechanisms of phosphorite deposits in the Yangtze platform in South China are mainly biogenic, upwelling phosphorus-forming
theory, mechanical mineralization, and syn-sedimentary hot water mixed genesis. In the future, it is still necessary to further explore
the internal relationship between phosphorus deposits and major geological events, the in situ analysis of microstructure of
phosphate rock ores, and the genetic mechanism of phosphate deposits and the reconstruction of paleo-marine environment.

1. INTRODUCTION
The transitional period of the Ediacaran-early Cambrian
witnessed dramatic changes in the marine environment,
significant negative carbon isotope excursion of seawater and
radiation evolution of metazoan in the early Cambrian,1−8

leaving abundant geological evidence in several sedimentary
sequences. At the Precambrian-Cambrian boundary, it is
accompanied by frequent dynamic changes in marine redox
conditions,9−11 the rapid fluctuation of δ13Ccarb, long-term
positive δ34Ssulfate excursion and instantaneous anomaly of
δ95/97 Mo all record the frequent changes of marine
environment,12,13 in response to the change of atmospheric-
ocean oxygenation after the Snowball Earth event.14 Many
studies on the characteristics of mercury isotopes, molybde-
num isotopes and rare earth elements show that there is
obvious chemical stratification in the marine water from
Ediacaran to early Cambrian, and the increase of atmospheric
oxygen content drives the regional oxidation of the shallow

sea.13,15−17 During this period, a large-scale marine phosphor-
ite deposited around the world, including two important
metallogenic periods, namely, the Ediacaran (635−541Ma)
and the early Cambrian (541−529Ma), which is widely
distributed in Asia, Australia, Africa, and other regions.18

During this period, phosphate mineralization is closely related
to the global carbon cycle, two Neoproterozoic oxidation
events, and biological evolution, so the geochemical character-
istics and paleo-marine environment of marine phosphorites in
this period are ideal objects for in-depth analysis of the original
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geochemical information on seawater and the influence of
paleo-marine environment on phosphorus mineralization.
The Ediacaran-early Cambrian phosphorus mineralization in

China mainly developed in the Yangtze platform and the
northern margin of the northwestern Tarim block, especially
the Yangtze platform in south China, which is widely
distributed in Yunnan, Guizhou, Hubei etc. In the past,
many scholars have carried out detailed studies on the
geological characteristics, process mineralogy, radioisotope
chronology, enrichment mechanism, and mineralization of
phosphorite deposits on the Yangtze platform.19−24 This paper
summarizes the geological and geochemical characteristics of
the Ediacaran-early Cambrian phosphorus-rich sedimentary
series in South China, as well as the evolution characteristics of
the paleo-marine environment in South China during the
Ediacaran-early Cambrian transition period.

2. DISTRIBUTION OF PHOSPHATE ROCK RESOURCES
IN THE WORLD AND CHINA

The world is rich in phosphate rock resources, but the
geographical distribution is extremely uneven, mainly con-
centrated in Morocco/Western Sahara, China, Algeria, Syria,
Jordan, Egypt, the United States, and Australia (Figure 1;
Table 1). The total amount of phosphate resources in the
world is about 300,000Mt, of which sedimentary phosphate
rock deposits account for more than 95% of the total resources,
which is the main industrial phosphate ore type.25 According
to the geological conditions and genetic mechanism of the
formation of phosphorus deposits, phosphorus deposits are
divided into two types: primary phosphorus deposits and
secondary phosphorus deposits. The primary phosphorus
deposits can be divided into three types: endogenous
magmatic phosphate deposits, exogenous sedimentary phos-
phate deposits, and metamorphic phosphorus deposits, while
the secondary phosphorus deposits are mainly bird manure

accumulation, weathering-leaching residue, and cave accumu-
lation type. The global sedimentary phosphorite deposits are
mainly distributed in the United States, China, the Middle
East, and North Africa.25 The main metallogenic periods
include late Proterozoic-Cambrian, the phosphate deposits are
mainly distributed in Central and South Asia; Permian
phosphorus is deposited in North America; Jurassic-early
Cretaceous phosphorus is deposited in Eastern Europe; late
Cretaceous-Eocene phosphorus deposit is mainly found in
North Africa, the Middle East and Central Asia; Cenozoic
Miocene phosphorus formation period is in the southeastern
United States.26

Figure 1. Global distribution map of phosphate resources (modified from Pufahl and Groat25).

