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Vı́ctor A. López-AgudeloID
1,2, Tom A. Mendum3, Emma Laing3, HuiHai WuID

3,

Andres Baena2,4, Luis F. BarreraID
2,5, Dany J.V. BesteID

3*, Rigoberto Rios-EstepaID
1*

1 Grupo de Bioprocesos, Departamento de Ingenierı́a Quı́mica, Universidad de Antioquia UdeA, Medellı́n,

Colombia, 2 Grupo de Inmunologı́a Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de
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Abstract

Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium

tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attrac-

tive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just

individual enzymatic components, is to use a systems biology framework, such as a

Genome-Scale Metabolic Network (GSMN) that allows the dynamic interactions of all the

components of metabolism to be interrogated together. Several GSMNs networks have

been constructed for Mtb and used to study the complex relationship between the Mtb geno-

type and its phenotype. However, the utility of this approach is hampered by the existence of

multiple models, each with varying properties and performances. Here we systematically

evaluate eight recently published metabolic models of Mtb-H37Rv to facilitate model choice.

The best performing models, sMtb2018 and iEK1011, were refined and improved for use in

future studies by the TB research community.

Author summary

The tuberculosis bacillus, Mycobacterium tuberculosis (Mtb), is a global killer causing mil-

lions of deaths every year and is therefore a major burden to human health. Treatment of

tuberculosis requires a cocktail of antibiotics for a minimum of 6 months. Treatment fail-

ure is common and is a major driver in the upward trend of antibiotic resistance, recog-

nized by the World Health Organization as one of top ten threats to global health. A key

to the success of Mtb as a human pathogen is ascribed to its extraordinary metabolic flexi-

bility. Understanding the metabolism of Mtb is therefore an important goal of TB

researchers as metabolic pathways present attractive drug targets. A powerful approach to

study metabolism is through the use of genome-scale metabolic networks which enable

metabolism to be studied at the whole system level rather than one enzyme at a time.
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Here, we comprehensively compare available genome scale metabolic networks. Our

results identify the best performing networks for a variety of modelling approaches. This

work allowed us to refine these models for the TB community to use in future studies to

probe the metabolism of this formidable human pathogen.

Introduction

Mycobacterium tuberculosis (Mtb) is the causative bacterial agent of the global tuberculosis

(TB) epidemic, which is now the biggest infectious disease killer worldwide, causing 1.6 mil-

lion deaths in 2017 alone [1]. Mtb is an unusual bacterial pathogen, as it is able to cause both

acute life threatening disease and a clinically latent infections that can persist for the lifetime of

the human host [2,3]. Metabolic reprogramming in response to the host niche during both the

acute and the chronic phase of TB infections is a crucial determinant of virulence [4–7]. With

the worldwide spread of multi- and extensively-resistant strains of Mtb thwarting the control

of this global emergency, new drugs against Mtb are urgently needed and metabolic pathways

present attractive and potentially powerful targets [8,9].

Genome-scale constraint-based modelling has proved to be a powerful method to probe the

metabolism of Mtb. The first Genome Scale Metabolic Networks (GSMNs) of Mtb were pub-

lished in 2007 by Beste (GSMN-TB) [10] and Jamshidi (iNJ661) [10,11] and have been used as

a platform for interrogating high throughput ‘omics’ data, by simulating bacterial growth, gen-

erating hypothesis and informing drug discovery. Subsequently, these two original models

were iteratively improved to expand both their scope and accuracy [12–20], to give us a current

total of 16 inter-related GSMN of Mtb (Fig 1).

The first modifications to the two original models were carried out by Colijn et al. who

built MFF-RmwBo [21], by adding the mycolic acid producing sub-model of Raman et al.
(MAP, Fig 1) to GSMN-TB [22]. Fang et al. [23] systematically modified iNJ661 to produce

iNJ661v, a model designed to describe Mtb growing in vivo. [24,25]. Bordbar et al. expanded

the utility of the Mtb GSMNs by building the first integrated human macrophage–Mtb

genome-scale reconstruction, iAB-AMØ-1410-Mt-661 [26]. This host-pathogen model com-

bined the original iNJ661 with a cell-specific alveolar macrophage model derived from the first

human metabolic reconstruction Recon 1 [27]. A 2017 update of this model was subsequently

used to evaluate ‘omics’ data and predict substrate availability within TB infected macrophages

[28]. These advances were followed by a further complex series of updates and mergers to pro-

vide the wide selection of models we have today. Chindelevitch et al. used the algorithm, Meta-

Merge [12], to combine GSMN-TB and iNJ661 to improve the predictive value for high

throughput genome essentiality data, while Lofthouse et al. [14] published GSMN-TB 1.1, an

improved and extended version of GSMN-TB that successfully predicted sole nitrogen and

carbon substrate utilization patterns. In 2014, Vashisht et al. published a curated and updated

genome-scale model (iOSDD890) based on iNJ661, informed by a comprehensive manual re-

annotation of the Mtb genome [16]. However, this model lacked β-oxidation pathways, ren-

dering it unable to grow on fatty acids [20]. Also in 2014, Rienksma et al. combined three of

the previously published models [15] to construct a new model, sMtb, followed, in 2018, with

an improved version (sMtb 2018) designed for modelling Mtb metabolism inside macrophages

[29,30]. Finally, the first consolidated GSMN, iEK1011 was constructed using standardized

nomenclature of metabolites and reactions from the BiGG database [31,32]. These updates

and revisions, combined with the availability of omics data have provided the TB community
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with models that have better accuracy and scope when compared to earlier GSMN-TB itera-

tions [33].

With so many well-annotated GSMN’s of Mtb available (Fig 1), a crucial first step in any

genome scale exploration of the metabolism of Mtb is the selection of an appropriate model.

Here, we systematically evaluate the performance of eight recently published Mtb-H37Rv

GSMNs. In addition to comparing the metrics of the models descriptively in terms of size, con-

nectivity, number of blocked reactions and gaps in the network, we also identify the thermody-

namically infeasible, and energy generating cycles that could significantly impact on the

accuracy of flux simulations. Using Flux Balance Analysis (FBA) and Flux Variability Analysis

Fig 1. The evolution of Genome Scale Metabolic models of Mtb. Models highlighted in grey were analysed in this study. Numbers denote genes/intracellular

reactions. Black circles are indicative of merged Mtb models.

https://doi.org/10.1371/journal.pcbi.1007533.g001
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(FVA) we perform growth analysis and compare the models’ ability to predict gene essentiality

when grown on different carbon and nitrogen sources including cholesterol, a physiologically

relevant carbon source for Mtb growing within its human host.

This work provides an inventory of the available GSMN-TB and their utility in recapitulat-

ing aspects of Mtb metabolism. In addition, we present updated versions of the best perform-

ing models iEK1011 and sMtb2018 (iEK1011_2.0 and sMtb2.0) for the TB research

community to use in order to study the metabolism of this deadly pathogen.

