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Background: Multiple genes were previously identified to be associated with cervical
cancer; however, the genetic architecture of cervical cancer remains unknown and many
potential causal genes are yet to be discovered.

Methods: To explore potential causal genes related to cervical cancer, a two-
stage causal inference approach was proposed within the framework of Mendelian
randomization, where the gene expression was treated as exposure, with methylations
located within the promoter regions of genes serving as instrumental variables. Five
prediction models were first utilized to characterize the relationship between the
expression and methylations for each gene; then, the methylation-regulated gene
expression (MReX) was obtained and the association was evaluated via Cox mixed-
effect model based on MReX. We further implemented the aggregated Cauchy
association test (ACAT) combination to take advantage of respective strengths of these
prediction models while accounting for dependency among the p-values.

Results: A total of 14 potential causal genes were discovered to be associated with the
survival risk of cervical cancer in TCGA when the five prediction models were separately
employed. The total number of potential causal genes was brought to 23 when
conducting ACAT. Some of the newly discovered genes may be novel (e.g., YJEFN3,
SPATA5L1, IMMP1L, C5orf55, PPIP5K2, ZNF330, CRYZL1, PPM1A, ESCO2, ZNF605,
ZNF225, ZNF266, FICD, and OSTC). Functional analyses showed that these genes were
enriched in tumor-associated pathways. Additionally, four genes (i.e., COL6A1, SYDE1,
ESCO2, and GIPC1) were differentially expressed between tumor and normal tissues.

Conclusion: Our study discovered promising candidate genes that were causally
associated with the survival risk of cervical cancer and thus provided new insights into
the genetic etiology of cervical cancer.

Keywords: Cox linear mixed-effects model, prediction model, gene expression, DNA methylation, two-stage
inference, potential causal gene, cervical cancer, aggregated Cauchy association test
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INTRODUCTION

Cervical cancer is one of the most common malignancies in
the female population, mostly caused by infection with human
papillomavirus (HPV) (Šarenac and Mikov, 2019). In terms of
cancer statistics in 2018, cervical cancer is the fourth most
common malignancy and the fourth leading cause of cancer
death among women worldwide, with an estimate of 570,000
cases and 311,000 deaths globally (Bray et al., 2018). Moreover,
cervical cancer is the second primary cause of cancer death in
women aged 20–39 years (Siegel et al., 2019). Although great
advances have been achieved for cervical cancer, there is still
a lack of reliable diagnostic biomarkers for early identification
and screening (Chen and Gyllensten, 2015). In addition,
despite the utilization of HPV vaccines for prevention and
chemoradiotherapy as well as radical surgery offering satisfactory
survival rate for early-stage cervical cancer patients, effective
treatments for advanced patients are rarely available, especially in
developing countries and regions (Chen and Gyllensten, 2015).

Therefore, it is an urgent demand in clinical practice that
valuable biomarkers should be well discerned and validated to be
a sign of the early stage or to provide profile of cervical cancer
progression (Nahand et al., 2019). As an effort to understand the
genetic foundation of susceptibility to cervical cancer, in the past
decade multiple genome-wide association studies (GWASs) were
undertaken and discovered a group of cervical-cancer-associated
genetic variants (see Chen and Gyllensten, 2015), where a large
number of associated germline genetic variants and genes were
described for cervical cancer. These findings imply that the
development of cervical cancer relies to a significant extent on
inherited genetic components and genetic predisposing factors
may affect the probability and persistence of, or sensitivity to,
HPV infection and the rate of tumor development as well as
progression (Chen and Gyllensten, 2015). However, like many
complex human traits and diseases (Visscher et al., 2017), the
genome-wide SNP-based heritability of cervical cancer estimated
in GWAS is smaller than expected. For example, the heritability is
11.7% (se = 9.8%) in a Japanese population (Masuda et al., 2020)
and 24.0% (se = 2.9%) in a Swedish population (Chen et al., 2015),
both of which are lower than that observed in family studies
(Magnusson et al., 2000). The remaining missing heritability
suggests that a large number of causal genes and genetic
variants have yet been discovered and that continuous efforts
to identify causative genes for cervical cancer are worthwhile
(Chen and Gyllensten, 2015).