Table 1. Global Distribution of Phosphate Resources25

Country Resources/Mt Country Resources/Mt

Sedimentary
deposits

Morocco/W.
Sahara

50,000 Tunisia 100

China 3,700 India 65
Senegal 2,200 Senegal 50
Syria 1,800 Togo 30
Jordan 1,300 Mexico 30
Egypt 1,250 Vietnam 30
United States 1,100 Total 65,661
Australia 1,030
Saudi Arabia 956 Igneous deposits
Peru 820 Brazil 315
Iraq 430 Russia 1,300
Other Countries 380 South Africa 1,500
Kazakhstan 260 Total 3,115
Israel 130

All sources of the
world

68,776
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China is not only the main supplier of global phosphate
production, but also a large agricultural country, with an
average annual demand of 11−12 million tons of phosphate
fertilizer. China is rich in phosphate rock resources and various
deposit types, but its geographical distribution is uneven.
Endogenous magmatic and metamorphic phosphorus deposits
are mainly distributed in North China and Tarim blocks, while
sedimentary phosphorite deposits are mainly distributed in
Yunnan, Sichuan, Guizhou, Hubei, and Hunan provinces
around the Yangtze block (Table 2).27 The phosphogenic
stage mainly includes the late Neoproterozoic Ediacaran, early
Cambrian Meishucun stage, and early Devonian in China.
Among them, the Ediacaran phosphorites are mainly
distributed in central Guizhou, western Hunan and western
Hubei. The early Cambrian phosphorites are distributed in
three metallogenic belts of Sichuan-Yunnan, Sichuan-Shaanxi
and central Guizhou, which is rich in rare earth elements and
associated with metal elements such as uranium, nickel,
molybdenum, and vanadium.28

3. PALEO-MARINE ENVIRONMENT OF THE
EDIACARAN-EARLY CAMBRIAN IN SOUTH CHINA

The Ediacaran-early Cambrian transition period was an
important period of early earth evolution, which recorded
the radiation differentiation conditions and evolution of
metazoans as well as the drastic changes of marine chemical
conditions accompanied by the gradual oxidation of the global
atmosphere at that time. Marine phosphorite mineralization is
not only closely related to the biogeochemical cycle of
phosphorus but also related to paleogeography, paleomarine
environment, and biological evolution. The late Neoproter-
ozoic Ediacaran-early Cambrian phosphorite deposits in China
are mainly distributed in Guizhou, Hubei and Yunnan, and
their geological characteristics are as follows:1) the distribution
is controlled by paleogeographic environment; 2) the deposits
are distributed along the direction of paleo-plate movement; 3)
there are rich fossil records; 4) the deposit is of high grade and
associated with REE (rare earth elements) mineralization.
The early Cambrian black rocks of the Yangtze platform in

South China are widely distributed, forming a series of Barite,
phosphorite and Ni−Mo polymetallic sulfide deposits and rich
in biological fossils, which are favorable objects for studying

Table 2. Distribution of Phosphate Deposits in China

Classification Types Distribution P2O5/%
Associated
minerals References

Igneous deposits
ultramafic-alkalic rock Fanshan Northern margin of North China Block 3%∼15% V, Ti, REE 27
ultramafic rock-carbonatite Qieganbulake Northern margin of North China Block, Tarim Block 2%∼10% Nb, Th, REE 27
alkalic rock Liaoning, Shanxi 2%∼10% REE 27
carbonatite Baiyan Obo Inner Mongolia, Xinjiang 4%∼10% Nb, Th, REE 27
ultramafic rock Kawuliuke Tag Northern margin of North China Block, Tarim Block 2%∼10% V, Ti, Co 27
mafic rock Maying Northern margin of North China Block, Tarim Block 2%∼10% V, Ti 27
pegmatite Yousuopu Hebei, Inner Mongolia 11%∼29% REE 27
greenstone belt Zhaobinggou ancient continent nucleus of North China, Shandong 3%∼5% Ti 27

Wulanwusu ancient continent nucleus of Liao-Ji 3%∼7% Ti 27
Metamorphic deposits

migmatite Mahsan Kiamusu Block 2%∼5% C 27
sedimentary migmatite Haizhou Eastern margin of North China Block 12%∼16% Mn, Ca 27

Bulongtu Northern margin of North China Block 5%∼7% Fe, REE 27
Luotun Northern margin of North China Block 5%∼10% Fe 27

Sedimentary deposits
Sinian Kaiyang Southwestern margin of Yangtze Block 10%∼30% I 29

Jingxiang Southern margin of Yangtze Block 19%∼25% Ti, Cu, Pb 27
Shimen Southern margin of Yangtze Block 8%∼22% C 27
Xiangxi 17%∼19% Ca, Mg 27