Results and discussion

Descriptive evaluation of the models

Each of the GSMNs analysed in this study (Fig 1, S1 Appendix) combine knowledge from

genome annotations, literature and measured biochemical compositions of Mtb. The complex

linkage between genotype and phenotype is made by gene-protein-reaction (GPR) associa-

tions, implemented as Boolean rules in order to connect gene functions to enzyme complexes,

isozymes or promiscuous enzymes, and finally to biochemical reactions [34]. Using set theory,

we computed the intersection between all sets of the models’ genes (Fig 2, and S1 Table). In

accordance with expectations, the pairwise matrix (Fig 2) demonstrates that Mtb models con-

structed from the same ancestor (iNJ661 or GSMN-TB), are more similar (Fig 1, Fig 2). By

contrast the consolidated models iEK1011 and sMtb2018 share gene similarities (>60%,

<85% for iEK1011; and>60%, <98.4%) with all the other models demonstrating an indepen-

dence from iNJ661 and GSMN-TB.

Fig 2. Pairwise matrix of shared genes among Mtb models. Values in black (genes in common between the models), green and red text represent the

number and percentage of Mtb model genes specified in the y- and x-axis, respectively.

https://doi.org/10.1371/journal.pcbi.1007533.g002
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All the models contain essential metabolic pathways such as carbon, nitrogen, nucleotides,

and cofactor metabolism (S2 Table), encoded by 479 common genes that can be used to con-

struct a core metabolic network for Mtb [35]. The models sMtb, sMtb2018 and iEK1011 had

the greatest coverage of GPR associations and contain genes associated with survival and viru-

lence within the host such as transport, respiratory chain, fatty acid metabolism, dimycocero-

sate esters and mycobactin metabolism (S3 Table) and are therefore good candidates to study

Mtb metabolism during intracellular growth [36,37].

In contrast, iOSDD890 (Fig 1) contains a high percentage of genes associated with nitrogen,

propionate, pyrimidine, peptidoglycan, pyruvate and cofactor metabolism, but has a lower

percentage of genes associated with glycerophospholipid metabolism, cholesterol degradation

and fatty acid biosynthesis. Likewise, the iNJ661v_modified model (Fig 1) has a small number

of genes involved in lipid-metabolism (e.g. β-oxidation, cholesterol degradation, fatty acid bio-

synthesis, lipid biosynthesis and mycolic acid biosynthesis). These models therefore have limi-

tations for in silico simulation of Mtb growing on these physiologically relevant lipid sources

and therefore also modelling in vivo growth.

Checking mass and charge balances of biochemical reactions

Currency metabolites like water, protons, ATP, and cofactors like NADH, NADPH, FADH2,

CoA, etc. are ubiquitous and essential for metabolism. The addition of these cofactor metabo-

lites in GSMNs, and in particular their inclusion in the biomass reaction, considerably

improves phenotype predictions and is a hallmark of good quality reconstructions [19,38]. In

order to check currency metabolites we converted the GSMNs into substance graphs (using a

local script) where metabolites (nodes) are connected by edges (undirected and unweighted) if

they appear in the same reaction [39] and computed node degrees (number of edges connected

to the node) (Table 1 and S4 Table).

This analysis indicated that GSMN-TB 1.1, iCG760 and iSM810 models have the lowest

number of currency metabolites (Table 1). Water and protons were the most underrepresented

metabolites (low degree values), indicating that these models may not be correctly balanced.

Some GSMNs e.g. iCG760, are functional even in the absence of any currency metabolites

however this will negatively affect predictions. It is important that biochemical reactions are

charge and mass balanced. Unbalanced reactions in GSMNs may allow proton or ATP

Table 1. Degree values for currency metabolites of Mtb GSMNs. PI: Phosphate, PPI: diphosphate, ACP: acyl-carrier protein, MK: menaquinone.

Currency Metabolite GSMN-TB1.1 iOSDD890 sMtb iCG760 iSM810 iNJ661v_mod iEK1011 sMtb2018

H 72 701 512 102 127 667 741 511

CO2 150 202 266 146 160 193 204 268

H2O 5 507 624 0 5 472 569 624

ATP 236 353 320 264 242 295 315 320

AMP 101 170 115 103 103 117 132 115

PI 189 293 266 213 196 268 293 267

PPI 175 235 180 177 180 168 196 181

COA 175 163 230 175 190 142 194 230

ACP 98 48 136 94 103 48 57 136

NADH 102 141 262 104 113 111 176 263

NADPH 133 151 192 132 146 147 150 192

FADH2 40 47 55 42 48 21 62 55

MK 37 20 11 37 37 20 18 20

O2 37 76 64 40 41 68 91 65

https://doi.org/10.1371/journal.pcbi.1007533.t001
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production out of nothing [40]. In order to test whether the Mtb GSMNs are mass and charge

balanced, we used the COBRA Toolbox function “checkMassChargeBalance” [41]. Unfortu-

nately, we were not able to perform this analysis for GSMN-TB1.1, iCG760 and iSM810 due to

the lack of standard metabolite formulas in these models (Table 2). iEK1011 has the lowest

number of unbalanced reactions (4) compared with sMtb2018 (8), sMtb (12), iNJ661v_modi-

fied (13) and iOSDD890 (78). The majority of the unbalanced reactions belonged to cell wall

biosynthetic pathways, including arabinogalactan, peptidoglycan, and mycolic acid biosynthe-

sis (S5 Table) reflecting the difficulties in rebuilding accurate metabolite formula for complex

cell wall components.

Biomass composition

The biomass formulations for the published Mtb GSMNs have been extensively described else-

where [10,11,15]. The GSMN-TB and iNJ661 models and their respective descendants have

different biomass compositions. The biomass composition for GSMN-TB was derived experi-

mentally from chemostat cultures as well as estimated from the literature, whereas iNJ661 bio-

mass was estimated only from literature [11,15]. As a result, there are significant differences in

the amount of lipid (56% in GSMN-TB versus 25% in iNJ661) and nucleic acids (6% in

GSMN-TB and 26% in iNJ661) in the biomass formulations (S6 Table). Moreover, in order to

facilitate modelling of the metabolism of Mtb both in vitro and in vivo, GSMN-TB has two bio-

mass formulations: “BIOMASS1”, containing the complete macromolecular components of

Mtb and “BIOMASSe”, consisting of only the bacterial components essential for in vitro
growth.

Growth-associated maintenance and biomass reactions

The growth-associated maintenance (GAM) is the amount of energy required to replicate the

cell whereas the non-growth-associated maintenance (NGAM) [15,32] is the amount of ATP

required to maintain survival in the absence of growth. For Mtb these values have been esti-

mated using data from other bacteria as experimental data is not available. The Mtb models

originating from iNJ661 use a GAM of 60 mmol gDW-1; those derived from GSMN-TB have a

GAM of 47 mmol gDW-1 whilst those originating from sMtb use a GAM of 57 mmol gDW-1.

Table 2. Global features of the Mtb metabolic models analyzed in this study. DEM: Dead-End Metabolite, URs: Unbounded Reactions, TICs: Thermodynamically

Infeasible Cycles, diss. Flux: dissipation flux, MW: Molecular Weight, UD: Undetermined.

