
Heliyon 10 (2024) e26770

Available online 29 February 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Robust diagnosis recommendation system for Primary Care 
Telemedicine using long short-term memory multi-class 
sequence classification 

Patrick Essay *, Ajaykumar Rajasekharan 
Teladoc Health, Inc, 1875 Lawrence St, Denver, CO, 80202, USA   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Deep learning 
Recurrent neural networks 
Recommender systems 
Clinical decision support 
Electronic health records 

A B S T R A C T   

Background: Telemedicine offers opportunity for robust diagnoses recommendations to support 
healthcare providers intra-consultation in a way that does not limit providers ability to explore 
diagnostic codes and make the most appropriate selection for each consultation. 
Objective: The objective of this work was to develop a recommendation system for ICD-10 coding 
using multiclass sequence classification and deep learning. The recommendations are intended to 
support telemedicine clinicians in making timely and appropriate diagnosis selections. The rec-
ommendations allow clinicians to find and select the best diagnosis code much quicker and 
without leaving the telemedicine platform to search codes and code descriptions. 
Methods: We developed an LSTM model for multi-class text sequence classification to make 
diagnosis recommendations. The LSTM recommender used text-based symptoms, complaints, and 
consultation request reasons as model inputs. Data were extracted from a live telemedicine platform 
which spans general medicine, dermatology, and mental health clinical specialties. A popularity- 
based model was used for baseline comparison. 
Results: Using over 2.8 MM telemedicine consultations during 2021 and 2022, our LSTM 
recommender average accuracy was 31.7%. LSTM recommender average coverage in the top 20 
recommended diagnoses was 85.8% with an average personalization score of 0.87. 
Conclusions: LSTM multi-class sequence classification recommends diagnoses specific to individ-
ual consultations, is retrainable on regular intervals, and could improve diagnoses recommen-
dations such that providers require less time and resources searching for diagnosis codes. In 
addition, the LSTM recommender is robust enough to make recommendations across clinical 
specialties such as general medicine, dermatology, and mental health.   

1. Introduction 

The International Classification of Diseases (ICD) is globally recognized as a standardized diagnostic tool maintained by the World 
Health Organization. In the United States, the 10th revision (ICD-10) is used as a diagnosis coding system for medical record-keeping in 
conjunction with Current Procedural Terminology (CPT) codes for inpatient billing [1]. Telemedicine, unlike a traditional inpatient 
setting, may require clinicians to be responsible for ICD-10 selection rather than administrative or medical coding staff. Due to po-
tential knowledge gaps with coding procedures, errors could be more frequent [2–4]. Additionally, this presents a shift from 
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administrative billing-focused coding in an inpatient setting to coding for telemedicine record-keeping, irrespective of financial 
reimbursement and insurance requirements. 

Medical recommendation systems have been developed in various settings for different objectives [5]. Traditional, collaborative- 
and content-based filtering methods, machine learning, and deep learning models have served as clinical decision support tools by 
recommending lab orders, medications, and diagnosis codes for medical billing with variable success [6–9]. Recommender systems 
have also been leveraged for inpatient hospitalization outcomes prediction and treatment path decision-making [10–12]. In addition to 
minimization of errors, recommendation systems can improve coding efficiency, decrease search time, and have the potential to allow 
providers to utilize a single search platform rather than leveraging multiple tools for ICD search and coding. 

Recommendation methodologies for ICD coding have also varied greatly [13]. Neural networks and attention-based models have 
been used for report classifications based on ICD codes. Natural language processing has also been used in combination with con-
volutional neural networks for diagnosis prediction based on open-text clinical notes [14]. To our knowledge, a diagnosis recom-
mender system has not been developed for telemedicine consultations, and previous approaches may be insufficient to address the 
breadth of illnesses across general telemedicine or other clinical specialties. 

The objective of this study was to develop a robust ICD-10 recommender system for a telemedicine platform performing general 
medicine, dermatology, and mental health consultations. Telemedicine platforms are uniquely positioned to employ sophisticated decision 
support systems. Our goal was to support clinicians making ICD-10 code selections by actively recommending diagnoses for individual 
telemedicine consultations. Our approach supports clinicians in such a way that does not limit clinician’s ability to view and select the most 
appropriate diagnoses and likely would not promote over-reliance on the recommender system for diagnosis code selection [15]. 

