
Journal of

Clinical Medicine

Article

Gla-Rich Protein (GRP) as an Early and Novel Marker
of Vascular Calcification and Kidney Dysfunction in
Diabetic Patients with CKD: A Pilot
Cross-Sectional Study

Ana P. Silva 1,2,†, Carla S.B. Viegas 3,4,†, Filipa Mendes 1 , Ana Macedo 2,5,
Patrícia Guilherme 6 , Nelson Tavares 6, Carolina Dias 2,3, Fátima Rato 7, Nélio Santos 7,
Marília Faísca 7, Edgar de Almeida 8 , Pedro L. Neves 1,2 and Dina C. Simes 3,4,*

1 Department of Nephrology, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal;
anapassionara@gmail.com (A.P.S.); filipabritomendes@gmail.com (F.M.); pleaon@hotmail.com (P.L.N.)

2 Department of Biomedical Sciences and Medicine, Universidade do Algarve, 8005-139 Faro, Portugal;
amacedo@keypoint.pt (A.M.); Heycarol.5@gmail.com (C.D.)

3 Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; caviegas@ualg.pt
4 GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve,

8005-139 Faro, Portugal
5 Keypoint Group, 1495-190 Miraflores, Portugal
6 Department of Cardiology, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal;

cpguilherme@gmail.com (P.G.); nelson.tavares63@gmail.com (N.T.)
7 Pathology Clinic, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal;

fatima.rato@gmail.com (F.R.); neliofilipe.santos@gmail.com (N.S.); marilia.faisca@synlab.pt (M.F.)
8 Faculdade de Medicina da Universidade de Lisboa, 1600-190 Lisboa, Portugal; edealmeida@mail.telepac.pt
* Correspondence: dsimes@ualg.pt; Tel.: +351-289-800-100; Fax: +351-289-800-069
† Both authors contributed equally to this work.

Received: 4 February 2020; Accepted: 24 February 2020; Published: 27 February 2020
����������
�������

Abstract: Vascular calcification (VC) is one of the strongest predictors of cardiovascular risk in chronic
kidney disease (CKD) patients. New diagnostic/prognostic tools are required for early detection
of VC allowing interventional strategies. Gla-rich protein (GRP) is a cardiovascular calcification
inhibitor, whose clinical utility is here highlighted. The present study explores, for the first time,
correlations between levels of GRP in serum with CKD developmental stage, mineral metabolism
markers, VC and pulse pressure (PP), in a cohort of 80 diabetic patients with mild to moderate CKD
(stages 2–4). Spearman’s correlation analysis revealed a positive association of GRP serum levels
with estimated glomerular filtration rate (eGFR) and α-Klotho, while a negative correlation with
phosphate (P), fibroblast growth factor 23 (FGF-23), vascular calcification score (VCS), PP, calcium (x)
phosphate (CaxP) and interleukin 6 (IL-6). Serum GRP levels were found to progressively decrease
from stage 2 to stage 4 CKD. Multivariate analysis identified low levels of eGFR and GRP, and high
levels of FGF-23 associated with both the VCS and PP. These results indicate an association between
GRP, renal dysfunction and CKD-mineral and bone disorder. The relationship between low levels
of GRP and vascular calcifications suggests a future, potential utility for GRP as an early marker of
vascular damage in CKD.
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1. Introduction