GSMN-TB 1.1 iOSDD890 sMtb iCG760 iSM810 iNJ661v_mod iEK1011 sMtb2018

Reactions 876 1152 1311 965 938 1054 1228 1321

Intracellular Reactions 876 1055 1192 864 938 956 1118 1200

Metabolites 667 961 1047 754 724 840 998 1049

DEMs 25 162 33 84 53 90 110 34

Blocked Reactions 98 (11%) 290 (25%) 92 (7%) 89 (9%) 117 (12%) 153 (14%) 138 (11%) 92 (7%)

Metabolites without Formula 667 0 2 754 724 0 4 2

Unbalanced Reactions UD 78 12 UD UD 13 4 8

URs 27 (3%) 52 (5%) 70 (6%) 45 (5%) 33 (3.5%) 67 (7%) 20 (2%) 75 (6%)

TICs 8 17 16 8 8 23 4 17

ATP diss. Flux 0 0 0 0.33 0 0 0 0

GTP diss. Flux 0 0 0 0.33 0 0 0 0

CTP diss. Flux 0 0 0 0.33 0 0 0 0

UTP diss. Flux 0 0 0 0.33 0 0 0 0

Biomass MW UD 1.0070 1.0126 UD UD 1.0094 1.0937 1.0126

https://doi.org/10.1371/journal.pcbi.1007533.t002
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The values for NGAM are within the range of 0.1 and 3.15 mmol gDW-1 h-1 and therefore

have negligible effects on gene essentiality predictions [32].

A comparison between biomass reactions across Mtb GSMNs (S1 File) showed that the bio-

mass reaction “BiomassGrowthInVitro” from sMtb and sMtb2018 cannot be produced in 7H9

medium containing glycerol, Tween and OADC (S7 Table). We found this was because sMtb

and sMtb2018 are unable to produce spermidine and S-Methyl-5-thio-alpha-D-ribose1-pho-

sphate in these conditions.

Another potential error in GSMNs is the molecular weight of biomass, which should be

defined as 1 g/mmol. Discrepancy in biomass weight can arise as a result of unbalanced reac-

tions which will affect the reliability of flux predictions using FBA. This effect can be amplified

when host-pathogen interactions are simulated by integrating host and pathogen metabolic

models [42]. Using a systematic algorithm [42] we found deviations of less than 10% from 1

g/mmol in all the Mtb models tested (Table 2) (iOSDD890 (0.7%), iNJ661v_mod (0.9%), sMtb

(1.2%), sMtb2018 (1.2%) and iEK1011 (9%)) demonstrating that these models are suitable for

modelling the metabolism of Mtb within the host. The biomass of iEK1011 has the highest

value because this model is a hybrid of sMtb and the iOSDD890 biomass reactions (S8 Table).

Blocked reactions and dead-end metabolites

Identifying blocked reactions within a GSMN is important for identifying metabolic dead

zones caused by dead-end metabolites (metabolites that are not consumed) [43–45]. Using the

MC3 algorithm [46], we show that Mtb models derived from GSMN-TB (GSMN-TB1.1,

iCG760, and iSM810) have a smaller number of blocked reactions in comparison with the

iNJ661 derived models (iNJ661v_modified, and iOSDD890) (Table 2). sMtb and sMtb2018

have the lowest percentage (7%) of blocked reactions, in contrast to iOSDD890, which has the

highest percentage (25%). All the Mtb GSMNs included blocked reactions in lipid, cofactor,

sugar and amino acid metabolism; iOSDD890, iSM810 and iNJ661v_mod had blockages in

important pathways such as glycolysis and redox metabolism (S9 Table). Most of the models

excluding iCG760 and iSM810 contained gaps in the vitamin B12 biosynthesis pathway [47].

Specifically, we found that aqua(III) cobalamin and different cobalt-precorrins were not con-

nected by reactions in most of the networks. This cofactor is necessary for activation of essen-

tial pathways such as nucleotide, propionate, and amino acids metabolism [47]. The existence

of a functional B12 biosynthetic pathway is still under debate. A bona-fide transporter of vita-

min B12 has been identified [48,49], however there remains no direct evidence that Mtb is able

to scavenge vitamin B12 from its intracellular niche [49,50].

Of those models that contained a pathway for cholesterol degradation (GSMN-TB1.1,

iCG760, iSM810, iEK1011, sMtb, and sMtb2018) the GSMN-TB1.1 cholesterol degrading

pathway contained a number of dead end metabolites making this model unsuitable for

exploring the metabolism of this important in vivo carbon source.

Thermodynamic and energetic properties

Integrating thermodynamics data into GSMNs is extremely useful in order to check the feasi-

bility of reactions and their directionality [51,52]. Although, Mtb GSMNs have been built from

thermodynamics information, current Mtb GSMNs have never been checked for infeasible

internal flux cycles. These are reactions that do not exchange metabolites with the surround-

ings and therefore violate the second law of thermodynamics [51,53,54]. A tractable way to

identify reactions participating in these thermodynamically infeasible cycles (TICs) is to define

the set of reactions required for an unbounded metabolic flux under finite or zero substrate

uptake inputs. Using FVA the Unbounded Reactions (URs) can be identified as those reactions
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with fluxes at the upper and/or lower bound constraints. Thus we identified the thermody-

namically infeasible cycles (TIC) using a local script following methodologies based on FVA

and the analysis of the null space of the stoichiometric matrices (S10 Table, S2 File) [52,55].

Using this approach we show that models descended from GSMN-TB (GSMN-TB1.1, iCG760,

and iSM810) have a lower percentage of unbounded reactions as compared with iNJ661 ances-

tors (iSM810, iNJ661v_modified). Interestingly, the sMtb2018 model has an increased number

of unbounded reactions as compared to the original sMtb (Table 2).

Fritzemeier and colleagues demonstrated that over 85% of genome-scale models that lack

exhaustive manual curation contain Energy Generating Cycles (EGCs) [56,57]. These cyclic

net fluxes are entirely independent of nutrient uptakes (exchange fluxes) and therefore have a

substantial effect on the predictions of constraint-based analyses, as they basically generate

energy out of nothing. Using FBA with zero nutrient uptake [57] but maximizing energy dissi-

pation reactions for ATP, GTP, CTP and UTP we show that iCG760 is the only Mtb genome-

scale model that contains EGCs (Table 2).

Gene essentiality metrics

An effective and commonly employed predictive matrix for GSMNs is the ability to reproduce

high throughput gene essentiality data [58]. Several high throughput transposon mutagenesis

screens have been performed for Mtb [59–65] in different in vitro conditions. To compare our

models we used a transposon insertion sequence dataset produced by Griffin et al [62]. In this

study genes were identified that were essential for growth on cholesterol as compared with

glycerol [62]. Cholesterol is an important intracellular source of carbon when Mtb is growing

within its host and cholesterol metabolism has been highlighted as a potential drug target [66].

This data was not, however used to identify the genes required for growth on cholesterol only.

We therefore reanalyzed the Griffin transposon sequencing data using the statistical Bayesian/

Gumbel Method incorporated into the software TRANSIT [67], to identify genes required for

growth on glycerol, or growth on cholesterol (S11 and S12 Tables). Only genes categorized as

essential (ES) and non-essential (NE) were considered for this analysis.

We evaluated the overall predictive power of all the Mtb GSMNs versus a total of four high

throughput gene essentiality datasets [62,64,65] by computing the Area Under the Curve

(AUC) of the Receiver Operating Characteristic (ROC) (S1 Fig). The predictive power of the

six GSMNs that contain the cholesterol degradation pathway (GSMN-TB1.1, iCG760, iSM810,

sMtb, sMtb2018 and iEK1011) showed that for both cholesterol and glycerol minimal media

the models derived from GSMN-TB [10] as a core metabolic network have better predictive

capacities than those using iNJ661 [11] (S13 and S14 Tables). However the recently curated

model iEK1011 had the highest predictive capability overall. The supremacy of iEK1011 was

also confirmed by comparing the predictive power of the models using essentiality data

obtained for Mtb grown in standard Middlebrook 7H9 media [64] (S1C Fig and S15 Table).

