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Abstract 

For many years, the medical treatment of breast cancer was reliant solely on cytotoxic 
chemotherapy.  However, over the past twenty years, treatment has evolved to a more 
target-directed approach.  We now employ tailored therapy based on the presence or ab-
sence of receptors for estrogen, progesterone, and human epidermal growth factor 2 (HER2).  
We expect this trend to continue, as agents that use novel approaches to target HER2, as well 
as targeting different portions of the HER signaling pathway, are in various stages of devel-
opment.  Notably, pertuzumab, a humanized monoclonal antibody that binds to a different 
domain of the extracellular portion of the HER2 receptor than trastuzumab, was recently 
approved for use, as was lapatinib, a small-molecule tyrosine kinase inhibitor.  Patients with 
triple negative breast cancer, particularly those with the BRCA mutation, have more limited 
treatment options and carry a worse prognosis than those who are hormone receptor pos-
itive.  However, recent data has shown that PARP inhibitors may have significant anti-tumor 
effect in those with this subtype of breast cancer.  Novel agents that inhibit mTOR, PI3K, the 
insulin-like growth factor, heat shock protein 90, and histone deacetylase have shown promise 
in phase I-III trials and offer exciting new possibilities for the treatment of this often fatal 
disease.  As we are presented with an ever increasing number of treatment options, the timing 
and combinations of therapeutic agents used becomes ever more complex in the age of 
personalized care, but we are hopeful that ultimately this will lead to improved patient 
outcomes. 
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Introduction 
Breast cancer is the most common cancer in 

women worldwide (1,2,3). In 2011, an estimated 
230,000 women were diagnosed with breast cancer in 
the U.S. alone, with an estimated 40,000 deaths, mak-
ing it the second most common cause of cancer related 

death in women (4). While only approximately 5% of 
all newly diagnosed breast cancer patients in the U.S. 
present with metastatic disease at the time of initial 
diagnosis, up to one third of patients with early stage 
disease will subsequently develop metastasis (3). 
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Over the past two decades, breast cancer mortality 
rates have declined by approximately 30%, with cor-
responding improvements in 5-year overall survival 
rates to 90% (4). Despite these advances, metastatic 
breast cancer (MBC) remains incurable, with an esti-
mated 5-year overall survival rate of only 23% (5). 
However, more recent data from the SEER-Medicare 
database painted a more pessimistic picture, reporting 
median overall survival of Medicare patients with 
MBC to be only 22 months (6).  

The biological underpinnings of breast cancer, 
and the major pathways involved in tumor progres-
sion and metastases, are still incompletely under-
stood. Breast cancer traditionally has been classified 
into three different subtypes based on the presence or 
absence of three receptors found on cancer cells (7). 
Hormone receptor (HR) positive breast cancers ex-
press estrogen and/or progesterone receptors 
(ER/PR), and constitute approximately 60% of all 
breast cancer cases (8). The oncogene human epider-
mal growth factor receptor 2 (HER-2/neu) is 
over-expressed in approximately 20% of all breast 
cancer cases; while approximately 20% of breast can-
cer cases are negative for the expression of ER,PR, and 
HER-2/neu, also known as triple negative breast 
cancer (TNBC) (9,10).  

More sophisticated genomic microarray analyses 
have also corroborated the presence of several distinct 
intrinsic molecular subtypes of breast cancer: luminal 
A, luminal B, basal, normal breast-like, and HER-2 
like subsets (11,12). Subsequent to this initial research, 
the claudin low subtype was also recognized as yet 
another distinct molecular subtype. In about 70% of 
cases, the molecular breast cancer subtypes correlate 
with the expression of ER, PR, and HER-2 (13). Re-
search is currently focusing on the clinical utility of 
molecular profiling that in the near future may re-
place traditional immunohistochemical staining, as 
initial evidence suggests that molecular profiling may 
be more accurate in predicting prognosis (13-14) . 

Patients with hormone receptor positive tumors 
typically receive endocrine therapy (e.g. selective es-
trogen-receptor response modulators [SERM] and 
aromatase inhibitors [AI]) as one of many options of 
their treatment. Moreover, patients with HER-2/neu 
overexpressing tumors typically receive anti-HER/2 
targeted therapy in combination with cytotoxic 
chemotherapeutic agents. Patients with triple nega-
tive breast cancer (TNBC) do not have these targeted 
treatment options, with cytotoxic chemotherapy being 
the primary modality (15, 16). In this article, we will 
review the most promising novel biologic agents un-
der clinical development over the last 5 years in 
women with MBC. We will focus primarily on agents 

that target the HER-2 receptor family, poly ADP ri-
bose polymerase (PARP) inhibitors, the mTOR path-
way, insulin-like growth factor receptors, heat shock 
protein 90, and histone deacetylase (HDAC) inhibi-
tors. 

Novel therapies targeting the HER sig-
naling pathway 

The human epidermal growth factor receptor 2 
(HER2) is a cell membrane tyrosine kinase receptor 
member of the epidermal growth factor receptor 
(EGFR) family (2, 17) that is over-expressed in ap-
proximately 15 - 25% of primary human breast can-
cers, and is associated with poor clinical outcomes 
and aggressive tumor progression (18- 21). The first 
commercially available HER 2 targeting agent was the 
monoclonal antibody trastuzumab (Herceptin®) (22, 
23). The humanized monoclonal antibody 
trastuzumab binds to an extracellular segment of the 
HER2/neu receptor, leading to inhibition of the pro-
liferation of human tumor cells that overexpress HER 
2 (22). The exact mechanism of action is not fully un-
derstood. The use of trastuzumab has proven to im-
prove survival for patients with breast cancer over-
expressing HER 2; as adjuvant therapy for patients 
with early stage disease (24) and in combination with 
chemotherapy or as monotherapy for patients with 
metastatic disease (9, 25-36). 

Antibodies and antibody conjugates 
Trastuzumab established a new treatment para-

digm for HER2-positive breast cancer. It is currently 
the standard first line treatment for patients with 
HER2-positive MBC in combination with chemo-
therapy or as a single agent (26, 30, 37-40). Lapatinib is 
a reversible small-molecule tyrosine kinase inhibitor 
that also targets HER2 by interfering with down-
stream signaling through the HER-2 pathway; it binds 
to the ATP-binding pocket of the EGFR/HER2 protein 
kinase domain, preventing self-phosphorylation and 
subsequent activation (41, 42). Lapatinib is currently 
approved as first-line therapy in combination with 
letrozole for patients with MBC who overexpress 
HER2 and are estrogen receptor (ER) positive (42- 44), 
as well as for the treatment of HER2- positive MBC in 
combination with capecitabine for patients who pro-
gressed on prior therapy including a taxane, an an-
thracycline, and trastuzumab (45, 46). 