2. Material and methods 

2.1. Data source and preprocessing 

Deidentified data were extracted from a national telehealth network in the United States from September of 2021 through 
September of 2022. All available adult (≥18 years old) network members across clinical specialties (i.e., general medicine, mental 
health, and dermatology) with at least one consultation were included in the analyses. Both initial and follow-up consultations for a 
single illness or multiple consultations for differing illnesses were included. 

Telemedicine consultation data included unique consultations across general medicine, dermatology, and mental health spe-
cialties, each of which may include clinical providers with multiple subspecialties (Appendix Table 1). Data also included patient 
demographics (age and gender), symptoms, complaints, consultation request descriptions, and primary ICD-10 diagnosis codes for 
each consultation. Symptoms and complaints consisted of structured dropdown menu selections while consultation request de-
scriptions were unstructured, open text data fields. 

Data preprocessing and analyses were performed using Python Language Reference Version 3.10.6 (Python Software foundation, 
Wilmington, DE), the Pandas (v.0.23.4) [16], Seaborn (v.0.9.0) [17], Sci-kit Learn package (v.0.19) [18], and TensorFlow [19] li-
braries. Methods were in alignment with the TRIPOD statement for predictive modeling (Appendix Table 2) and recommended 
reporting guidelines for machine learning algorithms and medical artificial intelligence [20,21]. 

2.2. Long short-term memory multi-class sequence classification 

We developed a deep learning long short-term memory (LSTM) model for multiclass sequence classification for primary diagnosis 
code recommendations. LSTM was selected primarily for the ability to retain meaningful information and remove irrelevant infor-
mation through a forget gate. The model is also able to remember longer sequences of information and extract meaningful insight. 
Lastly, it is less prone to vanishing gradient problems [22]. 

All available features directly related to individual consultations were considered. Coarse grained features, such as patient char-
acteristics, provider characteristics, or provider-member-ICD interactions were excluded. Our model input data, including consultation 
request reason, clinical complaints, and clinical symptoms, are directly related to each consultation individually and are recorded via the 
clinician platform prior to diagnosis selection. 

Table 1 
Patient characteristics and input features stratified by service specialty.   

General Medicine Dermatology Mental Health Total 

Consultations, n 2,671,345 45,478 108,749 2,825,572 
Providers, n 3400 88 2973 6461 
Patients, n 1,921,667 40,711 68,235 2,001,799 
Age, median (IQR) 36.3 (20.5) 31.9 (16.3) 32.6 (14.7) 36.1 (20.2) 
Gender, %female 63.6 61.2 67.1 63.7 
Unique diagnoses, n 7035 705 381 7131 
Consultation request reasons, n 418,130 10,784 12,144 439,655 
Unique symptoms, n 715 167 393 729 
Unique complaints, n 279 73 118 296 
Mean symptoms per consult, n 2.05 1.10 1.82 2.02  
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Consultation request reason is written by the patient during the consultation scheduling process. It is open-ended text format and 
can be as simple as “earache” or consist of longer descriptions such as “cold stuffy runny nose cough sneezing”. Clinical complaints and 
clinical symptoms are selected by the medical provider during the consultation prior to diagnosis selection. Complaints and symptoms 
are standardized, dropdown menu selections and include items such as depression, checkup, nasal congestion, abdominal pain, etc. 

Both structured (dropdown menu) and unstructured (open text) data were tokenized and then padded to a maximum sequence 
length of 20 words (Fig. 1). Primary diagnosis codes were factorized for each consultation. Consultations may contain multiple di-
agnoses, but only primary diagnoses were considered. 

The LSTM model included an embedding layer, LSTM layer with dropout of 0.2, and a dense connected layer to SoftMax output 
layer (Fig. 2). Tokenized feature sequences were input to the embedding layer with embedding vector length of 100. The number of 
classes in our multiclass classification approach was determined by the number of diagnoses in the training and testing sets. Thus, the 
activation function in the last LSTM dense layer outputs a probability for each factorized diagnosis code. For diagnosis codes to be 
included in the training set, each must have been used a minimum of two times during the training date range. 

The LSTM model outputs a probability for each possible diagnosis code based on a given input sequence. Every consultation 
returned a list of probabilities whose length equaled the number of unique diagnosis codes. These probabilities were then used to rank 
the diagnosis codes for each consultation input sequence from most likely to least likely diagnosis (Appendix Fig. 1). 