We also used the essentiality dataset generated by Minato and colleagues who identified

conditionally essential Mtb genes using several in vitro conditions including a complex

medium “MtbYM”, which contains several carbon and nitrogen sources and also amino acids,

nucleotide bases, cofactors, and other nutrients [65]. Overall the Mtb GSMN were less able to

correctly predict essentiality (S1D Fig and S16 Table) in MtbYM as compared to other media

(S1A–S1C Fig), probably because the biomass objective functions were reconstructed and vali-

dated using growth on standard Mtb media [10,11]. However these analyses demonstrated the

ability of these models to accurately predict gene essentiality under new nutritional conditions.

We identified genes that all of the GSMN’s were unable to correctly assign essentiality (S17

Table, Fig 3). Using a fixed threshold value of 5% of the maximum wild-type growth rate
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(WTGR) we identified in silico essential and non-essential genes and compared these to the

experimental high throughput gene essentiality data to identify True Positives (TP), True Neg-

atives (TN), False Positives (FP-a gene which is essential for in silico growth but non-essential

Fig 3. False Negative and False Positive predictions in the evaluated media. (a) Venn diagram for predicted false negative (FN) genes; (b) Venn diagram for

predicted false positive (FP) genes. Genes in the grey box represents the intersection of all FN and FP genes in the four media. Genes are classified as True-positives

(TP) if model simulation predicts no growth when essential genes are deleted, False-positives (FP) if model simulation predicts no growth when not essential genes are

deleted, True negatives (TN) if model simulation predicts growth when not essential genes are deleted and False negatives (FN) if model simulation predicts growth

when essential genes are deleted.

https://doi.org/10.1371/journal.pcbi.1007533.g003
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by Tn-seq) and False Negatives (FN-in silico the gene is non-essential but the biological data

predicts essentiality). The FN included genes known to have a major role in Mtb central car-

bon metabolism e.g., icl (Rv0467, isocitrate lyase), gltA (Rv0896, Citrate synthase), glpD2

(Rv3302c, Glycerol-3-phosphate dehydrogenase), pyk (Rv1617, Pyruvate Kinase), sucC and

sucD (Rv0951, Rv0952, Succinyl-CoA ligase), among others (S17A Table). Some of these genes

e.g. icl and gltA are considered conditionally essential genes in the Online GEne Essentiality

(OGEE) database [68], because they are classified as NE genes in 7H10 medium but ES in min-

imal medium [61,63]. This may reflect the presence of alternative routes in silico that are not

feasible in vivo due to regulatory constraints. However, they may also reflect inaccuracies in

the transposon mutagenesis studies. Some of the FP genes are involved in mycolic acid biosyn-

thesis (S17B Table), e.g., mmaA2 (Rv0644c, Cyclopropane mycolic acid synthase), and mas
(Rv2940c, mycocerosic acid synthase). These genes were inaccurately classified as ES in silico
but experimentally as NE. This reflects our incomplete knowledge of Mtb requirements for dif-

ferent mycolates and mycolate anabolism.

Growth metrics

Mtb is able to metabolise several carbon and nitrogen sources both in vitro and when growing

in the host [28,69–71], and therefore we evaluated the growth metrics of Mtb GSMNs on 30

sole carbon and 17 sole nitrogen sources (Fig 4). The in silico results were compared with avail-

able experimental data from Biolog Phenotype microarrays and minimal media [14,72]. Inter-

estingly the recent consolidated models, iEK1011 and sMtb, had the poorest performance of

all the models in predicting growth of Mtb in unique carbon and nitrogen sources (Fig 4A and

4B). A fundamental issue with the Mtb models descended from iNJ661 is that they all require

glycerol for growth as this is a component of the biomass formulation. Both iEK1011 and

sMtb were unable to grow in silico on cholesterol, acetate, oleate, palmitate and propionate

when provided as sole carbon sources. We posit that this is a result of inaccuracies in reactions

associated with redox metabolism and oxidative phosphorylation and specifically menaqui-

none-dependent reactions such as fumarate reductase and succinate dehydrogenase [73–76].

To test this hypothesis we added an irreversible menaquinone-dependent succinate dehydro-

genase reaction into sMtb (Q[c] + SUCC[c] ->QH2[c] + FUM[c]). In support of our hypothe-

sis this corrected the in silico growth phenotype of Mtb growing on acetate, cholesterol,

propionate and fatty acids (Fig 4A and S18 Table). Although iEK1011 also contains a fumarate

reductase reaction that is linked to menaquinone/demethylmenaquinone, it does not contain a

menoquinone-dependent succinate dehydrogenase (the reverse reaction). As was the case for

sMtb, the addition of a new irreversible menaquinone-dependent succinate dehydrogenase

reaction (mqn8[c] + succ[c] -> fum[c] + mql8[c]) to iEK1011 significantly improves its

growth predictions on sole carbon sources (S18I and S18J Table). These simulations are sup-

ported by experimental data demonstrating that fumarate reductase and succinate dehydroge-

nase are essential for Mtb to grow in media containing glycolytic and non-glycolytic substrates

[74,75]. Succinate dehydrogenase is a bifunctional enzyme that is part of the TCA cycle and

complex II of the electron transport chain, coupling the oxidation of succinate to fumarate,

with the corresponding reduction of membrane-localized quinone electron carriers [75,77].

Mtb has multiple succinate dehydrogenases and fumarate reductases that are essential for the

survival of Mtb during hypoxia [73–75,78,79]. Succinate is central to much of Mtb’s lipid

metabolism: host derived cholesterol, uneven chain length fatty acids or methyl branched

amino acids all generate propionyl-CoA that can be channeled into the methylcitrate cycle to

produce succinate (S2 Fig), while acetyl-CoA produced by β-oxidation of host derived even-

chain fatty acids is metabolized through the glyoxylate shunt to also produce succinate (S2
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Fig). Succinate oxidation by succinate dehydrogenases is therefore a critical step, as the

enzyme couples the TCA cycle with electron transport chain and oxidative phosphorylation

[78]. Having multiple succinate dehydrogenases provides Mtb with the metabolic flexibility to

survive within the different niches within the human host.

Whilst carbon metabolism has been intensively studied in vitro and ex vivo, attention has

only recently been directed to nitrogen metabolism [80–83]. Similar to carbon consumption,

iEK1011 and sMtb were poor at predicting Mtb growth on sole nitrogen sources (Fig 4B, Mat-

thews Correlation Coefficient (MCC) = 0.54 and 0.48, respectively). However, like carbon the

addition of the menaquinone linked succinate dehydrogenase reaction into iEK1011 and sMtb

significantly improves in silico growth on sole nitrogen sources (S19I and S19J Table). Specifi-

cally, correct growth predictions were obtained for Mtb growing on branched chain amino

acids (isoleucine and valine) and proline (Fig 4B). This can be explained because complete

degradation of these amino acids converges on succinate via methyl citrate cycle (degradation

of isoleucine and valine) or the GABA shunt (degradation of proline) thereby coupling the

TCA cycle with oxidative phosphorylation via succinate dehydrogenase.