Despite the beneficial impact of HER-2 targeted 
therapy, numerous patients still develop recurrences 
or progression of the disease due to trastuzumab re-
sistance (43). In patients with HER-2 amplified breast 
cancer, approximately 70% may have primary re-
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sistance to trastuzumab (26, 47). In addition, an im-
portant number of patients who achieve initial re-
sponse to the treatment tend to develop secondary 
trastuzumab resistance (47, 48). Nevertheless, the 
continuous use of trastuzumab has shown to be bene-
ficial, even in patients who develop MBC after its use 
as adjuvant therapy or whose disease progresses 
while receiving this medication (20, 49-51).  

The antibody–drug conjugate (ADC) 
trastuzumab-DM1 (Genentech) combines, via a spe-
cially designed linker, trastuzumab with a fungal 
toxin DM1 (Emtansine), a potent cytotoxic- microtu-
bulin disruptive chemotherapeutic agent derivate of 
maytansine (52, 53). This allows trastuzumab to be 
used in the targeted delivery of the potent chemo-
therapy drug DM1 (2). 

Using trastuzumab mainly as a carrier, this ADC 
was designed to target the delivery of DM1 into the 
HER2 overexpressing cells via endocytosis (53), 
wherein DM1 is subsequently detached from trasu-
zumab and released intracellularly, causing inhibition 
of microtubule assembly and posterior apoptosis 
(54-57), which leads to the recently described mitotic 
catastrophe (58). Trastuzumab-DM1 has been shown 
to have a mild dosage-related toxicity profile (59) 
(transient thrombocytopenia, elevated transaminases, 
fatigue, and anemia are the most common reactions), 
with low inter-individual variability in its pharmaco-
kinetic parameters (60) and a maximal tolerated dose 
of 3.6 mg/kg every 3 weeks (61). 

The efficacy of this ADC has been demonstrated 
in both in vitro and in vivo models of trastuzumab 
resistant breast cancer (53). More recently it has been 
proposed that trastuzumab-DM1 is able to circumvent 
the cross-resistance phenomenon observed with the 
use of lapatinib and trastuzumab (58). Preliminary 
efficacy data of a phase Ib/II study of 
trastuzumab-DM1given with Pertuzumab in 
HER2-positive, trastuzumab pre-treated patients 
showed partial responses (PR) among 23 patients (62). 

In a recent phase II study involving patients with 
HER2-positive MBC who had progressed on earlier 
treatment with a HER2-directed agents plus chemo-
therapy (n=112), patients were schedule to receive 
trastuzumab-DM1 at a dose 3.6 mg/kg every 3 weeks. 
An overall response rate (ORR) of 25.9% was reported 
with a median PFS of 4.6 months. The median dura-
tion of response was not reached due to a low number 
of events (63). Early results from another phase II 
study comparing trastuzumab plus docetaxel to 
T-DM1 in first-line HER2-positive MBC indicated 
comparable response rates of 41 and 48%, respective-
ly, without docetaxel related toxicities (64). A recent 
update indicated that PFS was significantly longer 

with T-DM1 versus trastuzumab/docetaxel (52, 65). 
Currently there are two prospective randomized 
phase 3 trials designed to evaluate the efficacy of 
T-DM1 in the management of MBC compared to the 
current standard of care. First, MARIANNE is a three 
arm trial that compared trastuzumab plus a taxane to 
T-DM1 combined with a placebo or pertuzumab (66). 
This study met enrollment goals in April 2012. The 
second trial is the TH3RESA trial, where TDM1will be 
compared to treatment of physician’s choice as third 
line therapy in women previously having received 
taxanes, trastuzumab, and capecitabine/lapatinib, 
with or without prior anthracyclines (67). 

Results of the EMILIA study, an open-label, 
randomized phase 3 trial comparing T-DM1 to cape-
citabine plus lapatinib (XL) as second line therapy in 
women with MBC previously treated with anthracy-
clines, taxanes, and trastuzumab, were recently re-
ported (68). Patients who had received T-DM1 had 
significantly longer median progression free survival 
(9.6 vs 6.4 months, HR=0.650 p <0.0001 ), with a trend 
towards longer median overall survival time ([1-year : 
T-DM1 84.7% (80.76–88.55%) versus XL 77.0% 
(72.40–81.50%), 2-year: T-DM1 65.4% (58.65–72.15%) 
versus XL 47.5% (39.20–55.89%)]. The median overall 
survival was not reached in the T-DM1 arm and was 
23.3 months in the capecitabine plus lapatinib arm. 
T-DM1 was beneficial for patients in different 
sub-groups, including those with visceral metastases 
and positive ER/PR status. T-DM1 was also well tol-
erated; the most common grade 3 adverse events for 
T-DM1: thrombocytopenia (12.9% vs 0.2%), increased 
AST (4.3% vs 0.8%), and increased ALT (2.9% vs 
1.4%), and for XL: diarrhea (20.7% vs 1.6%), palmar 
plantar erythrodysesthesia (16.4% vs 0) and vomiting 
(4.5% vs 0.8%) (68). 

Pertuzumab is a humanized monoclonal anti-
body that binds to the HER2 receptor, binding to a 
different domain of the extracellular portion of the 
HER2 receptor than trastuzumab, and blocks HER2- 
dimerization (43, 69). This agent has been actively 
investigated in combination with trastuzumab, aim-
ing to explore the theoretical advantage of using two 
HER2 targeted agents (43, 70) for more complete 
blockade of the HER-2 signaling pathway (37). The 
phase III trial (CLEOPATRA) showed that the addi-
tion of pertuzumab to trastuzumab plus docetaxel, 
when used as first-line treatment for HER2-positive 
metastatic breast cancer, significantly prolonged me-
dian PFS by 6.1 months (HR, 0.62; 95% CI, 0.51-0.75; 
P<0.001), with no increase in cardiac toxicity (71). 
These data led to the approval by the FDA on June 8, 
2012 of the compound as Perjeta® in combination with 
docetaxel and trastuzumab as first line therapy for 
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HER2+ MBC. 
The trial that led to pertuzumab’s approval was 

a double-blind, placebo controlled, multicenter, phase 
III trial that enrolled 808 patients with HER2-positive 
MBC for first-line therapy. The patients were ran-
domly assigned into two groups: 406 to the placebo 
plus trastuzumab plus docetaxel group (control 
group) and 402 to pertuzumab plus trastuzumab plus 
docetaxel group (pertuzumab group). The primary 
end point was independently assessed progres-
sion-free survival, and secondary end points included 
overall survival and safety (71). The median progres-
sion-free survival was 12.4 months in the control 
group vs. 18.5 months in the pertuzumab group. The 
median investigator-assessed progression-free sur-
vival was 12.4 months in the control group vs.18.5 
months in the pertuzumab group (HR, 0.65; 95% 
CI,0.54 -0.78; P<0.001) (71).  