Chronic kidney disease (CKD) is estimated to affect more than 10% of the global population and
represents an increasing health and economic burden for the society [1,2]. Cardiovascular disease
(CVD) is the most important complication of CKD and the primary cause of death in these patients [3].
In addition to traditional risk factors, most patients with CKD display abnormal mineral metabolism
(MM) with underlying hormonal dysregulation, defined as chronic kidney disease-mineral and bone
disorder (CKD-MBD) [4]. CKD-MBD involves changes in mineral ion homeostasis, bone quality and
turnover, cardiovascular and soft tissue calcifications, which highly contribute for cardiovascular
complications [4,5]. Vascular calcification (VC) is associated with significant morbidity and mortality
and a strong predictor of cardiovascular risk in CKD patients [6,7]. The prevalence of VC and the
risk of CVD are shown to increase as glomerular filtration rate (GFR) declines in CKD patients [3,8].
In fact, bone MM abnormalities start during the first stages of CKD, long before renal replacement
therapy is required [9]. Cardiovascular calcification is a highly-controlled and regulated process
of calcium phosphate mineral deposition in the intima and media layers of the vessel wall and
in cardiac valves. Epidemiologically, CKD, diabetes mellitus and atherosclerosis are the clinical
conditions that most contribute towards development of vascular and valves calcification [10].
Increased vascular stiffness is an established independent predictor of cardiovascular morbidity and
mortality [11,12], and aortic calcification has been positively associated with arterial stiffness in the
healthy and CKD populations [13,14]. Increased pulse pressure (PP) is one of the most evident
hemodynamic consequences of increased vascular stiffness, and has been suggested as correlated with
arterial calcification and cardiovascular events in non-CKD, dialysis and non-dialysis patients [15,16].
Although the relevance of vascular calcification assessment is recognized in clinical practice, most
reliable quantitative methods are still radiographic or echographic related, with many shortcomings,
such as cost and time consumption, particular in the case of computed tomography methods, radiation
exposure, operator dependency and lack of standardized scores [17]. Therefore, the development of
biomarkers for early detection of VC are crucial for the prevention of CVD outcomes in CKD patients,
allowing preventive measures to reduce the development and progression of VC, left ventricular
hypertrophy and arterial stiffness.

VC is a highly-controlled multifactorial process that requires constant inhibition [18]. High
prevalence of VC in CKD patients is suggested to result from several interconnected processes
involving dysregulation of endogenous calcification inhibitors, abnormal mineral metabolism and
inflammation [19]. Biochemical targets known to be involved in these pathological processes have
been explored for their potential use as biomarkers for VC and cardiovascular risk assessment [19].

Gla-rich protein (GRP), also known as upper zone of growth plate and cartilage matrix associated
protein (UCMA) [20], is a circulating vitamin K-dependent protein (VKDP) with a dual capacity to
function as an inhibitor of pathological calcification and anti-inflammatory agent, in the articular and
cardiovascular systems [21–24]. Although GRP has been suggested as a potential marker for VC,
its clinical utility has never been shown. Here we explored, for the first time, the relationship between
levels of circulating GRP and chronic renal dysfunction, mineral metabolism and vascular calcifications
assessed by the simple vascular calcification score (VCS) and pulse pressure (PP) in a cohort of diabetic
patients with mild to moderate CKD (stages 2–4).

2. Experimental Section

2.1. Patient Selection

This cross-sectional study was conducted in the outpatient diabetic nephropathy clinic of the
Centro Hospitalar Universitário do Algarve in Faro, Portugal, from 2012 to 2017, enrolling 107
consecutive adult type 2 diabetic Caucasian patients with stages 2–4 CKD; 27 participants did not
meet the inclusion criteria and were excluded. A total of 80 participants were involved. The study
was approved by the ethics committee of the hospital; all principles of the Declaration of Helsinki
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were followed; and written informed consent was obtained from all patients. Diabetes classification
was based on the guidelines from the American Diabetes Association [25]. The exclusion criteria
were: Age > 65 years; previous CVD as described [26]; changes in the GFR >30% (last 3 months);
changes in antihypertensive therapy (last 2 weeks), uncontrolled hypertension (BP ≥ 140/90 mmHg);
albumin/creatinine ratio (ACR) ≥ 500 mg/g (assessed twice in 3 months); eGFR ≤ 15 mL/min/1.73 m2 or
≥ 90 mL/min/1.73 m2; parathyroid hormone (PTH) ≥ 350 pg/mL; phosphate (P) > 5.5 mg/dL; patients
on anticoagulant therapies; type 1 diabetes; non-diabetic renal disease; neoplastic or infectious diseases.
Demographic, clinical, laboratory results and medication data were collected from the clinical records.