As also demonstrated in many studies (Zhao et al., 2006,
2014; Wang et al., 2013; Zhu et al., 2017; Kim et al., 2018;
Yu et al., 2020), mRNA-gene expression measured at the
transcript level influences the progression of complex diseases

Abbreviations: BP, biological process; BSLMM, Bayesian sparse linear mixed
model; Coxlmm, Cox linear mixed-effect model; CC, cellular component; DEG,
differential expressed genes; DPR, latent Dirichlet Process Regression; EBI, the
European Bioinformatics Institute; ENET, elastic net; FDR, false discovery rate;
GO, Gene Ontology; GWAS, genome-wide association study; ACAT, aggregated
Cauchy association test; HPV, human papillomavirus; KGEE, Kyoto Encyclopedia
of Genes and Genomes; LMM, Linear mixed model; MF, molecular function;
MR, Mendelian randomization; TCGA, The Cancer Genome Atlas; TWAS,
transcriptome-wide association study.

more directly than other omic measurements. However, the
establishment of the potential causal relationship between
altered gene expressions and the survival of cervical cancer
patients is not straightforward in observation studies due to
unknown confounders and possible reverse causation. The latter
is of particular concern because we cannot determine whether
the regulated gene expressions are the causal factors or the
consequence of the development or progression of cervical
cancer due to the considerably complicated biological network
and interaction. Due to this reason, previous studies often
aimed to examine association rather than causality between gene
expression and cervical cancer.

In statistical genetics, a powerful statistical tool to determine
causal relationship and estimate causal effect of the exposure on
the outcome in observational studies is Mendelian randomization
(MR), which is built based on commonly used instrumental
variable approaches developed in the field of causal inference
(Angrist et al., 1996; Greenland, 2000; Sheehan et al., 2008).
Under some certain assumptions, the results of MR analysis are
less susceptible to reverse causation and confounding factors
(Davey Smith and Ebrahim, 2003). A key point in MR is to select
valid instrumental variables for the exposure (i.e., expression
level). Biologically, methylation CpG sites of a specific gene
within the transcript start site can downregulate its expression
level, which can in turn further affect the survival of cancer
patients (Glinsky, 2006; de Tayrac et al., 2009; Fabiani et al., 2010;
Wang et al., 2013), indicating that methylation alterations play
a central role in cancers by regulating expression profile. This
motivates us to propose a two-stage causal inference approach
with methylations as instrumental variables of expression to
detect potential causal genes for the survival of cervical cancer
patients. The two-stage instrumental variable inference is widely
employed in many research fields, such as sociology, economics
(Angrist and Keueger, 1991), and genetic medicine (Xue et al.,
2020). In addition, applying methylations as instruments for
causal inference is also commonly seen in recent genomic
integrative analyses (Hannon et al., 2018; Qi et al., 2018;
Wu et al., 2018).

Methodologically, our proposed approach follows the similar
principle of prediXcan (Gamazon et al., 2015) that was developed
recently to identify causal genes for complex diseases with genetic
variants serving as instrumental variables in the framework
of MR and transcriptome-wide association studies (TWAS)
(Gamazon et al., 2015; Gusev et al., 2016; Zeng and Zhou,
2017; Barbeira et al., 2019; Hu et al., 2019; Wainberg et al.,
2019). Specifically, in our context we implement a two-
stage inference procedure (Figure 1): in the first stage, the
weights (i.e., effect sizes on expression) of DNA methylation
alterations within the promoter region and gene body for
individual genes are estimated via genetic prediction models;
in the second stage, the methylation-regulated gene expression
(MReX) is imputed based on the corresponding prediction
model and the potential causal association between the gene
and the survival risk of cervical cancer is examined using
MReX. More importantly, the two-stage based causal inference
can be viewed as a special case of MR analysis from a
statistical perspective (Zhu and Zhou, 2020). Furthermore,
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FIGURE 1 | Schematic framework of our proposed two-stage causal inference approach. Top: estimate the weight of each methylation site based on the
methylation-expression pair of a given gene with various prediction models; Bottom: evaluate the association between methylation-regulated gene expression
(MReX) and the survival of cervical cancer using the Cox linear mixed-effects model and then discover causal genes for cervical cancer in TCGA.