Data for OS are not yet mature; the interim 
analysis of overall survival was performed after 165 
events had occurred (43% of the pre-specified total 
number of events for the final analysis) and is ex-
pected to be complete in 2013 (71). With the exception 
of cardiotoxicity, all other adverse events (of any 
grade), including diarrhea, rash, mucosal inflamma-
tion, febrile neutropenia, and dry skin, were reported 
more frequently in the pertuzumab group (71). Data 
so far available suggest that pertuzumab and 
trastuzumab in combination is more efficacious in the 
treatment of HER-2 positive breast cancer than the use 
of a single anti-HER 2 agent in both MBC and pre-
operatively, as neoadjuvant therapy (43). 

The NeoSphere trial assessed the effect of per-
tuzumab and trastuzumab plus chemotherapy in 
treatment-naive women with locally advanced, in-
flammatory or early stage HER2-positive breast can-
cer (72).  

The patients were assigned to one of four 
groups: group A received trastuzumab and docetaxel, 
group B received pertuzumab, trastuzumab and 
docetaxel, group C received pertuzumab and 
trastuzumab, and group D received pertuzumab and 
docetaxel. 

Patients given pertuzumab and trastuzumab 

plus docetaxel (group B) had a significantly improved 
pathological complete response rate (49 of 107 pa-
tients; 45.8% [95% CI 36.1—55.7]) compared with 
those given trastuzumab plus docetaxel (group A) (31 
of 107; 29.0% [20.6—38.5]; p=0.0141), without sub-
stantial differences in tolerability (72). The most 
common adverse events of grade 3 or higher was 
neutropenia (61 of 107 women in group A, 48 of 107 in 
group B, one of 108 in group C, and 52 of 94 in group 
D) and febrile neutropenia (eight, nine, none, and 
seven, respectively) (72). 

Ongoing clinical trials with other HER2 
targeted agents 

MM-302 is a liposomal encapsulation of doxo-
rubicin attached to antibodies that target 
HER2-overexpressing cancer cells, attempting to limit 
off target toxicity to non-malignant cells (73). Cur-
rently an ongoing phase I study is attempting to es-
tablish the safety and pharmacokinetics of this agent 
in patients with HER-2 positive MBC (74). 

Ertumaxomab (Rexomun; Fresenius Biotech, 
Hamburg, DE) is a hybrid trifunctional monoclonal 
antibody that targets the CD3 antigen on T cells and 
the HER-2 expressed on the tumor cells (75).  

This compound forms a HER-2-ertumaxomab- 
CD3 complex, leading to the aggregation and activa-
tion of T cells, macrophages, dendritic cells, and nat-
ural killer cells, which results in the phagocytosis and 
death of the tumor cells (75). A phase II study was 
terminated due to a change in development plan from 
the sponsor, not due to safety concerns (76). Further 
clinical studies are required to determine the clinical 
relevance of this medication. 

MM-111 is a novel antibody fusion protein that 
targets the HER 2/HER 3 heterodimer, and blocks the 
ligand binding to HER 2-3 heterodimers, thereby in-
hibiting downstream signaling (77). The fusion pro-
tein is conformed by two human single-chain variable 
fragment (scFv) antibodies linked to a modified hu-
man serum albumin (78). An ongoing phase I/II trial 
is evaluating the safety and tolerability of MM-111 in 
patients with HER 2 MBC (77).  

Table 1. Novel HER-2 monoclonal antibodies, drug conjugates, or antibody fusion proteins under clinical development in 
breast cancer. 

Drug Name Description Phase References 
TDM-1 Trastuzumab-DM1 conjugate I-III 53-55,58,60-64,66-68 
MM-302 Nanotherapeutic encapsulation of doxorubicin with attached antibodies I 73,74 
Ertumaxomab Murine monoclonal antibody with two antigen-recognition sites(CD3 & HER-2/neu) I 75,76 
Pertuzumab Recombinant humanized monoclonal antibody targeting Subdomain II of (HER2) II-III 69,71,72 
MM-111 Novel antibody fusion protein that targets HER 2/HER 3 heterodimer I-II 77,78 
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Small molecule HER/EGFR inhibitors 
other than lapatinib 

Afatinib (BIBW 2992) is an irreversible small 
molecule inhibitor of the ErbB-receptor family, tar-
geting the intracellular tyrosine kinase of the HER-2 
molecule (79-81). In initial phase I studies, diarrhea, 
vomiting, nausea, fatigue and rash were the most 
common adverse events. Results of an open-label 
phase II study in advanced HER2-positive breast 
cancer patients after failure of trastuzumab were re-
cently published, showing clinical benefit in 53% of 
the patients enrolled (79). Additional phase II studies 
showed acceptable tolerance and moderate activity of 
afatinib in ER-positive, HER2-negative breast cancer 
patients (82-84). 

Neratinib (HKI-272) is a small molecule irre-
versible pan-HER receptor tyrosine kinase inhibitor 
(activity against HER1, HER2, and HER4) (85). It does 
not have activity against HER3, which is relevant be-
cause HER3 does not have an intracellular domain 
with tyrosine kinase activity. Early phase studies es-
tablished the dose limiting toxicity to be diarrhea.  

TAK-285 is a novel oral small-molecule dual 
HER-2/EGFR tyrosine kinase. The initial phase I 
study in primarily Japanese patients with advanced 
cancers demonstrated good tolerance of TAK-285, 
with elevation in aminotransferases and hyporexia 
being the most prominent grade 3 dose-limiting tox-
icities (86). In the U.S., a multicenter phase I study 
designed to determine the pharmacokinetics in a 
more diverse population of patients with advanced 
cancer was recently completed, and the results are 

forthcoming (87). 
ARRY-380 is an orally active, small molecule, 

reversible-selective inhibitor of the HER-2 tyrosine 
kinase receptor with antitumor activity in 
HER2-positive breast cancer in vitro and in vivo (88). 
These findings led to a phase I trial which found 
ARRY-380 to be well tolerated, with rash and diarrhea 
as the most frequent adverse effects, along with 
promising signs of clinical activity, especially in pre-
treated patients with HER2+ MBC (89).  