Cambrian Kunyang Western margin of Yangtze Block 26%∼30% Ca, Mg 30
Mabian Western margin of Yangtze Block 23%∼31% C, F 24
Tiantaishan Western margin of Yangtze Block 12%∼26% U, Mn 27
Xinhua Southern margin of Yangtze Block 10%∼26% REE 21
Xinji Eastern, northwestern margin of Yangtze Block 6%∼20% Ca 27
Pingtaishan Northern margin of Tarim Block 3%∼25% V 27
Hanyuan Eastern, northwestern margin of Yangtze Block 11%∼23% K 27
Dongxi Zhejiang, Jiangxi 5%∼23% Ni, Pt, V 27
Damao passive margin of Sanya 12%∼19% Mn 27

Devonian Shifang foreland thrust belt of Longmenshan 20%∼28% REE 27
Weathered deposits

weathering - leaching
accumulation

Huangjingping 18%∼28% Th, U, REE 27

cave accumulation Tiandeng - 27
Ceheng 11%∼33% 31

guano accumulation Xisha islands Hainan, south islands -
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the changes of the marine environment in the geological
history.32,33 Previous studies have shown that early Cambrian
organic-rich shales were deposited under anoxia caused by
global transgression events and were affected by many factors:
primary productivity, sedimentary rate, upwelling range and
local hydrothermal activity,34−36 and the gradual expansion
process and influence of surface oxygen-containing seawater in
the ocean under the background of the increase of oxygen
content in the atmosphere during the early Cambrian. In the
process of phosphorus enrichment, collophane precipitates
directly from seawater or pore water, recording paleo-oceanic
environmental information.37 Therefore, the trace elements,
rare earth elements, and isotopic composition characteristics of
phosphate rocks can reflect the characteristics of paleo-marine
environment, which provide favorable conditions for evaluating
the changes of paleo-oceanic redox state, biological mineraliza-
tion, and marine geochemical vertical changes.
In the early Ediacaran, the southeastern margin of the

Yangtze platform can be divided into four sedimentary facies
from NW-SE: nearshore tidal flat facies, shallow slope facies
with barrier shoals, deep slope facies and deep basin facies.38

The Ediacaran Doushantuo Formation is composed of clastic
rocks, phosphorite rocks and carbonate rocks, integrated or
pseudointegrated on the Nantuo Formation tillites, integrated
with Dengying Formation carbonate rocks, and the sedimen-
tary time is limited to 635−551Ma.39,40 The Doushantuo
Formation recorded the oxidation of the water column during
the late Neoproterozoic Oxidation Event (NOE) and the

accompanying phosphate mineralization event.36,41 The
phosphorus-rich deposit of the Dengying Formation was
overlying the black shale of the early Cambrian Niutitang
Formation, and the sedimentary time is limited to 551−
542Ma.42 The phosphorus deposits are mostly found in the
semiconfined lagoon environment of the platform margin
shoals.43

After the late Neoproterozoic ice age, the Yangtze Platform
rapidly transformed from slope facies carbonate to shelf-slope
facies deposits dominated by clastic rocks, phosphorite rocks
and carbonate rocks,44 which can be divided into southwest
palaeo-continent and eastern coastal tidal flat-shallow slope-
deep basin facies and formed early Cambrian phosphorus-rich
deposits under the influence of transgression and upwelling.
The early Cambrian phosphorite deposits in China were
mainly deposited in shelf environment, and the typical
sedimentary areas are mainly Gezhongwu Formation and
Meishucun Formation, in which Gezhongwu Formation
phosphorites in Zhijin, Guizhou Province is offshore deposit,
and the Meishucun Formation in eastern Yunnan Province is
coastal deposit with relatively shallow water,37 both of which
contain a large number of small shell fossils (SSF).
The Ediacaran Doushantuo Formation in South China are

mainly distributed in central Guizhou, western Hubei and
western Hunan, and phosphorite and carbonate are widely
developed, mainly composed of dolomite phosphorite, clastic
phosphorite, granular phosphorite, siliceous phosphorite and
phosphate dolomite (Figure 2a−d), with an average P2O5