Refining Mtb GSMNs

Overall iEK1011 and sMtb2018 were the best GSMN’s in terms of genetic background, net-

work topology, number of blocked reactions, mass and charge balance reactions and gene

essentiality predictions (Fig 2, Table 1, Table 2, and S1 Fig) and therefore we selected these

models to refine further. iEK1011 has the advantage of containing standardized BiGG nomen-

clature of metabolites and therefore can easily be integrated into the human GSMN Recon3D

[84] to simulate intracellular growth, while sMtb2018 has the utility that this model supports

in silico growth in a wider variety of different nutritional conditions. Our analysis also

highlighted some fundemental issues with these models which we analysed in order to

improve the performance of these exemplar GSMN’s.

As discussed above, including menaquinone and menaquinol as electron carriers in all

respiratory chain reactions and selected ubiquinone-dependent reactions improved the

GSMN’s. Six new menaquinone-dependent reactions were added into the sMtb model e.g.,

succinate dehydrogenase, and cytochrome bc1 menaquinone-dependent, fumarate reductase,

and malate dehydrogenase [30]. This improved the predictive growth metric of sMtb and

importantly allowed in silico growth on cholesterol (see sMtb2018, Fig 4A). Similarly, we

added to iEK1011 an irreversible menaquinone-dependent succinate dehydrogenase to

improve the performance of this model when growing on media containing fatty acids and

cholesterol. Further improvements were also made to cholesterol metabolism by updating

both models to include reactions for the biochemical degradation of the C and D rings of cho-

lesterol which was not known when these models were reconstructed (S20A and S20B Table)

[85].

Although the functionality of a vitamin B12 biosynthetic pathway in Mtb remains uncer-

tain, the detection of a small ratio of non-synonymous (dN) and synonymous (dS) nucleotide

substitution (dN/dS < 1) in the cobalamin biosynthesis genes of clinical strains of Mtb sug-

gests that this bacteria may be able to synthesize B12 in certain conditions [50]. Therefore,

Fig 4. Predictive capacity of Mtb genome-scale models for the utilization of sole carbon and nitrogen sources; (a) Growth predictions of Mtb genome-scale models using

sole carbon sources; (b) Growth predictions of Mtb genome-scale models by using sole nitrogen sources. Model’s performance was evaluated by computation of the

Matthews Correlation Coefficient (MCC). Experimental growth data were obtained from [14,72]. The values represent growth (value = 1) and no growth (value = 0) in a

specific substrate, respectively. Carbon or Nitrogen substrates are classified as TP if the model predicts growth and growth is also observed experimentally, FP if the model

predicts growth but no growth is observed experimentally, TN if the model and the experimental data both predict no growth and FN if model simulation predicts no

growth but growth is observed experimentally.

https://doi.org/10.1371/journal.pcbi.1007533.g004
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until there is further experimental evidence to the contrary, we completed a B12 biosynthesis

pathway by adding the genes Rv0306 and cobCDU to the models as well a B12 transporter

(Rv1819c and Rv1314c), and added a dependence for B12 to MUTA (Methylmalonyl CoA

Mutase) and METH (Methionine Synthase) reactions. We also included the co-factors biotin

and pyridoxal-5-phosphate in the biomass formulation to enhance the phenotype prediction

of sMtb2018 and iEK1011 as recommended by Xavier et al. [19].

Using the iNJ661v_modified model Xavier and colleagues demonstrated that inclusion of

essential organic cofactors in biomass objective function improves phenotypic and gene essen-

tiality predictions [19]. Here, the biomass reaction from iEK1011 was improved by the addi-

tion of universal cofactors such as sodium, NAD, NADP, CoA, FAD, FMN, Pyridoxal-

5-phosphate, thiamine pyrophosphate, tetrahydrofolate, 5-formyltetrahydrofolate etc. to gen-

erate a new biomass formulation called “BIOMASS__2.1” (S20B Table). This biomass formula

does not contain glycerol and therefore allowed this model, like Mtb itself, to grow in media

lacking this carbon source. Similarly, we modified the biomass formula of sMtb to create “Bio-

massGrowth_2.0” which we incorporated into sMtb2.0.

We also added 51 missing genes into sMtb2018 that were identified from the iOSDD890

model and belong to pathways such as glycolysis, gluconeogenesis, TCA cycle, amino acid

metabolism and mycolic acid biosynthesis to improve the GPR and predictive accuracy of this

model (S21 Table).

We also identified (see method section) (S22 Table) [52,55] twelve TICs within sMtb2.0;

(Fig 5A, S2 Appendix) and seven TICs in iEK1011_2.0 (Fig 5B, S3 Appendix); The major TIC

of sMtb2.0 were within folate metabolism, catalysed by thymidylate synthase (thyA and thyX)

and dihydrofolate reductase (DFRA). These reactions areessential steps for de novo glycine

and purine biosynthesis and for the conversion of deoxyuridine monophosphate (dUMP) to

deoxytimidine monophosphate (dTMP) (Fig 5A). DFRA 1 and DFRA 2, and DFRA 3 and

DFRA4 are parallel reactions catalyzed by Rv2763c, dihydrofolate dehydrogenase. These reac-

tions are identical except that they use a different currency metabolite (Fig 5A). Pereira and

colleagues [38] recommend the use of NADPH/NADP in anabolic reactions and NADH/

NAD+ in catabolic reactions for more accurate flux distributions. Therefore we modified the

model by retaining the DFRA2 and DFRA4 reactions and eliminating the NADH/NAD+-

dependent reactions, DFRA1 and DFRA3. Our thermodynamic calculations indicate that

THYA and THYX (ΔrGmin = -123 kJ/mol, ΔrGmax = -9.3 kJ/mol and ΔrGmin = -160 kJ/mol,

ΔrGmax = -33 kJ/mol, respectively) are irreversible in the forward direction (S23 Table) and

therefore we also modified these reactions accordingly.

Our analysis also showed that two-ubiquinone oxidoreductases (QRr, NADH2r) and a

transhydrogenase reaction (NADTRHD) were thermodynamically infeasible within the

iEK1011_2 as both were identified as reversible. The Gibbs free energy computations

indicate that these reactions are unidirectional in the direction of ubiquinol production

(DrGmin ¼ � 134:9 kJ
mol ; DrGmax ¼ � 20:7 kJ=mol and DrGmin ¼ � 131:7 kJ

mol ; DrGmax ¼

� 20:1 kJ=mol, respectively) and therefore we changed the model accordingly.

The modified model Mtb2.0 consists of 1322 reactions, 1054 metabolites and 989 genes,

while iEK1011_2.0 comprises of 1238 reactions, 977 metabolites and 1012 genes. The predic-

tive capability of these models was then evaluated by simulating gene essentiality predictions

using available high-throughput essentiality experimental data [62,64,65] defining 5% of the

wild-type growth rate as our arbitary essentiality threshold (S24 Table). This analysis showed

that iEK1011_2.0 has the highest predictive performance in the four media conditions tested

(glycerol and cholesterol minimal medium, Middlebrook 7H9, and YM medium) compared

with all the Mtb GSMNs evaluated, including sMtb2.0 (Table 3). The ability of these updated
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models to predict growth on sole carbon and nitrogen sources was also improved (S25 Table).

This included important carbon sources available in the human host and therefore

iEK1011_2.0 and sMtb2.0 are suitable models for studying host-pathogen interactions [28].