In an open-label, phase II study Burstein et al, 
showed the clinical activity of neratinib in patients 
with advanced HER2+ MBC with and without prior 
trastuzumab treatment: 16-week PFS was 78% for 
patients with no prior treatment with trastuzumab (n 
= 64) and 59% for those who had previously received 
trastuzumab (n = 63), with the median PFS 39.6 and 
22.3 weeks, respectively. The most significant toxici-
ties were diarrhea, vomiting, nausea, and fatigue (90). 
Neratinib has been included as one of the arms of the 
ongoing I-SPY 2 trial (91). 

Anti HER-3 agents  
MM-121 is a fully human monoclonal antibody 

that binds to HER3 and blocks the binding of its lig-
and, leading to inhibition of HER3 signaling. Schoe-
berl et al, provided data suggesting that MM-121 can 
be an effective therapeutic agent for cancers with lig-
and dependent HER3 activation (93). Currently Moyo 
et al. are conducting a phase II study, with MM-121 
plus exemestane vs. exemestane alone in ER+ and/or 
PR + and HER2 negative MBC patients who have 
progressed on prior anti-estrogen therapy (94). 

 

Table 2. Novel targeted anti-HER/EGFR therapies.  

Drug Name Description Phase References 
Afatinib 
[BIBW 2992] 

Orally active, small molecule irreversible pan-HER TKI I-II 79-84 

Neratinib Orally available, irreversible TKI of HER-2  I-II-III 85,90-92 
TAK-285 Novel, orally active, dual HER2/EGFR inhibitor I 86,87 
ARRY-380 Orally active, reversible and selective ErbB-2 inhibitor I-II 88,89 
MM-121 Fully human monoclonal antibody ErbB3 (Her3) I-II 93,94 

 
 

Table 3. Novel drugs targeting HER-3. 

Drug Name Description Phase References 
MM-121 Fully human monoclonal antibody ErbB3 (Her3) I-II 93,94 
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Figure 1. Therapies targeting HER signaling  

 
 

Targeting DNA repair pathways: PARP1 
Inhibitors  

The poly (adenosine diphosphate [ADP])–ribose) 
polymerases (PARPs) are a family of enzymes in-
volved in DNA repair, gene transcription, chromatin 
architecture, and apoptosis in normal human cells 
(95-97). The most abundant is PARP1, a key player in 
single-stranded DNA base-excision repair (95-100). 
PARP inhibition leads to the accumulation of single 
strand DNA breaks and subsequent double strand 
breaks at replication forks that ultimately induce 
apoptosis and cell death (100-102).  

In normal cells, these breaks are repaired via the 
homologous recombination double-stranded DNA 
repair pathway. The tumor-suppressor proteins 
BRCA1 and BRCA2 are key components of the DNA 
repair pathway in humans (95,100). Normal cells, 
with intact homologous recombination, are able to 
tolerate the PARP inhibitors. However, in tumor cells 
lacking homologous recombination (i.e. BRCA1/2), 
PARP inhibition leads to cell death (101,102). This 
phenomenon has been described as synthetic lethali-
ty. 

Farmer et al, demonstrated in vitro that PARP 
inhibitors are active only in the presence of BRCA 
mutations (103). The majority of woman with BRCA1 
mutations develop triple negative breast cancer 
(102,103). This fact highlights the importance of the 
study of PARP inhibitors because currently there are 
no biological or targeted therapies approved for the 
treatment of BRCA-associated TNBC, which is an 
aggressive subtype of breast cancer with a poor 
prognosis after relapse (102). Iniparib, olaparib, and 
veliparib are the most investigated PARP inhibiting 
agents to date.  

Until recently, iniparib was considered to be an 
irreversible inhibitor of PARP 1. However, Liu et al. 
showed that the primary mechanism of action of 
iniparib was not via the inhibition of PARP activity. 
Apparently, the cysteine-containing proteins in tumor 
cells are modified non-selectively by iniparib (104). 
O’Shaughnessy et al. conducted a phase II random-
ized study to compare the efficacy and safety of gem-
citabine and carboplatin with or without iniparib. One 
hundred and twenty three patients with tri-
ple-negative MBC were included. The addition of 
iniparib prolonged the median progression-free sur-
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vival from 3.6 months to 5.9 months (HR 0.59; P = 
0.01) and the median overall survival from 7.7 months 
to 12.3 months (HR 0.57; P= 0.01), with no significant 
difference in the toxicity (neutropenia and thrombo-
cytopenia being the most common grade 3 or 4 toxici-
ties) between the two groups (105). Based on these 
results, a phase III trial was subsequently conducted 
in order to evaluate the overall survival and progres-
sion-free survival. Its primary endpoint was not met 
(106).  

Olaparib (AZD2281- KU-0059436) is an orally 
active PARP inhibitor that induces apoptosis and cell 
death in homozygous BRCA-deficient cells (107). 
Fong et al. conducted a phase I study of olaparib fo-
cusing on BRCA1 and BRCA2 mutation carrying 
breast cancer patients, establishing the maximum tol-
erated dose and toxic profile of this agent. Olaparib 
was well tolerated, with grade 1-2 nausea, fatigue and 
vomiting being the most commonly observed adverse 
reactions (95). In the same study, investigators ob-
served high rates of tumor response only in the 
BRCA1 or BRCA2 carriers (95). These promising re-
sults strongly suggest that BRCA mutation is neces-
sary for the clinical activity of this agent in patients 
with MBC (100). 

A phase II trial in patients with BRCA1 or 
BRCA2 mutation-associated, chemotherapy- 
refractory MBC evaluated two different dose sched-
ules of olaparib: olaparib 400 mg once daily (cohort 1) 
vs. 100 mg twice daily (cohort 2). Overall radiographic 
response rates were 41% (11 of 27) for the first cohort 
and 22% (6 of 27). The most common grade 3-4 ad-
verse reactions in both groups were nausea and fa-
tigue (107). Gelmon et al. recently published results of 
a phase II study of olaparib in patients with advanced 
high-grade serous and/or undifferentiated ovarian 
carcinoma or TNBC. However, no confirmed objective 
responses were reported in the breast cancer group 
(108). 

Veliparib is another potent PARP1 inhibitor 

(109). Donawho et al., using a breast xenograft model, 
were able to show the potentiating effect of veliparib 
when combined with cisplatin, carboplatin, and cy-
clophosphamide in tumor regression (110). Results of 
a phase I trial conducted by Kummar et al. established 
the maximum tolerated dose of veliparib at 10 mg 
orally twice a day, with neutropenia and thrombocy-
topenia as the most relevant dose limiting toxicities 
(111). A phase II study showed a synergistic activity 
for veliparib combined with temozolomide in breast 
cancer patients. The progression-free survival was 5.5 
months in the BRCA-mutated group versus 1.8 
months for patients without a BRCA mutation, find-
ings that suggests that veliparib is only clinically ac-
tive when the BRCA mutation is present (112).  