2.3. Training and testing 

The LSTM model was trained and tested using a rolling 14 days of consultation data. A train-test split size of 0.30 was used. Due to the 
low number of feature sequences from the standardized dropdown menu selection options relative to open text inputs, model training epochs 
were limited to 10 to avoid overfitting. Results from each two-week period were then compiled and averaged across one full year of data. The 
Results section includes both compiled performance over one year and monthly performance, i.e., roughly two 14-day cycles each month. 

On average, each train-test cycle contained 2500+ diagnoses and approximately 50,000 unique input sequences for 140,000+
consultations. The model was trained and tested for every two-week period during the full year of extracted data. This was done for two 
reasons: 1) to limit computational burden and 2) to minimize impact of seasonality. If implemented to a live telemedicine platform, 
recommendations would then be based on the previous 14 days of consultations rather than a full year. For example, this approach may 
help avoid over-recommendation of seasonal influenza diagnoses during summer months when heat related illnesses may be more 
prevalent and vice versa. 

Both models were tested across all three clinical specialties combined and individually to evaluate the need for recommendations at 
a more granular level. For instance, if a specialty area consistently requires a small number of diagnosis codes, then the need for a 
recommender system is diminished. But if individual specialties still treat a broad range of diagnoses, the impact of the recommender 
system being robust is nontrivial. 

Table 2 
Model performance metrics.   

Popularity Model LSTM Sequence Classification 

Accuracy, % 3.05 31.7 
Coverage (top 20), % 43.9 85.8 
Personalization 0 0.87  

Fig. 1. Tokenization sequence of input features.  
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2.4. Evaluation and baseline comparison 

For baseline comparison, we created a popularity-based recommender model. The popularity model leveraged the frequency of 
primary diagnosis codes from all consultations across clinical specialties, combined and individually. Model training required that 
each ICD-10 code be selected in more than one consultation. Training data also required that providers had a minimum of two 
consultations which resulted in a primary diagnosis selection. Providers with only one consultation were excluded. Training and 
testing of the popularity model were performed across the same timeframe as the LSTM recommender system for results comparison. 

Accuracy, coverage, and a personalization metric were calculated for evaluation and comparison of the baseline popularity model 
to the LSTM sequence classification model. Accuracy in this application refers to the percentage with which the correct diagnosis for a 
given consultation in the testing data was the first recommendation in the ranked list of model diagnoses output. 

Coverage and personalization both used the top 20 recommended diagnoses for each consultation in test data. Coverage was calculated 
as the percentage of consultations in the testing data in which the correct diagnosis was present in the top 20 recommended diagnoses. 

Personalization was calculated by finding the average cosine similarity measure (Eqn. (1)) for the top 20 diagnosis recommen-
dations of each consultation where k = cosine similarity and x and y are row vectors. 

k(x, y)=
xy⊺

‖x‖‖y‖
Equation 1 

The personalization metric was then calculated as 1 − average cosine similarity for the top 20 recommended diagnoses for each input 
sequence. Values closer to 1 suggest higher personalization across consultations and values closer to 0 (lower personalization) suggest 
that the same recommendations are being made for each consultation regardless of input sequence heterogeneity. 

3. Results 

The study dataset consisted of more than 2 million patients and 2.8 million consultations across three clinical specialties over one 
year (Table 1). The median age of members was 36 years. The data included 7131 unique ICD-10 diagnoses. Most diagnosis codes were 
from general medicine consultations with an average of two clinical symptoms per consultation. 

A total of 264,561 (9.26%) consultations did not have a consultation request reason. All other input features for all consultations had 
no missing values (Appendix Table 3). Consultations with missing consultation request reason were not excluded. Our approach 
combines inputs into a single tokenized sequence string of values. Missing input data results in a potentially shorter input sequence but 
still allows for diagnosis recommendations. 

3.1. Model performance comparison 

Popularity model average accuracy (correct diagnosis was the first recommended diagnosis) was 3.02%, and LSTM model accuracy 
was 31.6% on average (Table 2) across all specialties combined. Model coverage where the correct diagnosis was present in the top 20 
recommended diagnoses was 44.9% and 84.6% for the popularity model and LSTM model, respectively. The personalization score was 
0.86 for the LSTM model meaning the difference in the top 20 recommended diagnoses for each consultation was very high. The 
popularity model personalization score was 0 because the same list of diagnosis codes was recommended for every test consultation, 
whereas the LSTM model was highly personalized based on the input sequences. 