The models iEK1011_2.0 and sMtb2.0 were then evaluated using MEMOTE [86], which is

a standardised approach to quality control metabolic models. Overall scores for iEK1011_2.0

and sMtb2.0 were 74% and 37%, respectively (S3 File). The poor score for sMtb2.0 is mislead-

ing: it results from the lack of standardised nomencalature and does not reflect the model’s

Fig 5. Thermodynamic Infeasible Cycles found in sMtb2.0 and iEK1011_2.0 with proposed modifications; (a) TIC at folate metabolism in sMtb2.0; (b) TIC affecting

ubiquinone oxidoreductases in iEK1011_2.0.

https://doi.org/10.1371/journal.pcbi.1007533.g005
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accuracy. Indeed the scores for the consistency category were 64% and 80%, for iEK1011_2.0

and sMtb2.0, respectively, demonstrating their high quality and utility in systems biology

applications.

Table 3. Genome-scale model features for sMtb2.0 and iEK1011_2.0.

Metrics sMtb2.0 iEK1011_2.0

Genes 989 1012

Reactions 1322 1238

Intracellular Reactions 1198 1119

Exchange Reactions 122 119

Metabolites 1054 977

% of Unbounded Reactions (49) 4% 20 (1.8%)

MCC Cholesterol minimal medium 0.55 0.63

Evaluated Genes 834 866

True Positive Genes 209 210

True Negative Genes 449 503

False Positive Genes 58 21

False Negative Genes 118 132

MCC Glycerol minimal medium 0.54 0.62

Evaluated Genes 834 866

True Positive Genes 207 206

True Negative Genes 449 503

False Positive Genes 58 21

False Negative Genes 120 136

MCC 7H9 medium 0.56 0.69

Evaluated Genes 984 1006

True Positive Genes 202 216

True Negative Genes 600 667

False Positive Genes 96 45

False Negative Genes 86 78

MCC MtbYM medium 0.43 0.52

Evaluated Genes 827 858

True Positive Genes 153 152

True Negative Genes 458 509

False Positive Genes 51 17

False Negative Genes 165 180

MCC Unique Carbon Source 0.58 0.67

Evaluated Metabolites 30 30

True Positive Metabolites 20 20

True Negative Metabolites 5 6

False Positive Metabolites 4 3

False Negative Metabolites 1 1

MCC Unique Nitrogen Source 0.75 0.75

Evaluated Metabolites 17 17

True Positive Metabolites 11 11

True Negative Metabolites 4 4

False Positive Metabolites 2 2

False Negative Metabolites 0 0

https://doi.org/10.1371/journal.pcbi.1007533.t003
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Pathway utilization of sMtb2.0 and iEK1011_2.0

Using Roisin’s Minimal Media containing glycerol and Tween80 (represented by oleic acid in

the Mtb models) [70], we carried out Flux Variability Analysis (FVA) [87], FBA and uniform

sampling using sMtb2.0 and iEK1011_2.0. FVA is a variant of FBA which, instead of finding a

single optimal solution, computes the range of fluxes in each reaction that are compatible with

optimization of the objective function [87,88]. A GAM value of 1 mmol gDW-1 h-1 and experi-

mental uptake rates (glycerol, oleic acid and CO2) from steady state chemostat cultures at a

growth rate of 0.01 h-1 [89] were used as constraints in both models. Complete results are

reported in (S26A and S26B Table), but for brevity we discuss only the 33 reactions of Central

Carbon Metabolism (CCM) and 21 extracellular (EX) reactions (S26C Table, S4 File) as infor-

mative examples. FBA using iEK1011_2.0 and sMtb2.0 predicts growth rates of 0.0084 h-1 and

0.025 h-1, respectively (S26C Table) showing that iEK1011_2.0 more accurately predicts exper-

imental Mtb growth rate under these conditions [89].

Our FVA results showed that there were significant differences in the flux ranges when

using the two models (p< 0.001; Kruskal-Wallis test). We hypothesized that this was a result

of the different biomass formulations in the two models. In order to test this hypothesis we

performed FVA without constraining the biomass objective function and in accordance with

our expectations these simulations generated similar flux profiles (S27 Table, S4 File).

A comparison of the FVA results with the experimental 13C-Metabolic Flux profiles of che-

mostat grown Mtb indicates that the models are able to correctly predict the general experi-

mental metabolic flux profile [89]. For instance, although sMtb2.0 has a higher flux

distribution through gluconeogenic enzymes such as FBA and FBP compared to iEK1011_2.0

(Fig 6 and S26 Table), both values are comparable with the experimental flux values [89]. Flux

through the non-oxidative enzymes of the pentose phosphate pathway enzymes, TKT and

TAL, was greater in sMtb2.0 than in iEK1011_2.0 (Fig 6 and S26 Table) and the oxidative

phase of the pentose phosphate pathway wasn’t active in either of the models (Fig 6 and S26

Table).

Flux through the TCA cycle was slightly different between the two models however the gen-

eral pattern was similar to the experimentally derived fluxes (S26 Table). sMtb2.0 predicted a

lower carbon flux though the oxidative side of the TCA cycle than iEK1011_2.0 (Fig 6, S26

Table) and therefore was more aligned with the experimental data. Both models correctly pre-

dicted an active glyoxylate shunt and oxidation of pyruvate via the carbon fixing anaplerotic

reaction, PCK, to produce oxaloacetate and succinyl-CoA through succinyl-CoA synthetase

(Fig 6, and S26C Table). However, iEK1011_2.0 incorrectly predicts that this enzyme is func-

tioning in the reverse direction producing succinate (S26C Table). Overall both models show

utility in predicting experimental metabolic fluxes.

Conclusions

By systematically evaluating eight of the recent Mtb GSMNs, we have highlighted the advan-

tages and flaws of each of the models and identified solutions to some of their shortcomings.

Importantly we have highlighted that the Mtb models descended from GSMN-TB

(GSMN-TB1.1, iSM810 and iCG760) contain many unbalanced reactions, often because pro-

tons and water have not been accounted for. Dead-end metabolites, particularly in cofactor

metabolism and related pathways was also an issue for some of the GSMNs. Overall, we show

that sMtb2018 and iEK1011 have the best predictive power for Mtb. This analysis allowed us

to update these two models by the addition of new reactions, gap filling of cofactor metabo-

lism, and the identification and curation of TICs, to generate Mtb models with increased

veracity.
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The improved GSMN’s, sMtb2.0 and iEK1011_2.0, with their respective Memote report

[86], are now available in sbml and json formats (S3 and S5 Files) to simulate and predict the

metabolic adaptation of Mtb in a plethora of in vitro and in vivo intracellular conditions. We

encourage researchers to continue to curate these models as new data and methods become

available. Improved GSMN’s including macrophage-Mtb models provide a critical platform

for increasingly more accurate simulations and ultimately a better understanding of the under-

lying biology of this pathogen.

Methods

All simulations were conducted on a laptop running Windows 10 (Microsoft) using MATLAB

2016a (MathWorks Corporation, Natick, Massachusetts, USA), COBRA Toolbox version 3.0

[41], RAVEN 2.0 [90] and Gurobi Optimizer version 7.5.2 (Gurobi Optimization, Inc., Hous-

ton, Texas, USA). All code written for this study is available in supplementary information

(S1–S8 Files). Genome-scale models of Mtb Models were obtained from supplementary infor-

mation of published papers and modified as follows:

• GSMN-TB1.1 –from [14] supplementary info.