Rucaparib (AG014699) demonstrates synergy 
with temozolamide in preclinical solid tumor models 
(113). A phase I trial of rucaparib combined with te-
mozolomide in advanced solid tumors was conduct-
ed. This study established that doses up to 12 mg/m2 
AG-014699 and 200 mg/m2 TMZ were safe and able to 
inhibit PARP in peripheral blood lymphocytes and 
tumor. No dose-limiting toxicity was observed. The 
adverse events were grade 1/2, except 1 case each of 
grade 3 infection, fatigue, low phosphate and lym-
phopenia, in a total of 27 patients. (114). Phase 2 trials 
are currently ongoing (115). 

MK-4827 is an oral PARP-1/2 inhibitor. A recent 
study recruited 39 patients with multiple malignan-
cies (11 of those were BRCA mutation carriers). PARP 
inhibition in peripheral blood mononuclear cells was 
observed at doses of > 110 mg daily, achieving anti-
tumor activity in both BRCA mutated and not mu-
tated tumors. Grade 3 fatigue, pneumonitis and ano-
rexia were the most common dose limiting toxicity 
factors found (116). Currently a phase I study aims to 
determine the MTD and evaluate the degree of inhi-
bition of PARP activity in patients with advanced 
solid tumors (including breast cancer) or hematologic 
malignancies (117). 

 

Table 4. PARP inhibitors in clinical development. 

Drug Name Description Phase Target Population Ref 
Iniparib Intravenous small-molecule prodrug inhibitor of PARP-1 I-III triple-negative MBC 104-106,118 
Olaparib [AZD2281] Oral small molecule inhibitor of PARP I-II BRCA1 or BRCA2 mutation 95,107-108 
Veliparib 
[ABT-888] 

Oral PARP -1 and -2 inhibitor with chemosensitizing and antitumor 
activities 

0-II BRCA1 or BRCA2 mutation 109-112 

Rucaparib 
[AG-014699] 

Oral tricyclic indole PARP1 inhibitor with potential chemosensi-
tizing, radiosensitizing, and antineoplastic activities 

I BRCA1 or BRCA2 mutation 113-115 

MK-4827 Oral PARP 1/2 inhibitor I BRCA1 or BRCA2 mutation 116,117 
Note: while only two trials (107,115) specifically examined BRCA-mutation associated malignancies, sub-set analyses of BRCA-mutation associated malignancies 
were done in the other trials listed above. 
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mTOR/PI3K  
The mammalian target of rapamycin (mTOR) is a 

kinase that is part of the PI3K-related kinase family 
(119). mTOR plays a key role in cell cycle progression, 
and is inhibited by the antibiotic rapamycin (120). 
Over-activation of PI3K and mTOR has been observed 
in many cancers (121). As such, rapamycin, along with 
several rapamycin analogues (rapalogs), have been 
studied for the treatment of a variety of different 
cancers. The mTOR inhibitors temsirolimus and 
everolimus are currently approved for the treatment 
of renal cell carcinoma (122,123), and mTOR inhibitors 
have shown promise in a number of other types of 
cancers, including breast cancer. 

Studies have shown that activation of the 
mTOR/PI3K pathway promotes anti-estrogen re-
sistance (124). Pre-clinical models have shown that 
letrozole and everolimus both inhibit estro-
gen-induced breast cancer proliferation, and that 
these two agents in combination act synergistically to 
augment their anti-tumor activity even further (125). 
This cross-talk in activity has led researchers to com-
bine an mTOR inhibitor and an aromatase inhibitor in 
the treatment of ER positive breast cancer. Everolimus 
has been the most widely studied mTOR inhibitor in 
breast cancer. The effect of everolimus added to an 
aromatase inhibitor was studied in a randomized 
phase II trial of 272 postmenopausal patients with 
operable ER positive breast cancer (126). Patients re-
ceived 4 months of neoadjuvant letrozole combined 
with either everolimus or placebo. Response rate, de-
termined by clinical palpation, favored the everolimus 
group 68.1% to 59.1%. In the everolimus group, 22.6% 
of the patients experienced a grade 3 or 4 adverse 
event, compared to 3.8% in the placebo group. A dose 
reduction or interruption in treatment due to an AE 
occurred in over half of the patients in the everolimus 
group. The most common grade 3 or 4 AEs were 
pneumonitis, pneumonia, and stomatitis. All three 
cases of pneumonitis resolved shortly after discon-
tinuing everolimus. 

Two schedules of everolimus as first or second 
line therapy in metastatic breast cancer were com-
pared in a phase II trial of 49 patients (127). Patients 
were randomized to receive either 10mg daily or 
70mg weekly doses of everolimus. Twelve percent of 
the patients in the daily therapy group responded, 
versus zero in the weekly therapy group. Pneumonitis 
occurred more frequently than expected; 11 of 33 pa-
tients in the daily group and 2 of 16 patients in the 
weekly group experienced grade two (symptomatic) 
or higher pneumonitis. Of note, most patients in this 
study had previously received radiation therapy. The 

most common adverse events include fatigue, rash, 
cytopenias, and elevated liver enzymes. Serious 
(grade 3 or 4) AEs include fatigue, infection, pneu-
monitis, cytopenias, and hyperglycemia, which lead 
to 27% of patients in the daily schedule and 13% on 
the weekly schedule to discontinue everolimus. Five 
of the 11 patients who withdrew from the study as a 
result of adverse toxicities did so due to pneumonitis. 

BOLERO-2, a landmark phase 3 randomized 
placebo controlled trial, evaluated exemestane with or 
without everolimus in a 2:1 ratio in 724 postmeno-
pausal patients with hormone receptor positive breast 
cancer who recurred or progressed while receiving a 
non-steroidal aromatase inhibitor (letrozole or anas-
trozole) and had advanced disease (128). Patients 
were allowed to have received other anticancer en-
docrine therapies and no more than one prior chem-
otherapy regimen. Patients were stratified, based on 
the presence of visceral metastasis and prior sensitiv-
ity to endocrine therapy, and received daily oral 
everolimus (10mg) or placebo combined with ex-
emestane (25mg daily). Sensitivity to endocrine ther-
apy was defined as at least 24 months before recur-
rence in patients receiving endocrine therapy as ad-
juvant therapy and 24 weeks of at least stable disease 
in patients with advanced breast cancer. PFS was the 
primary endpoint, with OS, ORR, and clinical benefit 
rate, among others, as secondary endpoints. Patients 
continued treatment until they developed disease 
progression, unacceptable toxicity, or withdrew from 
the study. 724 women at 189 centers in 24 countries 
were enrolled, with 485 receiving everolimus. The 
median age of the enrolled patients was 62, with 56% 
having visceral disease, and 76% with bony metasta-
sis. 36% of patients had metastatic disease involving 
at least 3 sites, with lung and liver being the most 
commonly affected organs. All patients were ER pos-
itive and HER2 negative; 72% were PR positive. Every 
patient had received prior AI therapy with either let-
rozole or anastrozole, 48% had previously received 
tamoxifen, 16% had previously received fulvestrant, 
and 68% prior chemotherapy.  