2.2. Laboratory Measurements

Fasting blood samples were drawn from all subjects and plasma/serum was frozen at -80 ºC in
order to measure eGFR, P, calcium (Ca), PTH, glycated hemoglobin (HbA1c), interleukin 6 (IL-6),
fibroblast growth factor 23 (FGF-23) and soluble α-Klotho, as described [26,27]. Serum levels of GRP
were determined using a recently developed sandwich ELISA assay for the quantification of total GRP
protein forms [24]. Blinded measurements of GRP levels were performed at GenoGla Diagnostics,
University of Algarve, Faro, Portugal. ACR was determined as described [26].

2.3. Pulse Pressure

Blood pressure (BP) was determined with oscillometric methods, with the patient in dorsal
decubitus. Three measurements were taken with an interval of 5 min. Pulse pressure (PP) was
calculated as the difference between the systolic blood pressure and the diastolic blood pressure.
Increased cardiovascular risk was considered for PP values greater than 50 mmHg.

2.4. Cardiovascular Calcification Measurements

The assessment of simple vascular calcifications was performed using the plain X-ray of the
hands and pelvis (Adragão score) and nominated as the vascular calcification score (VCS). Increased
cardiovascular risk was considered for VCS ≥ 3 [28].

2.5. Statistical Analysis

Descriptive results were presented using mean and standard deviation (± SD) for continuous
variables with normal distribution, using the Kolmogorov–Smirnov test. Categorical variables
were described using absolute and relative frequencies. Categorical variables were compared using
chi-squared test. Correlations between GRP and renal function, osteo-mineral markers, inflammation
and vascular calcification parameters (VCS and PP) were evaluated by applying Spearman’s correlation
test. Partial correlations were used to analyze relationships between GRP with renal function, vascular
calcifications (VCS) and pulse pressure (PP), adjusted by sex and age groups. The association of GRP
with eGFR was also evaluated by using simple linear regression analysis. For comparison between
the stages of renal disease and serum GRP levels, ANOVA and a post hoc analysis with Scheffe test
was used. CKD stages were defined by the eGFR (mL/min/1.73m2) for stage 2 (60–89), stage 3 (30–59)
and for stage 4 (29–15) [29]. To assess the influence of tested parameters in GRP levels, the forward
stepwise multiple linear regression analysis was used, with the covariates age, gender, eGFR, FGF-23,
IL-6, P, CaxP, α-Klotho, VCS and PP.

Univariate logistic regression analysis was used to identify independent factors associated with
the VCS and PP. Statistically significant variables were analyzed in multivariate logistic regression
models (with forward stepwise selection with likelihood ratio) to assess the main predictive risk factors
for VCS and PP. The variables were removed from the model when the p-value exceeded 0.10. Factors
that remained significant at the 0.05 level in the multivariable models were considered to be significant
contributors and were kept in the model. Potential confounding factors offered to the logistic regression
models included age, gender, eGFR, FGF-23, IL-6, P, CaxP, α-Klotho and GRP. The exponentials of
the model parameters were the adjusted odds ratio (ORa) to other variables of the model, with 95%
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confidence interval. The null hypothesis was rejected below the level of 5%. Statistical software SPSS
(IBM Corp, Armonk, NY, USA; version 17.0), and GraphPad Prism version 8.0.0 (GraphPad Software,
San Diego, California, USA) for Windows was used for statistical data analysis and graph design.

3. Results

The study enrolled 80 consenting patients meeting the inclusion criteria with stages 2–4 CKD,
28.7 % females, mean age of 56 ± 8.1 years (range: 41–65). All variables had a normal distribution. The
mean GRP levels was 0.9 ± 0.56 ng/mL (range, 0.19–2.6 ng/mL). Table 1 describes the patients main
clinical and biochemical characteristics, including osteo-mineral markers and vascular calcification
parameters. A total of 47.5 % of patients presented a VCS ≥ 3 (28 males and 10 females) and 28.7 % had
PP ≥ 50 mmHg.