Figure 2. Late Ediacaran-early Cambrian phosphorus-rich sedimentary types in South China. a-phosphorite, Doushantuo Fm, 5 × 10(+); b-detrital
phosphorus dolomite, Doushantuo Fm, 5 × 10(−); c-detrital phosphorite, Doushantuo Fm, 5 × 10(+); d-dolomitic phosphorite, Doushantuo Fm,
5 × 10(+); e−g stromatolite phosphorite, Dengying Fm, 5 × 10(+); h-layered phosphorus dolomite, Dengying Fm, 5 × 10(−); i−l-algal pellet of
stromatolite phosphorite, Dengying Fm (scanning electron microscope); m-phosphorus dolomitic limestone, Niutitang Fm, 10 × 10(+); n-silicic
phosphortie, Niutitang Fm, 10 × 10(+); o-phosphorus nodules, Niutitang Fm, 10 × 10(−); p-dolomitic phosphorite, Niutitang Fm, 10 × 10(−).
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content of 28.96%.38,45 The REE content in Weng’an
phosphorus rocks are (18.59−285.91) × 10−6, Ce/Ce* =
0.56−1.02. The REE distributed pattern is characterized by
typical “cap type”, showing slight enrichment of MREE
(middle rare earth elements), suggesting that organic matter
is involved in phosphorus mineralization during Doushantuo
period.46 The stromatolite phosphorite (Figure 2 e−l) of Late
Ediacaran Dengying Formation is mainly found in the Weng’an
area. The milky white and gray columnar stromatolite and dark
gray fine crystalline dolomite are interspersed vertically, and
colloidal and granular texture is developed, with average P2O5
content is 19.93%.38,47 The Cambrian Niutitang Formation is
mainly phosphate nodules, clastic phosphorite and siliceous
phosphorite (Figure 2 m−p), with clastic texture and grain
texture, with average P2O5 content is 28.58%.

40,43

The increase of atmospheric oxygen during the late
Ediacaran-early Cambrian may have promoted extensive
ocean oxygenation at the end of Neoproterozoic, and the
atmospheric oxygen content may reach 10%−40%PAL
(Present Atmospheric Level),48 which also caused the
evolution of the Ediacaran biota and the subsequent Cambrian
metazoans explosion.49 The exponential increase of oxidation−
reduction sensitive elements in marine sediments also indicates
that the once widespread anoxic environment is transforming
into an oxidizing environment, but intermittent anoxic and
ferritic environment may still occur in the deep basin of the
Early Cambrian Yangtze Platform.1,50 Li et al.4 proposed that
the dynamic chemical stratification of oxidation zone-sulfide

zone-iron zone was maintained in the Ediacaran to Early
Cambrian ocean and believed that the chemical stratification
from nearshore to deep sea included oxidation zone, nitrate
reduction zone, iron and manganese reduction zone, sulfate
reduction zone, methanogenic zone and iron mineralization
zone.51

During the Early Cambrian, the Yangtze Platform suffered
from transgression from southeastern to northeastern, its
sedimentary facies gradually transited from shallow carbonate
to continental shelf slope and deep basin facies.43 Among the
important mineralization sequences widely distributed in
South China, phosphorite is usually deposited on the
continental shelf from the coast to the shelf edge. Weng’an
and Kaiyang in central Guizhou were shallow platform facies
deposits, while Xiangyang in western Hubei belonged to deep
basin facies deposits. Therefore, shallow basin and bay tidal flat
environment at the margin of paleo-continent or underwater
uplift are ideal places for phosphorus mineralization, while
shelf and basin in deep area are mostly thin layer, nodule or
lenticular phosphorites, which do not have geological
conditions for forming large-scale high-grade phosphorite
deposits.36

In recent years, with the development of metal stable isotope
analysis technology, based on C, S isotopes, stable isotopes
such as U, Mo and Fe have been gradually applied to paleo-
marine environment research, becoming effective indicators for
tracing the redox state of marine water.7,13,52,53 Many studies
based on various geochemical indicators such as inorganic

Table 3. Trace Element Characteristics of Ediacaran to Early Cambrian Phosphorite in South Chinaa

Area Strata Number Lithology Co/μg/g Ni/μg/g Th/μg/g U/μg/g V/μg/g Cr/μg/g V/(V+Ni) δU
Tuanshanpub Dengying

Formation
Z-3 uranium-bearing

phosphorite
9.46 375.40 0.96 320.60 1201.50 30.20 0.76 2.00

Z-4 uanium-bearing
phosphorite

8.90 285.60 1.45 330.10 1586.00 256.30 0.85 2.00

Z-5 uanium-bearing
phosphorite

33.28 346.20 1.24 658.40 948.50 18.50 0.73 2.00

Xinchongc XC-2 phosphorite 3.55 103.00 6.85 3.47 1501.00 916.00 0.94 1.21
XC-2-1 phosphorite 4.61 72.20 0.19 13.60 1368.00 503.00 0.95 1.99
XC-8 phosphorite 10.30 79.80 0.18 11.70 1232.00 532.00 0.94 1.99