At the first formal interim analysis, which oc-
curred after 359 events (approximately 60% of the PFS 
events), the median PFS was 6.9 months in patients 
receiving the combination of exemestane plus evero-
limus, versus 2.8 months for exemestane alone (HR 
for progression or death 0.43, 95% CI 0.35-0.54). Up-
dated data was recently reported at the 2011 San An-
tonio Breast Cancer Symposium. After 457 events, the 
median PFS by central assessment favored the group 
that received the combination of exemes-
tane/everolimus vs. exemestane alone (11.0 vs.4.1 
months; HR 0.36, 95% CI 0.28-0.45) (129). ORR and 
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clinical benefit rate favored the everolimus-receiving 
group, 12.0% vs.1.3% and 50.5% vs.25.5%, respec-
tively. 22.6% of the patients in the exemestane-only 
group died, compared to 17.3% in the everolimus- 
exemestane group. Serious adverse events attributed 
to the study treatment occurred in 11% of patients 
receiving everolimus vs. only 1% of patients in the 
placebo arm. Discontinuation of therapy as a result of 
AEs occurred more frequently in the everolimus arm, 
19% to 4%. Grade 3 or 4 AEs that occurred more fre-
quently in the everolimus plus exemestane arm in-
cluded: stomatitis/mucositis (8% vs.1%), anemia 
(7%vs. 1%), hyperglycemia (5% vs. <1%), dyspnea (4% 
vs. 1%), fatigue (4% vs. 1%), and pneumonitis (3% vs. 
0%). The drug Everolimus, a kinase inhibitor, was 
recently approved (July 20, 2012) by the FDA for the 
treatment of postmenopausal women with locally 
advanced, unresectable or metastatic hormone re-
ceptor-positive, HER2-negative breast cancer (ad-
vanced HR+ BC) in combination with exemestane 
after failure of treatment with letrozole or anastrozole.  

Other therapeutic targets 
Multiple factors lead to resistance to anti-HER2 

agents, including increased signaling via upstream 
growth factor receptors, such as those in the EGFR 
and IGFR1 families, PTEN mutations, and changes in 
the HER2 receptor. However, the major mechanism of 
trastuzumab resistance appears to be increased acti-
vation/signaling of PI3K/Akt (130). Preclinical mod-
els have shown that the combination of trastuzumab 
with an mTOR inhibitor act synergistically to inhibit 
tumor proliferation, and the addition of trastuzumab 
to an mTOR inhibitor reduces the activity of the PI3K, 
MAPK, and HER3 signaling pathways (131). As such, 
several studies examining the addition of mTOR in-
hibitors to anti-HER2 therapy as a means of over-
coming developed resistance have been undertaken. 
The combination of everolimus and trastuzumab, 
with or without chemotherapy, has been explored in 
several phase I and II clinical trials (132 -135). The 
ORR of this combination therapy was approximately 
20% in all 4 trials. Toxicities were tolerable, with the 
most common grade 3-4 AE being neutropenia. 
BOLERO-1 is a randomized, double-blind phase III 
RCT that will compare trastuzumab and paclitaxel, 
with or without everolimus, as first line therapy in 
women with locally advanced or metastatic breast 
cancer (136). In BOLERO-3, a double-blind, random-
ized phase III RCT, the addition of everolimus to vi-
norelbine and trastuzumab is being compared to vi-
norelbine and trastuzumab alone in women with 
HER2 positive, locally advanced or metastatic breast 
cancer (137). Both of these trials are currently enrol-

ling patients.  
Much less data is available in MBC with the 

mTOR inhibitor temsirolimus. To date, there have 
been two reported trials involving temsirolimus, one 
phase II trial (138) and one phase I (139). Of the 31 
patients in the phase II trial, none had an objective 
response to temsirolimus.  

PI3K inhibitors 
Phosphatidylinositol 3-kinases (PI3K) are a fam-

ily of enzymes involved in multiple important cellular 
functions including proliferation, cell growth, differ-
entiation, motility, and survival (140). Aberrant acti-
vation of PI3K has been implicated in different can-
cers. The gene that encodes the p110α catalytic subu-
nit of PI3K (PIK3CA) is the most commonly mutated 
gene in breast cancer (141,142). PI3K promotes estro-
gen receptor activity, and mutations of PI3K can me-
diate resistance to endocrine therapy (143). Clinical 
trials with PI3K inhibitors in breast cancer patients are 
still in early phases of development. There have been 
2 phase I/II trials reported involving SAR245408 or 
SAR245409, pan-inhibitors of PI3K (144,145). 
GDC-0941, a pan-inhibitor of PI3K, has been studied 
in two phase I trials (146,147). A third trial involving 
GDC-0941 in combination with fulvestrant is also 
currently ongoing (148). 

Insulin-like growth factor inhibitors 
Insulin-like growth factors I and II (IGF-I and 

IGF-II) play an integral role in the growth and de-
velopment of somatic tissue, including bone and 
skeletal muscle (148). IGFs bind to IGF-receptors 
(IGF-R), helping regulate cellular functioning (149). 
Expression of both IGF and IGF-R increase during 
fetal development and in several types of cancers, 
including breast cancer (150), making the IGF-R a 
promising target for antibody directed therapy. An 
anticipated complication of therapy that targets IGF-R 
is hyperglycemia, as targets to the IGF-R may also 
bind to the insulin receptor (151). Aside from directly 
leading to the inhibition of tumor growth, IGF-R tar-
geted therapy may also play a role in treating cancer 
by reversing resistance to endocrine, cytotoxic, or 
other therapies that may develop during the course of 
treatment.  

Monoclonal antibodies targeting the IGF recep-
tor have been the subject of many phase I and II clin-
ical trials. One phase III trial involving figitumumab, a 
monoclonal antibody (MOAB) that targets/inhibits 
IGF-1R, combined with chemotherapy in the treat-
ment of non-small cell lung cancer, has been reported 
(151). The study was terminated early due to lack of 
clinical benefit. Serious adverse events occurring 
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more often in the figitumumab arm included dehy-
dration, hyperglycemia, and hemoptysis. 