Table 1. Baseline patient characteristics (n = 80).

General Characteristics Values

Number of patients, n 80
Age (years) 56.0 ± 8.14

Gender (f/m) 24/56
BMI (Kg/m2) 23.4

Hb (g/dL) 12.97 ± 1.83
Albumin (g/dL) 4.27 ± 0.48
ACR (µg/mg) 137.37 ± 41.11

eGFR (mL/min per 1.73 m2) 47.26 ± 18.42
Phosphate (P) (mg/dL) 3.9 ± 0.67
Calcium (Ca) (mg/dL) 9.48 ± 0.62

Calcium (x) Phosphate (CaxP) 35.9 ± 5.8
PTH (pg/mL) 113.11 ± 74.65

FGF-23 (RU/mL) 135.32 ± 102.20
α-Klotho (pg/mL) 272.38.10 ± 169.95

IL-6 (pg/mL) 4.61 ± 2.60
GRP (ng/mL) 0.90 ± 0.56

HbA1c (%) 7.67 ± 1.47
Systolic BP (mmHg) 127.42 ± 8.56
Diastolic BP (mmHg) 78.58 ± 9.98

PP (mmHg) 45.65 ± 12.03
VCS (Adragão score) 2.7 ± 2.3

Diabetes-related CKD evolution time (months) 73.8 ± 8.7

BMI, body mass index; Hb, hemoglobin; ACR, urine albumin to creatinine ratio; eGFR, estimated glomerular
filtration rate; PTH, parathyroid hormone; FGF-23, fibroblast growth factor 23; IL-6, interleukin 6; GRP, Gla-rich
protein; HbA1c, glycated hemoglobin; BP, blood pressure; PP, pulse pressure; VCS, vascular calcification score.

To evaluate the association of GRP with renal function, osteo-mineral markers and vascular
calcification parameters, Spearman’s correlation analysis was performed using the variables age, eGFR,
P, Ca, CaxP, PTH, FGF-23, α-Klotho, IL-6, PP and the VCS. The results revealed statistically significant
strong positive correlations between GRP serum levels and eGFR (r = 0.863, p < 0.0001) and α-Klotho
(r = 0.647, p < 0.0001), strong negative correlations with P (r = −0.715, p < 0.0001), FGF23 (r = −0.676,
p < 0.0001), VCS (r = −0.822, p < 0.0001) and PP (r = −0.533, p < 0.0001), and moderate negative
correlations with CaxP (r = −0.302, p = 0.006) and IL-6 (r = −0.349, p = 0.002) (Table 2).
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Table 2. Correlation of GRP with renal function, osteo-mineral markers and vascular calcification.

Variables r p Value

Age 0.068 0.548
eGFR 0.863 ** <0.0001

P –0.715 ** <0.0001
Ca –0.124 0.273

CaxP –0.302 ** 0.006
PTH 0.113 0.317

FGF-23 –0.676 ** <0.0001
α-Klotho 0.647 ** <0.0001

IL-6 –0.349 ** 0.002
VCS –0.822 ** <0.0001
PP –0.533 ** <0.0001

Spearman correlation coefficient (r). ** Correlation is significant at the 0.01 level (two-tailed). eGFR, estimated
glomerular filtration rate; P, phosphate; Ca, calcium; CaxP, calcium (x) phosphate; PTH, parathyroid hormone;
FGF-23, fibroblast growth factor 23; IL-6, interleukin 6; VCS, vascular calcification score; PP, pulse pressure.