we consider five commonly used prediction models in the
first stage of our two-stage inference procedure and exploit
the aggregated Cauchy association test (ACAT) method (Liu
et al., 2019; Liu and Xie, 2020; Xiao et al., 2020)—a
novel combination strategy that is robust against positive
correlation—to take advantage of respective strengths of these
models while accounting for dependency among the p-values
of various models.

We finally apply the proposed approach to the cervical cancer
dataset in The Cancer Genome Atlas (TCGA) project (Hoadley
et al., 2018). A total of 14 potential causal genes were discovered
to be associated with the survival risk of cervical cancer when
the five prediction models were separately implemented. The
total number of potential causal genes was brought to 23
when conducting the combination test with ACAT. Some of
the newly discovered genes were reported in previous literature
and differentially expressed between tumor and normal tissues.
In addition, functional analyses showed that these genes were
enriched in tumor-associated pathways.

MATERIALS AND METHODS

TCGA Cervical Cancer Data Sets and
Quality Control
Our analysis mainly relied on publicly available datasets of
cervical cancer in TCGA (Hoadley et al., 2018). From https:
//xenabrowser.net/hub/, we obtained clinical features on 317

samples, 20,530 RSEM normalized expressions on 308 samples,
and 485,577 DNA methylation alterations on 312 samples.
To avoid racial heterogeneity in survival, expressions, and
methylations, when carrying out quality control before the formal
analysis, we only reserved 216 white patients. Afterward, we
further deleted eight patients for whom gene expressions or
methylations cannot be available. We also removed another
eight patients who had incomplete clinical covariates. The
description of important characteristics of this cervical cancer
dataset after filtering is summarized in Table 1. According
to the TCGA annotation mapping file, we only considered
protein-coding genes and defined in our analysis methylations
as those within the gene body and an extended region before
the transcription starting site so that the promoter can be
included. Then, each gene expression was quantile-transformed
so that it followed a standard normal distribution and each
methylation was standardized. The missing DNA methylations
values and gene expressions (no more than 10%) were simply
imputed with median. The flowchart for our study is shown
in Figure 2.

A Two-Stage Inference Approach
Linear Models Predicting Gene Expression With DNA
Methylation Alterations
We now explain our two-stage inference model (Figure 1). Let G
be an n-vector of gene expression levels for the ith gene measured
on n individuals, and M be an n × p matrix for a group of DNA
methylations that are located within this gene; note that p varies
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TABLE 1 | Summary information of clinical characteristics for cervical cancer
available from TCGA.

Characteristic Cervical cancer (%)

Quality control

Sample 190

Gene 13,700

Methylation 485,577

Censored 127 (40.06)

Average age (range) 47.8 (20–81)

Clinical stage (%)

T1 109 (57.4)

T2 42 (22.1)

T3 29 (15.3)

T4 10 (5.3)

Tumor status (%)

T0 138 (72.6)

T1 52 (27.4)

Survival time (median/range) (month) 37.7; 0–213.6

Survival status (%)

Living 141 (74.2)

Dead 49 (25.8)

We conducted a series of quality control for those raw datasets: removed 101 non-
white samples, five samples that were not primary solid tumor, 18 samples with
missing values in clinical information, and three samples with no gene expressions
or DNA methylations. A total of 20,530 genes were originally included, among
which 17,611 were protein-coding genes; 3,911 genes were removed because
the number of matched methylations for those genes was less than 10.

gene by gene. In the first stage, we apply the following linear
model to link G and M

G = Mw + ε, ε ∼ N(0, σ2
ε In) (1)

where w is a p-vector for effect sizes of DNA methylations, ε

is an n-vector of residual errors following an independent and
identical normal distribution with mean zero and variance σ2