Xia’and Dengying
Formation

WLX-2 sandy phosphorite 0.30 2.20 0.40 30.30 12.00 30.00 0.85 1.99

WLX-3 phosphorus
dolomite

0.30 2.10 0.40 7.40 15.00 13.00 0.88 1.96

WLX-4 stromatolite
phosphorite

0.20 0.50 <0.2 24.30 7.00 10.00 0.93

WLX-5 phosphorus
dolomite

1.00 4.00 0.60 5.70 8.00 36.00 0.67 1.93

WLX-6 stromatolite
phosphorite

0.20 0.20 <0.2 13.20 6.00 8.00 0.97

WLX-7 phosphorus
dolomite

0.70 1.60 0.80 6.10 11.00 19.00 0.87 1.92

WLX-8 phosphorus
dolomite

0.80 8.60 0.60 4.10 5.00 25.00 0.37 1.91

Weng’ane Doushantuo
Formation

YP-1-A granular phosphorite 58.60 9.25 2.31 12.50 17.10 10.70 0.65 1.88

YP-4-A granular phosphorite 27.50 8.24 2.35 13.30 14.50 9.73 0.64 1.89
YP-5-A granular phosphorite 25.80 7.89 2.37 14.40 13.30 5.96 0.63 1.90
YP-7-A biotic phosphorite 15.80 12.80 0.53 4.10 13.50 14.00 0.51 1.92
BD-1-A biotic phosphorite 18.10 10.00 0.66 11.50 40.40 18.80 0.80 1.96
BD-2-A biotic phosphorite 14.00 6.99 0.13 4.15 21.10 5.04 0.75 1.98
BD-8-B granular phosphorite 19.60 8.97 7.85 8.42 74.40 44.60 0.89 1.53
BD-9-A detrital phosphorite 18.70 19.10 5.44 9.69 57.80 30.90 0.75 1.68
BD-10-A detrital phosphorite 21.60 18.80 4.31 8.13 41.10 24.70 0.69 1.70

aNotes:δU = 6U/(3U + Th). b,cFrom refs 58, 59. dFrom ref 47. eFrom ref 45.
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carbon isotope, molybdenum isotope and sulfur isotope show
that there is a highly stratified redox structure in the Ediacaran
to Early Cambrian oceans in the Yangtze region of South
China.54−57 At the Doushantuo Formation, Dengying
Formation and Niutitang Formation in Ediacaran to Early
Cambrian in South China, synthesizing many discrimination
indexes of trace elements and rare earth elements, the average
V/(V + Ni) value is 0.70, 0.79, and 0.86 respectively, and the
average δU value is 1.83, 1.92, and 1.87, respectively (Table 3);
δCe always shows negative anomaly (δCe value is 2.70, 1.74,
and 1.57 respectively, Table 4), and the negative anomaly

trend gradually weakens with time. It is considered that the
Ediacaran to Early Cambrian phosphorus mineralization
period in South China is generally a reducing environment,
but with the end of the ice age, climate warming promotes the
enhancement of continental chemical weathering and
promotes the increase of oxygen content, and there are local
oxidation events. Due to the influence of transgression, the sea
level fluctuates frequently, which makes the Ce negative
anomaly weaken.

δ56Fe in the lower and upper phosphate layers of
Doushantuo Formation in Weng ’an is −0.33‰∼0.27‰,
−0.32‰∼0.21‰ respectively,38 and the oxidation−reduction
sensitive element content in the upper phosphate layer (Mo =
0.23−1.35 μg/g, U = 3.79−7.05 μg/g, V = 13.9−24.5 μg/g) is
obviously lower than that in the lower layer (Mo = 1.52−14.00
μg/g, U = 5.53−22.10 μg/g, V = 9.7−52.7 μg/g),61 the Ceanom
= −0.26∼−0.29 in upper phosphate layer, and Ceanom =
−0.065∼−0.077 in lower layer. In addition, Fe-redox pumping
is also key for phosphorus enrichment. In shallow oxidation-
sub oxidation ocean, iron hydroxide (FeOOH) can adsorb a
large amount of phosphorus, forming iron−phosphorus
complex (PO4

3−·FeOOH) and sinking into bottom sediments.
In the anoxic bottom water, these iron−phosphorus complexes
deoxidize phosphorus and release it into the water column, and
with the strong upwelling action, the deep phosphorus-rich
seawater enters the shallow ocean.23