Five agents that target the IGF-R pathway have 
been or are being studied in the treatment of breast 
cancer. Ganitumab (AMG 479), figitumumab 
(CP-751,871), dalotuzumab (MK-0646, h7C10), and 
cixutumumab (IMCA12) are MOABs that target 
IGF-1R, while BMS-754807 is an IGF-1R/insulin re-
ceptor kinase inhibitor. The effect of ganitumab com-
bined with hormonal therapy was studied in a ran-
domized phase II double blind trial of 156 patients 
with ER and/or PR positive metastatic or locally ad-
vanced breast cancer who had received prior an-
ti-estrogen therapy (152). In a 2:1 allotment, patients 
received either ganitumab or placebo, combined with 
exemestane or fulvestrant, per investigator’s choice. 
The addition of ganitumab to exemestane or fulves-
trant did not appear to improve median PFS or ORR. 
Grade 3-4 SAE occurred in 42% of patients receiving 
ganitumab, the most common being: hyperglycemia 
(6%), neutropenia (6%), thrombocytopenia (4%), as-
thenia (4%), and transaminitis (4%). A second trial 
involving ganitumab in breast cancer is currently 
ongoing (85). 

In a randomized phase II trial, 205 patients with 

stage IIIB - IV, hormone receptor positive breast can-
cer received figitumumab plus exemestane or ex-
emestane alone as first-line therapy (153). There was a 
non-significant trend toward improved median PFS 
with figitumumab. The most common grade 3-4 SAE 
associated with figitumumab included: transient hy-
perglycemia, the development of diabetes mellitus, 
weight loss, elevated GGT, and fatigue. Grade 3-4 
hyperglycemia occurred in 12% of patients. Da-
lotuzumab (MK-0646, h7C10) will be combined with 
ridaforolimus, an mTOR inhibitor, in a phase II trial 
that will explore the efficacy and safety of these two 
agents in the treatment of ER positive breast cancer 
that progressed on aromatase inhibitors (154). There 
are currently three trials involving cixutumumab 
(IMCA12) in the treatment of breast cancer in various 
phases of development (155,156). One of these trials is 
studying the combination of cixutumumab and 
temsirolimus, an mTOR inhibitor (158). BMS-754807, 
the sole TKI that targets the IGF-R that has been 
studied in breast cancer, will be compared to 
BMS-754807 plus letrozole in a phase II trial involving 
patients with locally advanced or metastatic ER posi-
tive breast cancer (158). 

 

Table 5. mTOR, PI3K, and Insulin-like growth factor inhibitors in clinical development. 

Drug Name Description Phase Target Population References 
Everolimus Inhibits the mTORC1 protein I-III ER or PR positive (126, 128) 

HER2 positive (132-137) 
126-128,132-137 
 
 

Temsirolimus Inhibits the mTORC1 protein 
 

I-III ER, PR, or HER2 positive (138) 
TNBC or HER2 positive (139) 

138,139 

BEZ235 Dual inhibitor of PI3K and mTOR I ER positive 158 
GDC-0941 PI3K inhibitor  HER2 positive (146) 146,147 
SAR245408 PI3K inhibitor I/II HER2 positive 144 
SAR245408 or SAR245409 PI3K inhibitor I/II ER or PR positive 145 
Ganitumab (AMG 479) MOAB that targets IGF-1R II ER or PR positive 152 
Figitumumab (CP-751,871) MOAB that targets IGF-1R II ER or PR positive 153 
Dalotuzumab (MK-0646, 
h7C10) 

MOAB that targets IGF-1R II ER positive 154 

Cixutumumab (IMCA12) MOAB that targets IGF-1R II HER2 positive (155) 
ER or PR positive (156) 
ER positive (158) 

155,156,158 

BMS-754807 IGF-1R/insulin receptor kinase inhibitor II ER positive 158 

 

Heat Shock Protein 90 (HSP 90) 
HSP 90 is a molecular chaperone protein which 

assists in the folding and stabilization of proteins vital 
to cell survival (160). It assists in the stability and 
function of many proteins associated with cancer cell 
propagation, including estrogen receptors, HER2, 

EGFR, VEGFR, BCR-ABL, AKT, FLT3, MET, BRAF, 
and CRAF, among others, making it an ideal target for 
cancer treatment strategies. Breast cancers that ex-
press higher levels of HSP-90 are associated with a 
higher nuclear grade, larger tumors, increased lymph 
node involvement, increased expression of HER2 and 
ER, and more aggressive clinical features, e.g. de-
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creased survival (161). Several different HSP-90 in-
hibitors have recently been studied in phase II trials. 
Tanespimycin (17-AAG) was combined with 
trastuzumab in 31 patients with advanced, HER-2 
positive breast cancer who had progressed on 
trastuzumab (162).The ORR was 22%, median PFS 
was 6 months, and median OS was 17 months. There 
were no grade 4 AEs. Grade 3 AEs that occurred in 
more than 5% of the patients were transaminitis 
(10%), headache (7%), and fatigue (7%). Five patients 
withdrew from the study, one each for: fatigue, de-
creased ejection fracture (which also had occurred 
when she received trastuzumab previously), depres-
sion, transaminitis, and an atypical reaction to therapy 
(tremor plus unresponsiveness to verbal stimuli). 
Tanespimycin was added to trastuzumab in 29 pa-
tients with HER2 positive MBC who progressed after 
receiving trastuzumab (163). Of the 21 evaluated pa-
tients, five had a PR. The most common AEs were 
fatigue (39%), diarrhea (33%), dizziness (24%), and 
headache (19%). No grade 3 or 4 AEs occurred in 
more than 5% of the patients. 

Retaspimycin (IPI-504) was combined with 
trastuzumab in 26 patients with advanced, HER-2 
positive breast cancer who had progressed on 
trastuzumab (164). Among the 20 evaluable patients, 
there was 1 PR and SD in 14. The only grade 3-4 tox-
icities were grade 3 transaminits in a patient with liver 
metastasis, grade 3 vomiting, and grade 3 hypokale-
mia due to grade 1 diarrhea. Ganetespib, an HSP-90 
inhibitor with broader activity then tanespimycin, 
was studied as single-agent therapy in an unselected 
cohort of patients with locally advanced or metastatic 
breast cancer (165). Data on 14 patients has been re-
ported thus far. Of the 10 evaluable patients, there is 1 
PR, 1 minor response, and 2 SD. Grade 3 abdominal 
pain and diarrhea requiring dose reduction and 
asymptomatic and reversible elevation in serum am-
ylase occurred in one patient each. 