ε

, and In denotes the n-dimensional identity matrix. Because of
the possible high-dimensional issue where the number of DNA
methylations p is larger than the sample size n, the commonly
used least-squares method is no longer applicable for estimating
w. We instead employ several novel prediction models which are
specially designed for high-dimensional datasets and particularly
consider five regressions including linear mixed-effects model
(LMM) (Yang et al., 2010; Makowsky et al., 2011; Zeng et al.,
2017), Bayesian sparse linear mixed-effects model (BSLMM)
(Zhou et al., 2013), latent Dirichlet process regression (DPR)
(Zeng and Zhou, 2017), Lasso (Tibshirani, 1996), and elastic net
(ENET) (Zou and Hastie, 2005). Among these methods, LMM,
BSLMM, and DPR explicitly incorporate all DNA methylations
into the model by assuming diverse prior distributions for the
effect sizes, while Lasso and ENET only include some most
important DNA methylations with the way of regularization
based on variable selection. The details of these models are
described in Zhu and Zhou (2020) and Zeng et al. (2021).
We implement LMM and BSLMM with the GEMMA software
(version 0.94), DPR with the DPR software (Zeng and Zhou,
2017), and Lasso and ENET with the R glmnet package (version

2.0-18) (Friedman et al., 2010). Using these models, we can obtain
the estimate of effect sizes of DNA methylations (denoted by ŵ)
as well as the MReX level Ĝ = Mŵ for each gene.

Cox Mixed-Effect Regression Discovering
Methylation-Regulated Genes
In the second stage, we investigate the association between the
gene and the survival risk of cervical cancer using the Cox model
(Cox, 1972). Besides the direct gene effect based on MReX Ĝ,
we also incorporate the impact of DNA methylation alterations
into the survival model to explain possible horizontal pleiotropy
(Bowden et al., 2015, 2016; Burgess and Thompson, 2017; Slob
et al., 2017; Barfield et al., 2018; Verbanck et al., 2018)

h(t|X, Ĝ, M)

h0(t)
= exp(Xa + Ĝ × b + Mc), c ∼ N(0, σ2

c )

(2)
where t is the observed survival time, h0(t) is an arbitrary baseline
hazard function, and a = (a1, a2, . . ., am) is an m-vector of effect
sizes for available covariates X, such as age of onset, clinical stage,
and tumor status (Table 1); note that, as methylation is highly
associated with age, we here explicitly adjust for age as a covariate;
b is the effect size for the given gene and is of our primary interest,
and c = (c1, c2, . . ., cp) is a p-vector of effect sizes for DNA
methylations. Because of the same reason of high-dimensional
problem mentioned before, we assume c’s are random effects
following a normal distribution with mean zero and variance
σ2

c , leading to the Cox linear mixed-effects regression model
(denoted by coxlmm) (Therneau et al., 2003). When c = 0, or
equivalently σ2

c = 0, coxlmm shown in (2) reduces into the
general Cox model where only the influence of the methylation-
driven gene exists. We fit coxlmm with the R coxme (version
2.2-10) package (Therneau, 2019) via the Laplace approximation
algorithm based on the second-order Taylor series expansion
(Therneau et al., 2003). The significance of MReX is examined

through the Wald test (H0: b = 0): Z = b̂/

√
var(b̂), where b̂ is

the estimate of the effect size b, with var(b̂) the variance of the
estimate b̂. The p-values of the Z statistic can be easily obtained
because it asymptotically follows a standard normal distribution.

Three Remarks for the Proposed Two-Stage Causal
Inference Method
First, it needs to highlight that instrumental variables are often
obtained from external independent datasets in traditional MR
studies, leading to the so-called two-sample analysis. However,
sometimes, if we have only one sample dataset with individual-
level methylations, expressions, and survival outcomes, we can
still perform a one-sample MR analysis. In brief, there are two
ways to conduct such analysis. First, as done in the present
work, one can estimate effect sizes of instrumental variables and
examine the association with all individuals. Second, one can
split the dataset into two parts, with one part for estimating
effect sizes of instrumental variables and the other part for
analyzing association between the gene and the outcome. Both
the ways have advantages and limitations. Specifically, the major
advantage of the first way is that no random split is needed
and it has relatively higher power because of larger samples