All the geochemical evidence mentioned above indicate that
the late Neoproterozoic ocean changed from anoxic to
oxidizing environment,45 and the oxidation−reduction inter-
face gradually shifted from shallow ocean to deep ocean with
the expansion of seawater oxidation range. Wen et al.62

analyzed δ97/95 Mo of phosphorite in Meishucun Formation,
Yunnan Province, and proposed that the early Cambrian ocean

inherited the oxidation−reduction layered structure of
Precambrian ocean, and the surface water was in oxidation
environment, which changed to reduction environment in
depth, and even wedge-shaped sulfide water column may be
locally developed at the bottom. Zhu et al.63 studied Hg
abundance and δ15N in slope facies of Niutitang Formation in
Songtao, Guizhou Province. It is considered that the
enhancement of nitrogen fixation and nitrification of marine
organisms in the early Cambrian reduced environment caused
obvious negative excursion of δ15N and abnormal enrichment
of Hg, and the gradual oxidation of seawater and the decrease
of organic matter buried in the later stage led to the decrease of
Hg concentration, which showed the dynamic chemical
stratification characteristics of the ocean from Ediacaran to
Early Cambrian and the frequent changes of marine environ-
ment during this period.

4. GENETIC MECHANISM OF PHOSPHORITES
4.1. Phosphorus Sources. The material source of

phosphorus is the premise of the study on the genetic
mechanism of phosphate deposits. It is considered that the
main sources of phosphorus in marine sedimentary phosphate
rocks are the following. 1) Seawater, that is, phosphorus-rich
bottom water brought by upwelling. After the death of the
organism, the body’s decomposition may release phosphate,
which is absorbed and sunk by pore water. Under the influence
of transgression, frequent sea level fluctuations provide a power
drive for the exchange of deep bottom water and shallow
oxidized seawater, and the upwelling carries the deep
phosphorus-rich bottom water, which brings a lot of
phosphorus to the shallow field. 2) Terrigenous detrital,
under the background of the great oxidation event and the
breakup of Rodinia supercontinent, the erosion and chemical
weathering of paleo-continent were strengthened, and a large
amount of phosphorus-bearing terrigenous debris was
imported into the ocean. 3) Deep hydrothermal activity,
submarine volcanic eruption brought a large amount of Sr, U,
P, Si etc., the global 87Sr/86Sr of Ediacaran-Cambrian marine
sediments (>0.7090)64 also indicates that the seafloor
hydrothermal activity was frequent during this period, and
hydrothermal elements were imported, resulting in Sr isotope
fractionation.25,64

4.2. Biological Genesis. The discovery of stromatolite
phosphorite, microfossil assemblages, and algae fossils in the
late Neoproterozoic indicates that microorganisms played an
important role in the process of phosphate mineralization. The
Doushantuo Formation phosphorite in Weng’an and Kaiyang
area of Guizhou are rich in biologically related elements such
as Cr, Co, Sr and Pb, also found that the phosphate sediments
are mainly composed of calcium phosphate minerals and have
fossils,65 they all indicate that the biological prosperity may
have a positive effect on phosphorite deposition of the
Doushantuo period. The stromatolite phosphorite and gel
phosphate rock of the Ediacaran Dengying formation are
characterized by low REE concentrations, with an average REE
content of 63.26 μg/g,47,53 combined with the REE character-
istics of modern marine organisms (such as modern fishbone
fossils ∑ REE < 100 μg/g),66 indicating that bacteria and algae
were involved in phosphate mineralization during the
Precambrian period.67 Stromatolites, microfossils, algae fossils
in the phosphorus-rich strata of the Ediacaran Doushantuo
Formation and Dengying Formation, and many small shell
fossils in the early Cambrian Meishucun Formation (Gez-

Table 4. Rare Earth Element Characteristics of Ediacaran to
Early Cambrian Phosphorite in South China (with Average
Values)a