A positive association between GRP serum levels and eGFR (β = 0.821; p < 0.0001) was also
demonstrated (Figure 1a). Furthermore, GRP levels were shown to significantly decrease with
deterioration of renal function from CKD stage 2 onward (Figure 1b). A correlation between GRP
levels and eGFR remained significant after adjustments for age and gender (r = 0.823, p < 0.0001).
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Figure 1. Association between serum Gla-rich protein (GRP) levels and kidney function. (a) The
simple linear regression was used to assess the relationship between estimated glomerular filtration
rate (eGFR) and serum GRP levels (β = 0.821; p < 0.0001). (b) Serum GRP levels divided by chronic
kidney disease (CKD) stage. ANOVA test and a post hoc analysis with Scheffe test was used to analyse
differences among the 3 groups (* p = 0.001, ** p < 0.0001).

A forward stepwise multiple linear regression analysis, including all variables significantly
correlated with GRP levels (Table 2), revealed that eGFR (β = 0.666; p < 0.0001) and the VCS (β = −0.238;
p = 0.005) are the only factors influencing GRP levels.

Partial correlations between GRP levels, VCS and PP were analyzed after adjustments for age and
gender. A strong negative correlation was found between GRP and the VCS (r = −0.677, p < 0.0001),
and a moderate negative correlation with PP (r = −0.399, p < 0.0001), while a strong positive correlation
was found between VCS and PP (r = 0.647, p < 0.0001) (Table 3).
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Table 3. Partial correlation analysis between GRP, vascular calcification score (VCS) and pulse pressure
(PP) after adjustments for age and gender.

Variables
GRP VCS PP

r p Value r p Value r p Value

GRP 1.00 –0.677 <0.0001 –0.399 <0.0001
VCS –0.677 <0.0001 1.00 0.647 <0.0001
PP –0.399 <0.0001 0.647 <0.0001 1.00

Controlling variables: Age and gender. Coefficient (r); two-tailed test of significance is used. GRP, Gla-rich protein;
VCS, vascular calcification score; PP, pulse pressure.

Variables associated with the VCS and PP in univariate logistic regression analysis (Table 4) were
used in multivariate logistic regression models. As shown in Table 5, only eGFR, GRP and FGF-23
were found significantly associated with both the VCS and PP.

Table 4. Factors associated with the vascular calcification score (VCS) and pulse pressure (PP).

Independent
Variable

VCS PP

β OR (95% CI) p Value β OR (95% CI) p Value

Age 0.008 1.008
(0.962–1.057) 0.731 –0.001 0.999

(0.948–1.052) 0.969

eGFR –0.085 0.919
(0.885–0.954) <0.0001 –0.086 0.917

(0.877–0.959) <0.0001

P 1.885 6.585
(2.468–17.570) <0.0001 1.486 4.420

(1.822–10.725) 0.001

Ca 0.508 1.663
(0.796–3.471) 0.176 0.617 1.853

(0.795–4.322) 0.153

CaxP 0.104 1.110
(1.019–1.209) 0.016 0.096 1.101

(1.006–1.205) 0.037

PTH 0 1
(0.996–1.003) 0.778 0.001 1.001

(0.997–1.004) 0.696

FGF-23 0.014 1.014
(1.007–1.022) <0.0001 0.015 1.015

(1.008–1.022) <0.0001

α-Klotho –0.007 0.093
(0.080–0.297) <0.0001 –0.067 0.784

(0.403–0.889) 0.035

IL-6 0.088 1.192
(1.062–1.238) 0.042 0.1214 1.132

(1.093–1.291) 0.043

GRP –5.203 0.550
(0.167–0.768) <0.0001 –5.232 0.105

(0.095–0.378) <0.0001

Univariate logistic regression analysis. OR, odds ratio; CI, confidence interval; eGFR, estimated glomerular filtration
rate; P, phosphate; Ca, calcium; CaxP, calcium (x) phosphate; PTH, parathyroid hormone; FGF-23, fibroblast growth
factor 23; IL-6, interleukin 6; GRP, Gla-rich protein; VCS, vascular calcification score; PP, pulse pressure.