• iOSDD890 –from [16] supplementary info.

Fig 6. Flux Sampling and FVA bounds of CCM reactions of sMtb2.0 and iEK1011_2.0 under Roisin’s media and default biomass objective function. The x-axis

represents Flux values in mmol gDW-1 h-1. Dashed lines represent FVA bounds. Solid lines represent Flux sampling distributions. Reactions for which the two

distributions are significantly different (p< 0.001; Kruskal–Wallis test) are marked with an asterisk in the top right corner. GLYK (Glycerol kinase), PGM

(Phosphoglycerate mutase), PYK (Pyruvate kinase), PCKA (Phosphoenolpyruvate carboxykinase), CS (Citrate synthase), SDH (Succinate dehydrogenase), FUM

(Fumarase), ATPS (ATP synthase), ZWF (Glucose 6-phosphate dehydrogenase), TKT (Transketolase), TAL (Transaldolase), ICL (Isocitrate Lyase), KGD

(2-oxoglutarate dehydrogenase), FBA (Fructose-biphosphate aldolase), FBP (Fructose biphosphatase), ICD (Isocitrate dehydrogenase), SUCOAS (Succinyl CoA

synthetase).

https://doi.org/10.1371/journal.pcbi.1007533.g006
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• sMtb–from [15] supplementary info. Modification included were the addition of exchange

reactions to allow constraints by growth medium components.

• iCG760 –from [17] supplementary info.

• iSM810 –from [18] supplementary info.

• iNJ661v_modified–from [19] supplementary info.

• sMtb2018 –from [30] supplementary info.

• iEK1011 –from [32] supplementary info.

Network connectivity evaluation

GSMNs of Mtb were transformed to substrate networks by local scripts after eliminating bio-

mass reaction. Node-specific topology metrics were carried out using the plugin Network Ana-

lyzer [91] in Cytoscape 3.4 [92]. Two main topological parameters were evaluated for each

model: 1) the node degree of each metabolite and 2) the clustering coefficient (S4 Table).

MC3 Consistency Checker algorithm [46] was used to identify Single Connected and Dead

End metabolites, and zero-flux reactions in each metabolic network model of Mtb. This algo-

rithm uses a stoichiometric-based identification of metabolites connected only once in each

metabolic network and utilize Flux-Variability-Analysis (FVA) for identifying reactions that

cannot carry flux [87].

Biomass Molecular Weight Check

Testing the biomass Molecular Weight consistency was done by running the script of Chan

and colleagues [42]. A biomass reaction is not standardized when the Molecular Weight of the

biomass formula is not equal to 1 g/mmol. However, the accuracy of the results relies on the

correct chemical formulae of metabolites in the tested GSMNs. Furthermore, we check charge

and mass balance of all Mtb GSMNs (S6 File).

Identification of Unbounded Reactions (URs)

A straightforward way to identify all reactions that participate in one or more TICs is by per-

forming flux variability analysis (FVA). All the Infeasible loops are evidenced as a set of reac-

tions able to carry an unbounded metabolic flux under finite or even zero substrate uptake

inputs. The URs are those reactions that by applying FVA [87], their fluxes will hit the values

defined by the upper and/or lower bounds constraints [55]. Therefore, we performed FVA

with the eight Mtb GSMNs with all the uptake media constraints defined by 1.0 mmol/gDW/h

(S2 File).

Identification of the core set of TICs

Schellenberger and colleagues [93] used a methodology for identifying the core set of TICs,

which form the basis of all such possible cycles. This core set can be obtained by the computa-

tion of the null space basis of the stoichiometric matrix (all possible thermodynamically infea-

sible cycles form the null space of the stoichiometric matrix). Consequently, the set containing

all the reactions that we previously identified participate in TICs was used to build a stoichio-

metric matrix. Therefore, the null space basis of this set was computed and the different cycles

composed by two and more reactions were identified by a local script (S2 File).
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Checking the existence of Energy Generating Cycles (EGCs)

Energy generating cycles (EGCs) exist in metabolic networks and can charge energy metabo-

lites like ATP, GTP, CDP, and UTP without any input of nutrients; therefore, their elimination

is essential for correcting energy metabolism [57,94]. Fritzemeier and colleagues developed a

methodology for identifying if genome-scale models contain EGCs [57]. We applied it in two

steps (S7 File): 1) Addition of Energy dissipation reactions (EDR) for ATP, GTP, CTP and

UTP in the form: H2O[c] + XTP[c] -> H[c] + XDP[c] + Pi[c] and 2) maximization of each

EDR flux vd while no substrate uptake is allowed into the model as follows:

maxvd ð1Þ

s:t Sv ¼ 0 ð2Þ

8i=2E : vLBi � vi � vUB
i ð3Þ

8i 2 E : vi ¼ 0 ð4Þ

Here, S is the stoichiometric matrix, v the vector of fluxes, d the index of EDRs, vLBi and vUB
i

the vector of lower and upper bounds, respectively, and E is the set of indices of all exchange

reactions of the model. If the optimal value of vd for this optimization is vd>0, there exist in

the genome-scale model at least one EGC that is able to generate energy metabolites like ATP,

GTP, CTP, or UTP.

Curation of TICs

Two types of modifications were performed on the curated Mtb genome-scale metabolic net-

work in order to eliminate TICs [55].

i. TICs formed by linearly dependent reversible reactions: Usually, these arise when there are

two reactions (NAD+- and NADP+-dependent) with the same catalytic activity. In this

instance, we forced the use of NADPH/NADP+ in anabolic reactions and NADH/NAD+ for

catabolic reactions, as recommended by Pereira and colleague [38]. If two irreversible reac-

tions that catalyze the forward and backward direction exist, both reactions (and GPR rules)

are lumped together in just one reversible reaction.

ii. TICs formed by erroneous directionality assignments: we restricted the reaction direction-

ality based on Gibbs free energy change (NExT algorithm) [95,96] as long as gene essential-

ity predictions are not compromised

The later modification was based on the utilization of the NExT (network-embedded ther-

modynamic analysis) algorithm [95,96]. This algorithm allows the identification of new irre-

versible reactions by calculating the thermodynamically feasible range of Gibbs energy of

reactions and metabolite concentrations. NExT was implemented for those reactions partici-

pating in TICs under Matlab [96] with physiological conditions adapted for Mtb (Table 4). In

the absence of intracellular metabolite concentration data we assumed that all metabolites are

between 0.0001 mM and 10 mM, which represents a range of observed physiological concen-

trations used by Martinez et al [95,96].

Standard Gibbs energy of formation (ΔfGi) (in kJ/mol), number of hydrogen atoms, and

charge of all metabolites involved in TICs were obtained from the Biochemical Thermody-

namic Calculator, eQuilibrator [104,105].
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If a reaction was specified to be reversible in the set of TICs and had its maximum ΔrG cal-

culated to be negative, the reaction is considered to occur in the forward direction. In contrast,

if the minimum ΔrG was positive, the reaction is considered to occur in the reverse direction.

No direction can be inferred when the minimum ΔrG is negative and the maximum is positive.

Changes in directionality of reactions were done strictly when gene essentiality predictions in

the curated genome-scale model were not compromised.