Strata
Niutitang
Formation

Dengying
Formation

Doushantuo
Formation

number of samples/
piece

153 45 164

∑REY/μg/g 653.74 63.26 86.51
LREE/HREE 5.84 6.06 6.26
δCe 1.57 1.74 2.70
δEu 0.23 0.24 0.26
Ceanom 0.07 0.13 0.29
(La)N/(Yb)N 19.11 16.71 11.93
(La)N/(Sm)N 7.28 6.95 5.56

aNote: “N” stands for continental upper crust standardization,
standardized data from [60]; δCe = 2CeN/(LaN + PrN); δEu =
2EuN/(SmN + GdN); Ceanom = lg[3CeN/(2LaN + NdN)].
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hongwu Formation) indicate that in the two phosphorus
mineralization events there is a close relationship between the
occurrence of high-quality and high-grade phosphate deposits
and biological activities.
Biological participation in phosphorus mineralization is

mainly reflected in two aspects: biological organisms absorb
phosphorus from seawater and pore water, and after the death
of organisms, the degradation of organic matter by bacteria
causes phosphorus to decompose. Phosphate is concentrated
into pore water. In addition, the life activities of organisms also
indirectly change the physical and chemical conditions of the
ocean. Ph value of pore water increases due to the
decomposition of organic matter, which promotes the
crystallization of some phosphate to form authigenic apatite
minerals such as fluoroapatite and fine-grained apatite.68,69 The
other phosphorus of the wreckage is directly consolidated
under diagenesis to form phosphate nodules, which are
accumulated and mineralized.70

4.3. Upwelling Genesis. Upwelling is the most possible
mechanism to explain the genesis of marine phosphorite
deposits, but it is closely related to biological processes. It is
considered that during the decomposition of biological
remains, some phosphorus is released and enriched in the
bottom water, and the upwelling is an important driving force
for the migration of deep phosphorus-rich bottom water to
shallow coastal areas. For the phosphorus-rich seawater
brought to the shallow ocean by the upwelling, due to the
decrease of pressure and the increase of temperature, the
solubility of phosphate in the water column decreases and
directly precipitates to form phosphorus-rich sediments. On
the other hand, the nutrient elements reaching the shallow
ocean increase the primary productivity and prosper the
organisms, which in turn absorb the phosphate in the pore
water and enrich the phosphorus. However, with the
deepening of the study, it is found that the modern phosphorus
mineralization in Peru and Namibia is mainly distributed in the
continental shelf and slope environment under the upwelling
area.71 Therefore, it is considered that the upwelling is
beneficial to the upward migration of bottom phosphorus-rich
seawater, but it is not a necessary condition for the phosphorus
mineralization, and the migration-enrichment process of
phosphorus-rich bottom water in the shallow ocean is still
controversial.
4.4. Mechanical Mineralization. Most of phosphorite

deposits are mechanical sedimentation of the Ediacaran-early
Cambrian in South China, which is the initial enrichment of
phosphorus-rich sediments in the early stages is the product of
erosion and redeposition under the influence of geological
forces. During the study of phosphorus-rich sedimentary
genesis of Kaiyang and Weng’an Doushantuo Formation in
central Guizhou, Wang et al.72 considered that Weng’an
phosphorus rock experienced at least two stages of trans-
gression-retrogression cycle, and accordingly, the phosphate
mineralization of Doushantuo Formation was divided into
three stages: 1) In the early stage, transgression was frequent,
carbonate tidal flat deposits were developed in central
Guizhou. And the water depth deepened from south to
north, the upwelling and biological prosperity cause the
deposition of phosphorus-rich organic matter, which degrades
the organic matter at the redox interface, releases a large
amount of phosphate, and completes the initial enrichment. 2)
In the middle stage, with the large-scale retrogression, the
carbonate cements were dissolved by the erosion and leaching

of the primary phosphorite, and the broken clastic particles
were deposited in situ or accumulated after transportation, so
as to improve the phosphorus grade. 3) In the late stage, the
transgression once again caused the sea level to rise and the
microbial activity flourished, and the early clastic phosphorite
continued to accept phosphorus deposition and cementation,
resulting in the second phosphorus mineralization event. In
summary, it is considered that the transgression in the late
Neoproterozoic triggered the exchange between the deep
phosphorus-rich seawater and the shallow seawater, and the
widely distributed shallow ocean was an ideal place for
phosphorus accumulation. The rhythmic variation character-
istics of the lithology of the Doushantuo Formation and the
transgression-retrogression cycles of the two stages also
indicate that the intermittent fluctuation of sea level has led
to the formation of phosphorite-carbonate deposits with cycle
characteristics in central Guizhou.
4.5. Syn-Sedimentary Hydrothermal Genesis. The

strong hydrothermal activity can change the chemical
composition of seawater and marine environment and provide
a habitat for biological communities.15 The major and
microgeochemical indexes of phosphorite in Doushantuo
Formation in central Guizhou indicate that hydrothermal
activity is accompanied by transgression-retrogression cycle,
which is an important contributor to phosphorus source of late
Neoproterozoic phosphorus mineralization events, it also plays
an important role in phosphorus transport and deposition.45