Table 5. GRP is significantly associated with vascular calcification score (VCS) and pulse pressure (PP).

Independent
Variable

VCS PP

β OR (95% CI) p Value β OR (95% CI) p Value

eGFR –0.064 0.938
(0.900–0.978) 0.003 –0.061 0.941

(0.894–0.990) 0.018

FGF-23 0.011 1.011
(1.003–1.019) 0.006 0.014 1.014

(1.006–1.023) 0.001

GRP –0.120 0.128
(0.010–0.771) 0.001 –0.024 0.132

(0.098–0.836) 0.004

Multivariate logistic regression, forward stepwise (likelihood ratio) adjusted for age, gender (1), IL-6, P, CaxP,
and α-Klotho. OR, odds ratio; CI, confidence interval; eGFR, estimated glomerular filtration rate; FGF-23, fibroblast
growth factor 23; GRP, Gla-rich protein; VCS, vascular calcification score; PP, pulse pressure.
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4. Discussion

This is the first clinical study showing the association of circulating levels of GRP with CKD
pathology and vascular calcification. Here we show that, in adult diabetic patients, serum GRP levels
progressively decrease from stage 2 to stage 4 CKD, correlating with markers of mineral metabolism,
vascular calcification and pulse pressure. Moreover, low levels of GRP were strongly associated with
vascular calcification and pulse pressure, providing support to the hypothesis of being considered as a
novel cardiovascular risk factor in this population.

Recently, a small study evaluating biomarkers of VC in hemodialysis patients after switch from
traditional to online hemodiafiltration, included the measurement of serum GRP levels in their
analysis [30]. In this prospective study no significant changes over time were observed for any of the
VC biomarkers, including GRP. This emphasizes the current lack of representative clinical studies
including information on circulating levels of GRP in human, and the importance of using validated
GRP assays. The sandwich ELISA that was used in our study is based on a dual antibody system
able to detect total GRP protein forms [24]. The antibodies included in this ELISA were previously
validated and shown to be specific for GRP. The capture antibody was mapped to specifically recognize
the N-terminal of human GRP-F1 isoform [24], while the detecting antibody has been validated for the
specific detection of human GRP by immunohistochemical staining and Western blot, as described in
previous studies [21–24]. Moreover, the suitability of this ELISA was previously validated and used
to quantify GRP protein levels associated to circulating calciprotein particles (CPP) and extracellular
vesicles (EVs) in serum samples of healthy and CKD individuals [24]. Although GRP is a γ-carboxylated
protein, and other extra-hepatic VKDPs such as MGP and OC have been suggested of potential clinical
use based on their γ-carboxylation status [31–35], our results clearly indicate that levels of total GRP in
serum can be clinically relevant in a CKD context.