Model performance did not vary throughout the year (Fig. 3) suggesting seasonality has a minimal effect on the total patient 
population. Average performance metrics and figures were calculated using randomly selected consultations from the full dataset. 

Fig. 2. LSTM model structure and input sequence.  
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Similar to the coverage evaluation metric, the ranking of the correct diagnosis code for each model was higher for the LSTM model 
than the popularity model (Fig. 4) where ranking 0 was the top ranked diagnosis. Both the box plot (left) and violin plot (right) 
illustrate the correct diagnosis was more often and more likely to be ranked higher by the LSTM model. Qualitatively, the same was 

Fig. 3. LSTM and popularity model accuracy, coverage, and personalization for models trained and tested every two weeks through the full 1- 
year dataset. 

Fig. 4. A) Boxplot of the ranking of each correctly recommended diagnosis in testing consultations for both LSTM sequence classification model and 
popularity model, and B) violin plots illustrating kernel density estimates of the ranking of each correctly recommended diagnosis in testing 
consultations for both models. 

Fig. 5. Accuracy and coverage performance metrics for clinical specialties General Medicine, Mental Health, and Dermatology.  
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true of other relevant diagnosis codes that were not selected. The popularity model was unable to provide different rankings for each 
consultation resulting in a ranking that only represents the most common consultations. 

Model performance remained high across clinical specialties individually for the LSTM model as well and performance metrics 
were mixed for the popularity model (Fig. 5). Performance metrics are also shown in Appendix Table 4. 

The performance of the LSTM model for individual specialties mirrored the performance when tested across all specialties com-
bined. For the popularity model, however, there was an increase in performance across all three specialties, particularly general 
medicine. This is because the number of diagnoses treated within an individual specialty is smaller than the number of diagnoses 
treated across all specialties combined. 

It is likely that the accuracy of the popularity model in general medicine of 82.3% is due to a very high number of cold and flu 
patients which is the most common general medicine illness (Appendix Fig. 2). Conversely, the popularity model for general medicine 
only has a coverage of 38.6% meaning the correct diagnosis is in the top 20 recommended diagnoses only 38.6% of the time. So, when 
patients schedule a general medicine visit for illnesses unrelated to cold and flu the popularity model performs worse while coverage of 
the LSTM model across all individual specialties and when specialties are combined remains above 80%. 

4. Discussion 

4.1. Performance and clinical relevance 

Our approach using LSTM deep learning for multiclass text sequence classification to recommend clinical diagnoses performed well and 
far exceeded our baseline popularity modeling approach. Currently, an alpha-numeric ranking is used where three or more search characters 
are used to populate matching diagnosis codes and descriptions. Alpha-numeric diagnoses search functionality may be cumbersome and 
unspecific to individual consultations. In addition, the expansive number of possible ICD-10 codes makes searching for the correct diagnosis 
codes difficult. The popularity modeling approach is certainly an improvement over character search by recommending the most popular 
diagnoses over a specific timeframe. Yet, the LSTM model outperformed popularity modeling across all performance metrics. 

Perhaps most importantly, the LSTM model makes recommendations specific to each consultation (Table 2). Telemedicine plat-
forms allow for patient input consultations request reasons and clinician input chief complaints and symptoms prior to making a primary 
diagnosis selection. These text data are highly correlated and relevant to the consultation without expanding model inputs to include 
other patient-related factors such as age, weight, blood pressure, etc. which may or may not be present for each patient. 

With the high personalization of multiclass classification, the model is robust enough to effectively make recommendations for 
multiple clinical specialties, subspecialties, and illness types (mental health, dermatology, general medicine, etc.). It is accurate 
enough to rank correct diagnoses high in listed recommendations (Figs. 4 and 5). And, the LSTM model can be trained on historical 
consultation data and generate recommendations in real time. 

The LSTM model has several advantages for this application over other recommender systems such as collaborative and content- 
based filtering [23]. Traditional filtering methods could relate characteristics between clinicians (specialties), patients (physiology), 
diagnosis codes (illness types), and interactions between the three to make recommendations. However, in our case characteristic 
similarities and interactions between patients-providers-diagnoses are not strongly related to the correct diagnosis for a consultation. 
For example, clinicians do not necessarily select diagnoses based on preference. Alternatively, patient characteristics (such as age, 
body mass index, basic physiology) may not be related to their reason for telemedicine consultation. 