Liu et al.73 found that mineral fluid inclusions (quartz and
muscovite) in phosphorite of the Lower Cambrian Gezhongwu
Formation in Zhijin, Guizhou, which is direct evidence that
hydrothermal activity is involved in phosphorus mineralization.
At the same time, the phosphate nodules preserved in the black
shale also recorded some information on volcanic and
hydrothermal activities of the Lower Cambrian Niutitang
Formation in South China. It was found that the volcanic ash
and hydrothermal activities carried a large amount of nutrients,
which promoted the development of marine primary
productivity and produced many phosphate-rich water
masses.41 Silicon isotope measurements of authigenic quartz
in the upper phosphate layer of Zhongyicun member in
Yunnan (δ30Si = −0.40‰),64 the δ13C of phosphorite in
Zhongyicun member in Laolin area (δ13C = −3.20‰∼0‰)74

also indicate that hydrothermal fluid was added in the process
of phosphate mineralization.
Although the earth has experienced extensive weathering

and imported many terrigenous materials, the strontium
isotopic composition of sediments is still lower than that of
terrestrial materials due to strong hydrothermal activities.12

The geochemical characteristics of the above phosphorite
deposits indicate that the seafloor hydrothermal solution can
provide some phosphorus and metal-ore-forming elements in
the mineralization process. Some scholars associate hydro-
thermal activities with biological activities and believe that
submarine hot water provides energy and rich nutrients for the
biota,75 which indirectly promotes the improvement of marine
primary productivity and is beneficial to the accumulation and
precipitation of phosphorus.
Marine sedimentary phosphorite deposits have been studied

for a long time. Scholars have put forward a variety of genetic
mechanisms and models about the phosphorite deposits, but
they have also been controversial. For a long time, a large
number of detailed studies have been carried out on the
temporal and spatial distribution, rock and mineral assemblage,
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lithofacies, paleogeography, major and trace elements and
isotope geochemistry of phosphorite, it is considered that the
direct precipitation of phosphorus-rich seawater, carbonate
metasomatism, microbial interaction, or the interaction of the
above processes may produce different phosphorus-bearing
sedimentary facies (Figure 3).11 Therefore, the genetic
mechanism of phosphate deposits cannot be demonstrated
solely from one aspect; we should pay more attention to the
internal relationship between phosphorus mineralization and
major geological events. And the microfabric analysis of
phosphate rocks should be strengthened, comprehensively
considering various influencing factors to discuss the process of
phosphorus deposition and mineralization.

5. CONCLUSIONS

1) China is very rich in phosphate resources, but there are
extreme imbalances of geographical distribution and
utilization etc. There are many types of phosphate
deposits, and sedimentary phosphate rock deposits are
the main industrial phosphate ores. The Ediacaran-early
Cambrian sedimentary phosphorite deposits are mainly
distributed in Yunnan, Guizhou, Hubei, Sichuan, and
Hunan provinces of the Yangtze platform in South
China, in which the early Cambrian phosphorite
deposits are also rich in rare earth elements, associated
with uranium, nickel, molybdenum, vanadium and other
beneficial metal elements.

2) The paleo-marine environment from Ediacaran to early
Cambrian changed frequently, showing a reductive
environment overall, and there may be dynamic
chemical stratification of oxidation zone-sulfide zone-
iron zone. However, due to the influence of trans-
gression, the sea level fluctuates frequently, and in the
early Cambrian, it may still inherit the redox stratified
structure of Precambrian ocean, showing that the surface
water is an oxidizing environment, changing to a deep
reduction environment, and even wedge-shaped sulfide
areas are developed at the deep basin.

3) The main phosphorus sources of Ediacaran-early
Cambrian marine sedimentary phosphorite deposits in
South China are deep phosphorus-rich seawater,
terrigenous detritus, and hydrothermal activity. The
genetic mechanism and metallogenic model of marine
sedimentary phosphorite deposits have been controver-
sial. At present, the established genetic mechanisms
mainly include biogenic mechanism, upwelling mecha-
nism, mechanical mineralization, and syn-sedimentary
hydrothermal genesis. Various genetic hypotheses are
not independent, but interrelated and influence each
other, so in the future, it is necessary to further explore
the internal relationship between phosphorus deposits
and major geological events and deepen the genetic
mechanism and the reconstruction of paleo-marine
environment.

Figure 3. Sedimentary model of the phosphorite deposit.
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