Histone Deacetylase Inhibitors 
The transcriptional factor hypoxia-inducible 

factor-1 alpha (HIF-1 α) regulates multiple cellular 
signaling pathways (166). HIF-1 α promotes angio-
genesis by increasing the expression of VEGF, and 
HIF-1 α-induced over-expression of VEGF has been 
identified in various malignancies (165). Histone 
deacetylase inhibitors have been shown to indirectly 
(167) and directly (168) negatively regulate HIF-1 α, 

offering promising options for the treatment of tu-
mors, which proliferate via stimulation from VEGF. 

The use of valproic acid as an HDAC inhibitor 
was tested in a phase I/II clinical trial conducted by 
Munster et al (176). In this study, 44 patients with 
advanced solid malignancies were enrolled in the 
phase I portion, with 15 women with MBC enrolled 
into the cohort expansion. Breast cancer patients in 
the cohort expansion group received 120 mg/kg/day 
of valproic acid followed by FEC100 (epirubicin 100 
mg/m2 with 5-fluorouracil 500 mg/m2 and cyclo-
phosphamide 500 mg/m2). Partial responses were 
seen in 9 of 41 (22%) patients in the phase 1 portion. 
Objective responses were seen in 9 of 14 (64%) eval-
uable patients at the dose expansion cohort, after a 
median number of 6 cycles of therapy. The most 
common observed toxicities were valproic ac-
id–associated somnolence and epirubicin-induced 
myelosuppression (169).  

Three other HDAC inhibitors have been clini-
cally evaluated to date in breast cancer patients: vo-
rinostat, entinostat, and panobinostat. Initial studies 
used an HDAC inhibitor as an adjunct to AI therapy 
in patients who had progressed on an AI. Vorinostat 
was combined with tamoxifen in 19 patients with 
MBC who progressed on prior AI therapy (170). Sig-
nificant toxicities included two venous thromboem-
bolic events and grade 3 fatigue in 3 patients. The 
most common grade 2 toxicities included: fatigue, 
nausea/vomiting, anorexia, bleeding, and myelo-
suppression. Of the 17 patients evaluated for efficacy, 
1 had a CR, 3 had PR, and 1 had SD for 12 months. A 
phase II trial involving 27 patients who were pro-
gressing on AI therapy received entinostat while con-
tinuing their same AI therapy (171). One patient had a 
PR and one had SD > 6 months. The most common 
grade 3-4 toxicities were: fatigue, dyspnea, diarrhea, 
and lethargy. A phase II trial of 114 patients with ER 
positive metastatic breast cancer progressing on an AI 
in which patients will be randomized, in a dou-
ble-blind fashion, to continue their AI with or without 
the addition of entinosat, is currently enrolling pa-
tients (172). Panobinostat and capecitabine, with or 
without lapatinib, was studied in a phase I trial in-
volving 15 patients (173). There was one DLT of grade 
IV thrombocytopenia, as well as 2 cases of grade 3 
thrombocytopenia. Grade 3 anemia, dehydration, 
fatigue, peripheral edema, and hand-foot syndrome 
each occurred in one patient. 

 
 
 
 



 Journal of Cancer 2013, Vol. 4 

 
http://www.jcancer.org 

128 

Table 6. HSP-90 and HDAC inhibitors in clinical development. 

Drug Name Description Phase Target Population References 
Tanespimycin (17-AAG) HSP-90 inhibitor II HER2 positive 162, 163 
Retaspimycin (IPI-504) HSP-90 inhibitor II HER2 positive 164 
Ganetespib HSP-90 inhibitor II advanced or MBC 165 
Vorinostat HDAC inhibitors II ER positive 170 
Entinostat HDAC inhibitors II ER positive 171, 172 
Panobinostat HDAC inhibitors I advanced or MBC 173 

 

Concluding Remarks 
The paradigm for treating breast cancer has 

changed rather dramatically over the last decade. 
Several targeted therapies, e.g. trastuzumab and an-
ti-estrogen therapies, have greatly improved patient 
outcomes. A much more detailed understanding of 
the underlying biology that drives malignant pro-
gression and metastases has yielded other novel tar-
gets including PI3K/mTOR and PARP, which are 
currently being tested clinically. One of the challeng-
es, particularly in treating metastatic breast cancer, is 
that even with improved systemic therapies, the dis-
ease remains incurable. As more drugs that target 
specific pathways are developed, tumors develop 
means to evade these agents, particularly when there 
is redundancy in most biologic processes. The ro-
bustness, evolvability, modularity, redundancy, di-
versity, system control, tolerance, and plasticity are 
hallmarks of network pathways (174) which will fur-
ther lead to difficulties of individual compounds to be 
successfully used against cancer growth for longer 
periods of time. One potential strategy is to combine 
multiple drugs that hit biologically important path-
ways at different places. Such a combinatorial strategy 
(175) will definitely increase efficacy, but we must 
choose wisely which combinations to pursue in future 
clinical trials. We believe that more thorough preclin-
ical testing may help us make more informed deci-
sions on which combinations should be brought for-
ward into the clinic, especially when it is unlikely that 
we will be able to empirically test every possible 
combination. The next decade will hopefully bring 
new treatment paradigms that will continue to build 
on progress made over preceding two decades, and 
further improve clinical outcomes and survival rates 
for patients with breast cancer.  

For HER2 positive MBC, given the availability of 
several HER2 targeted agents and the anticipated ap-
proval of newer agents as detailed above, in the future 
the clinician may be challenged as to how to sequence 
these therapies in clinical practice. An evidence-based 
approach should guide therapeutic decision making 
in an era where economic considerations are also 

paramount. Certainly, this question will be the subject 
of future studies. However, if one uses the paradigm 
of choosing highly efficacious therapies which have 
the least toxicities, this can be a guiding principle 
upon which treatments are chosen.  

The negative reputation of HER2 positive meta-
static breast cancer is changing with the approval of 
several new and well tolerated HER2 targeted treat-
ments. In some aspects, this disease may be consid-
ered a “double-edged sword” due to the aggressive 
tumor biology, but at the same time beneficial due to 
the availability of a biomarker that can become a tar-
get for successful therapy. This in turn gives clinicians 
the availability of several less toxic targeted therapies 
which can drastically change the natural history of the 
disease. In fact it speaks to how far we have come in 
treating breast cancer as not just one disease, as our 
treatments will become “personalized” to specific 
subtypes of the disease. We can tailor our therapy to 
the presence of functional genes: molecular profiling 
will become much more used in the near future and 
more such targeted compounds may become reality. 
Much work is of course still needed to unfold the 
complex personalized networks of tumor prolifera-
tion and resistance mechanisms (176). 
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