4.2. Limitations and future work 

While popularity modeling may be an improvement over alpha-numeric search, it has several drawbacks. The diagnosis codes that 
are highly recommended may become more popular over time as a result of being recommended [24–26]. This requires larger shifts in 
clinical practice or drastic changes in frequent diagnoses across entire public health domains to change the recommended diagnoses in 
a popularity-based model. The popularity model also does not account for new ICD diagnosis codes or changes to existing code 
definitions and descriptions that might affect the popularity of those codes. 

The LSTM recommendation system outperformed the popularity model across all metrics. It is, however, limited in that it requires 
real-time input during a consultation to make diagnosis recommendations. It also has yet to be tested prospectively to evaluate the 
computational load and speed with which recommendations are returned on a live telemedicine platform. In addition, LSTM models 
minimize vanishing gradient issues but do not eliminate vanishing gradient entirely [22]. They require high memory bandwidth for 
training due to the relative complexity within each layer which might inhibit implementation of the model in production environ-
ments. Lastly, they are prone to overfitting. The standardized lists which were used for clinical complaints and clinical symptoms may 
exacerbate potential overfitting of the model if not trained and tested across heterogeneous groups. 

Future work will include prospective validation and testing. The LSTM recommendation system should allow providers to search more 
effectively without leaving the platform to identify ICD-10 codes of interest. It should shorten the amount of time spent searching for codes 
by actively populating recommendations as providers are typing and should not limit accessibility to any ICD-10 codes in the search results. 

5. Conclusion 

Telemedicine platforms can leverage sequential clinical data intra-consultation to make accurate diagnosis recommendations using 
LSTM multiclass sequence classification. Recommending diagnoses dynamically may allow for robust and actionable clinical decision 
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support in real time. Diagnosis recommender systems can improve consultation efficiency and potentially minimize coding errors. 

Summary table 

What was already known on the topic.  

• Recommender systems have been used in clinical applications for specific clinical objectives to varying degrees of success.  
• Recommender systems can serve to minimize medical errors, improve clinical process efficiency, and for system-level, provider- 

level, and patient-level outcomes prediction.  
• Recommender systems traditionally leverage interactions between entities (provider-patient) and/or metadata between study 

subjects (similar patient-patient or provider-provider) to make recommendations. 

What this study added to our knowledge: 

• We developed a model that makes diagnosis code recommendations for telemedicine consultations across broad, general tele-
medicine and specific clinical specialties.  

• Our model leverages patient input data (reason for visit), symptoms and complaints as open text to make recommendations.  
• We illustrated that our model makes diagnosis recommendations with a high enough degree of accuracy to assist clinicians in 

timely diagnosis selection during a remote, telemedicine consultation without assistance from other support staff.  
• Multi-class sequence classification of free text using an LSTM model sufficiently captured information related to final patient 

diagnosis. 
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Appendix  

Table 1 
Total number (%) of provider roles in extracted data as percentage of consultations.  

Provider roles (consultations) Providers, n Consultations, n 

DOCTOR 3354 2,660,010 
DERMATOLOGIST 88 45,478 
COUNSELOR 1246 37,638 
SOCIALWORKER 990 27,525 
PSYCHIATRIST 279 31,026 
THERAPIST 278 8364 
PSYCHOLOGIST 179 4140 
NURSEPRACTITIONER 49 11,097 
COUNSELORADDICT 3 56 
PHYSICIANASSISTANT 2 238   
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Table 2 
TRIPOD Checklist. 
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Fig. 1. Example illustration of LSTM model output where each possible diagnosis is assigned a probability for each consultation in testing data. 
Diagnosis codes are then ranked based on probability from most to least likely diagnosis for a given consultation.  

Table 3 
Total percentage missingness of input features and primary 
diagnosis codes.  

Input Feature Missing, % 

Clinical symptoms 0 
Clinical complaints 0 
Consultation request reasons for visit 9.26   

Table 4 
Model performance metrics stratified by individual clinical specialties.   

Popularity LSTM  

Gen. Med. Mental Health Dermatology Gen. Med. Mental Health Dermatology 
Accuracy, % 82.3 18.7 40.4 31.3 31.9 31.5 
Coverage, % 38.6 68.7 27.8 83.1 84.2 83.3 
Personalization 0 0 0 0.85 0.87 0.87    
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Fig. 2. Diagnosis distribution across clinical specialties Dermatology (left), General Medicine (center), Mental Health (right).  
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