Frontiers in Genetics | www.frontiersin.org 4 June 2021 | Volume 12 | Article 667877

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-667877 May 27, 2021 Time: 18:38 # 5

Zhang et al. Discovering Candidate Genes of CESC

FIGURE 2 | (A) Mendelian randomization framework for the two-stage association analysis. The three assumptions for valid instrumental variables (IV) are indicated
by arrows or the absence of arrows: (i) the relevance assumption: the IV is robustly associated with the exposure; (ii) the independence assumption: the IV is not
associated with confounding factors; (iii) the exclusion restriction assumption: there is no alternative way that the IV affects the outcome other than via the exposure.
The blue solid line represents direct effects of DNA methylations. (B) Statistical scheme of our two-stage inference approach.

employed. The limitation is that it might suffer from inflation
in controlling type I error; however, the resulting inflation is
acceptable in terms of recent simulations (Xue et al., 2020). The
advantage of the second way is that it can maintain calibrated
type I error control, but its power might be limited as smaller
samples applied in the estimation stage and the association stage.
Another limitation of the second way is that its performance may
greatly rely on how to split the dataset. Therefore, in our work
we perform our one-sample analysis using all available cervical
cancer patients in both stages.

Second, in our analysis we apply a group of local methylations
serving as instrumental variables, which has the potential of
higher power because of more variation of expression explained
compared to the strategy of applying only a few significantly
gene-associated ones (Zeng and Zhou, 2017; Zeng et al., 2021).
In addition, utilizing local methylation CpG sites for a given
gene is also widely seen in gene-based statistical genomics
analysis when involving methylations (Kingsley et al., 2016;
Loucks et al., 2016; Chu and Huang, 2017; Huang, 2019; Liu
et al., 2020). However, it has been widely warned in MR
studies that incorporating more instrumental variables (e.g.,
methylations) may have higher risk in violating the third MR
assumption (the exclusion restriction assumption; Figure 3)
due to unknown biological pathways (Zeng and Zhou, 2019a,b;
Zeng et al., 2019; Yuan et al., 2020; Liu et al., 2021). More

specifically, methylations themselves might have substantial
impact on survival risk through horizontal pleiotropy besides
the indirect influence via the pathway of gene. To handle this
problem, we attempt to remove possible pleiotropic effects of
methylations by adding a random-effect term of methylations in
the Cox model. It has been shown that doing this is an effective
manner to account for instrumental pleiotropy (Yuan et al., 2020;
Liu et al., 2021).

Third, as mentioned before and shown in Figure 3, we
construct our two-stage-based causal inference under the
framework of MR and TWAS (Yuan et al., 2020; Zhu and Zhou,
2020; Liu et al., 2021; Zeng et al., 2021); therefore, in terms of
the principles of the two methods, we possess the potential for
identifying putatively causal genes associated with the survival
risk of cervical cancer.

Aggregated Cauchy Association Test
Because multiple prediction models are applied, for each gene
we thus yield a set of p-values pk (k = 1, 2, . . ., K; with
K the number of the prediction models) according to (2).
Unfortunately, the simple and commonly used Fisher’s method
for aggregating mutually independent multiple tests cannot be
exploited due to highly positive correlation among individual
tests since they are implemented for the same data set with the
similar logic (Fisher, 1934; Rice, 2010). To effectively address the
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FIGURE 3 | Flowchart for the present study with datasets of cervical cancer
available from TCGA. First, various levels of raw datasets were included for
cervical cancer; we conducted a series of quality control for those raw
datasets. Second, gene expressions predicted with methylations were
generated with diverse prediction models, the Cox linear mixed-effects model
was applied to identify methylation-driven genes based on predicted
expression levels; we aggregated the p-values of genes from different
prediction models through a p-values combination manner to find significant
genes that were related to the survival of cervical cancer. Finally, we further
implemented functional and differential expression analyses for newly
identified associated genes.