Gene essentiality analysis

To identify essential genes of Mtb grown on individual conditions (cholesterol minimal

medium and glycerol minimal medium [62]), we use the Bayesian/Gumbel method of TRAN-

SIT, version 2.02 [67]. The Bayesian/Gumbel method determines posterior probability of the

essentiality of each gene (zbar). When zbar value is 1, or close to 1, the gene is considered essen-

tial (ES), if zbar is 0, or close to 0, the gene is considered non-essential (NE), uncertain (U)

genes are those with zbar values between 0 and 1, and for too small (S) genes zbar is -1. After

loading the TA count files (replicates for cholesterol and glycerol) and the gene annotation file

into TRANSIT, and running the Gumbel method with default parameters, we obtained an out-

put file with essentiality results (S11 and S12 Tables). Uncertain (U) and too small (S) genes

were not taken into account for the in silico essentiality analysis. Minato and colleagues used the

same statistical method to classify essential genes [65]. Conversely, DeJesus and colleagues [64]

used a Hidden Markov Model based statistical method for classifying genes into four essentiality

states: essential (ES), growth defect (GD), nonessential (NE), and growth advantage (GA). In

order to evaluate the performance of the Mtb GSMNs to predict gene essentiality data, we used

only binary classifiers, therefore we reclassify these genes just in two groups as follows: NE

genes included NE and GA genes, and ES genes included GD and ES genes.

For the in silico gene essentiality analysis, we set the simulation conditions (asparagine,

phosphate, sodium, ammonium, citrate, sulfate, zinc, calcium, chloride, Fe3+, Fe2+, and glyc-

erol or cholesterol) according to Griffin minimal medium [62], 7H9 OADC medium, and

“MtbYM” medium and a FBA-based gene essentiality analysis was performed in the eight Mtb

models using the “single gene deletion” function of Cobra Toolbox (S8 File). Default maximi-

zation of biomass objective function was used to predict growth in all models. If a specific

growth rate of no more than 5% of the wild-type was obtained, the gene was considered as

essential (in silico), otherwise it was deemed non-essential.

Percentage of in silico gene essentiality predictions were categorized as: true-positive, false-

positive, true-negative, and false-negative when the in silico data were compared with experi-

mental essentiality data.

Table 4. Biophysical properties and concentration ranges for intracellular Mtb.

Properties Values Reference

Redox potential, cytosol -275 mV Bhaskar et al., 2014 [97]

pH, intracellular 5.7 Zhang et al., 2003 [98]

pH, extracellular (activated macrophage) 4.5 Rohde et al., 2007; Vandal et al., 2009 [99,100]

Ionic strength 0.15 M Kümmel et al., 2006; Martı́nez et al., 2014 [96,101]

Oxygen Concentration (mM) 0.0001–0.1 Martı́nez et al., 2014 [102]

[CO2],[Pi] (mM) 1–100 Kümmel et al., 2006; Haraldsdóttir et al., 2012 [101,103]

Other metabolites (mM) 0.0001–0.1 Martı́nez et al., 2014 [96]

NADH/NAD 0.0001–0.1 Martı́nez et al., 2014 [96]

NADPH/NADP 0.0001–0.1 Martı́nez et al., 2014 [96]

https://doi.org/10.1371/journal.pcbi.1007533.t004
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TP (true-positive): model simulation predicts no growth when essential genes are deleted.

FP (false-positive): model simulation predicts no growth when not essential genes are

deleted.

TN (true-negative): model simulation predicts growth when not essential genes are deleted.

FN (false-negative): model simulation predicts growth when essential genes are deleted.

For evaluate the performance of the Mtb GSMNs we used sensitivity, specificity, accuracy,

and Matthews Correlation Coefficient (MCC) metrics:

sensitivity ¼
TP

TP þ FN
ð5Þ

specif icity ¼
TN

TN þ FP
ð6Þ

Accuracy ¼
ðTP þ TNÞ

ðTP þ FP þ TN þ FNÞ
ð7Þ

MCC ¼
ðTP � TNÞ � ðFP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð8Þ

Utilization of carbon and nitrogen sources

The methodology for modeling the effect of different carbon sources and nitrogen sources on

Mtb growth was adapted from Lofthouse and colleagues [14]. The Biolog Phenotype MicroAr-

ray experiments classification used were obtained from Lofthouse and colleagues, 2013. They

classified growth and no-growth in different carbon and nitrogen sources from the original

Biolog data of Khatri and colleagues and the Roisin’s minimal media [14,72]. In addition, we

used Roisin’s minimal media data that also were obtained by Lofthouse and colleagues.

To model the carbon source experiment, we simulated the media as a modified form of Roi-

sin’s minimal media containing unlimited quantities of ammonia, phosphate, iron, sulfate, car-

bon dioxide and a Biolog carbon source influx of 1 mmol/gDW/h. Similarly, the nitrogen

source experiment was simulated using a modified form of Roisin’s media, where ammonia

was replaced with 1 mmol/gDW/h of the Biolog nitrogen source and pyruvate was used as a

carbon source (influx at 1 mmol/g DW/h).

To compare the utilization of carbon and nitrogen sources in all Mtb models with experi-

mental data, we used Matthews Correlation Coefficient metrics (Eq 8).

In silico growth predictions in carbon and nitrogen sources also were categorized as: true-

positive, false-positive, true-negative, and false-negative.

TP (true-positive): model simulation predicts growth while growth is observed experimen-

tally (or respiration rate is observed in Biolog phenotype microarrays) in presence of the

unique carbon or nitrogen source.

FP (false-positive): model simulation predicts growth while no growth is observed experi-

mentally in presence of the unique carbon or nitrogen source.

TN (true-negative): model simulation predicts no growth while no growth is observed

experimentally in presence of the unique carbon or nitrogen source.

FN (false-negative): model simulation predicts no growth while growth is observed experi-

mentally in presence of the unique carbon or nitrogen source.
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Pathway utilization analysis

Pathway utilization analysis differences between sMtb2.0 and iEK1011_2.0 was based on FVA

and flux sampling on Roisin’s media (plus glycerol and oleic acid) using the default biomass

objective functions.

The FVA was run by using the function “fluxVariability” of COBRA Toolbox v.3.0 and

their results were compared with the Jaccard index for each reaction in CCM and EX reac-

tions. As suggested by Haraldsdóttir and Colleagues [106] (S4 File), the Jaccard index can be

defined as the ratio between the intersection and union of the flux ranges in the sMtb2.0 and

iEK1011_2.0 models (Jaccard index of 0 means disjoint flux ranges and a Jaccard index of 1

indicates completely overlapping flux ranges). The mean Jaccard index means that there is an

overall similarity between flux ranges of CCM and EX reactions in both Mtb models.

The coordinate hit-and-run with rounding (CHRR) [106] algorithm was used for sampling

the solution space of both Mtb models. The COBRA function “sampleCbModel” was used for

running the CHRR algorithm with the following parameters: the sampling density, nStepsPer-

Point = 1848 and the number of samples, nPointsReturned = 5000. A Kruskal–Wallis test (S4

File) was used to assess whether flux samples generated using either the sMtb2.0 or

iEK1011_2.0 constrained with Roisin’s media stemmed from the same distribution [107].
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Resources: Vı́ctor A. López-Agudelo, Tom A. Mendum, Emma Laing, Andres Baena, Luis F.

Barrera, Dany J.V. Beste, Rigoberto Rios-Estepa.
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