In our cohort study, a reduction in GRP levels associate with an increase in levels of the VC
promoters P, FGF-23 and CaxP, and a decrease in the VC inhibitor α-Klotho, clearly showing a
correlation between GRP and the dysregulation of phosphate metabolism characteristic of CKD-MBD.
The relationship between bone mineral disorders and VC is well established and a major concern on the
management of cardiovascular risk in the CKD population. In this complex interplay, the contribution
of phosphate metabolism for VC and cardiovascular outcomes in CKD settings has been widely
demonstrated [19,36]. Increased levels of serum P, FGF-23 and CaxP, and lower levels of α-Klotho, have
all been associated with cardiovascular outcomes in the CKD population [19,36,37]. The association
between high serum P levels and CKD is based on the role of phosphate as a primary stimulus for
the osteochondrogenic transformation of VSMCs with calcifying capacity [36,38]. The association
of GRP with CKD-MBD and VC are consistent with reported data regarding GRP functionality.
GRP has been shown to be involved in VC inhibition at multiple levels, through the inhibition of
VSMCs osteochondrogenic differentiation or the direct inhibition of mineral formation, maturation
and growth, both in circulation and at the vascular tissue [21,24,39]. Complementary approaches of
GRP add-of-function using a human ex vivo model of VC [21], and GRP depletion in VSMCs from
GRP-/- mice [39], demonstrated the role of GRP as an inhibitor of extracellular matrix calcification
and VSMCs osteochondrogenic differentiation. Although additional knowledge is required to fully
elucidate the molecular mechanism(s) of GRP action in VC, it was demonstrated that GRP inhibit
VSMCs osteochondrogenic differentiation with down-regulation of osteogenic markers, through direct
binding to bone morphogenetic protein 2 (BMP2) [39]. Additionally, the mineralization competence
of VSMCs-derived EVs, known as one of the major mechanisms of VC initiation at tissue level,
was associated with decreased levels of GRP, indicating the importance of GRP in the early phases of
VC [21]. Additionally, GRP was recently found as a constitutive component of circulating CPPs and
EVs [24]. Decreased levels of GRP in CPPs and EVs from CKD stage 5 patients were associated with
increased mineral maturation and increased potential to induce VSMCs calcification, by promoting cell
osteochondrogenic differentiation and inflammation [24]. GRP was suggested as a link between systemic
pro-calcific uremic conditions, including MM dysregulation, and VC at tissue level. Importantly,
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the protective role of GRP was clearly demonstrated when the calcification/osteogenic differentiation
and inflammatory status induced in VSMCs were rescued by supplementation of CPPs isolated from
CKD patients, with GRP [24].

While the involvement of GRP in multiple calcification-driving events clearly establish a biological
rationale for the finding of a strong association between GRP levels and vascular calcifications, eGFR
and VC were the only independent determinants of GRP levels in our population. In fact, a very
strong correlation is shown between GRP and eGFR. Decrease in eGFR is accompanied by a decrease
in GRP levels from CKD stage 2 to stage 4, indicating GRP as a possible early marker associated
with renal dysfunction. Although the current study does not allow us to infer on the causality of this
relationship, it has been demonstrated that the prevalence of VC increases as eGFR declines while
low eGFR is associated with cardiovascular morbidity and mortality [40–42], and VC is a suggested
link between low eGFR and worse cardiovascular outcome [8,9]. In concordance, our study shows
that eGFR is associated with VC in our population. It is presently unclear whether the relationship
between GRP and eGFR might be beyond VC, eventually involving kidney disease physiopathology.
In addition, it is presently unknown whether reduced levels of GRP in serum have a causality relation
with VC. Although increased GRP gene expression has been associated with increased calcification,
increased protein accumulation has been detected at calcification sites, probably limiting its release
into circulation [21]. Whether levels of GRP in circulation contribute to VC at the tissue level also
requires further clarification. Low levels of GRP in circulating CPPs and EVs were shown to contribute
to the modulation of vascular homeostasis, including calcification and inflammation [24]. Additional
studies are required to understand this complex loop of interactions and clearly establish the molecular
pathways leading to reduced levels of GRP in circulation, in situations of increased vascular calcification
and decreased kidney function.

Limitations of our study include the small sample size, the fact that serum GRP levels were
measured at a single point, and the absence of reference intervals for GRP levels in a healthy population.
Despite the fact that levels of GRP in the general population are currently unknown, our present
results showing decreased levels of serum GRP with decreased kidney function are in concordance
with previous findings of decreased levels of GRP in circulating CPPs and EVs from CKD stage
5 patients relative to healthy controls [24]. This combined data supports the notion of an overall
deficiency in circulating calcification inhibitors associated with CKD. This study included subjects
with mild to moderate CKD followed in outpatient diabetic nephropathy clinic, and may not be
representative of kidney disease of other etiology. The main strength of this study clearly resides in the
novelty concerning the clinical utility of GRP. The presented data show that decreased levels of GRP in
circulation parallels the progression of CKD and increased vascular calcification, suggesting a future
potential use of GRP as an early marker of vascular damage in CKD patients.

5. Patents
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