aforementioned difficulty of dependency, we apply the recently
developed aggregated Cauchy association test (ACAT) (Liu et al.,
2019; Liu and Xie, 2020). Specifically, suppose there are a set
of p-values for each gene and each pk is uniformly distributed
between 0 and 1 under the null; we have

pACAT =
1
2
− arc tan

{
TACAT/(

K∑
k = 1

ωk)

}
/π,

TACAT =

K∑
k = 1

ωk tan
{
(

1
2
− pk)π

}
(3)

where ωk represents the nonnegative weight for each pk with∑K
k = 1 ωk = 1 and K = 5; in the absence of prior knowledge,

the equal weights are adapted, and assume that ωk is not related
to pk. It has been theoretically demonstrated that the dependency
among p-values imposes little influence on the final pooled
p-values in ACAT, especially on exceedingly small p-values which
are of particular interest for practitioners (Li et al., 2019; Liu
et al., 2019). Therefore, ACAT renders the potential to allow us
to aggregate correlated p-values obtained from multiple tests into
a single well-calibrated p-value that can maintain the type I error
control correctly.

Functional Analysis and Differential
Expression Analysis for Newly Identified
Associated Genes
Using the proposed two-stage causal inference model, we
identified multiple candidate causal genes associated with the
survival risk of cervical cancer. We here implemented additional
bioinformatics analyses to study their biological functions. First,
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were conducted using the
R clusterProfiler package (version 3.16.0) (Yu et al., 2012). In
addition, to further evaluate the expression profiles of these newly
discovered genes, we performed differential expression analysis
with 190 cervical tumors and three normal tissues that were
also available from TCGA. After normalization with the trimmed
mean of M values (TMM) method, differential expressed genes
(DEGs) were screened via the exact test based on quantile-
adjusted conditional maximum likelihood estimation (Robinson
and Smyth, 2008; Li et al., 2013) implemented in the edgeR
package (version 3.30.3) (Robinson et al., 2010; McCarthy et al.,
2012). Following previous work (Deng et al., 2019), DEGs were
defined if false discovery rate (FDR) < 0.05 and | log2FC| ≥ 1.0.

RESULTS

Cervical Cancer Datasets in TCGA and
Methylation-Regulated Genes
After quality control, we reserved 485,577 DNA methylation CpG
sites, three clinical covariates (i.e., age of onset, clinical stage,
and tumor status) and up to 190 cervical cancer patients of
European ancestry. To avoid numerical instability, we focused
on protein-coding genes which had at least 10 methylations
within the promoter region and the total gene body (Liu et al.,
2020). We also first performed the LMM analysis (Visscher et al.,
2008; Yang et al., 2011; Zhou et al., 2013) for each protein-
coding gene based on its methylations and selected genes with
the phenotypic variance explained by methylations larger than
1% (corresponding to a correlation coefficient of 10%). The
remaining 12,623 genes are referred to as methylation-regulated
genes and included in our subsequent analyses (Figure 2).
Most of the genes analyzed (92.0%) have the number of DNA
methylation CpG sites less than 50 (Supplementary Figure 1).

Identification of Potential Causal Genes
With Cox Linear Mixed-Effect Regression
We employed the coxlmm (Therneau et al., 2003) with various
prediction models to examine the relationship between MReX
and the survival risk of cervical cancer patients while adjusting
for the direct effect of methylations and the confounding
effect of clinical covariates. First, we observe that these
prediction models display varying performances across genes
(Figure 4A). Specifically, some prediction models have higher
prediction accuracy for some genes but behave less satisfactorily
for others. For example, in terms of R2, BSLMM behaves
well for 38.3% genes (=4,834/12,623), while Lasso, ENET,
LMM, and DPR have higher R2 for 26.82% (=3,386/12,623),
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FIGURE 4 | (A) The number of prediction models that have maximum R2 across all the genes analyzed when predicting expression level with using methylations.
(B) Pearson’s correlation of the p-values (in a scale of -log10) obtained via in the Cox linear mixed-effects model with five different prediction models. In the plot the
intensity of the color and the size of the circle represent the magnitude of the correlation. (C) UpSet plot to illustrate the intersection of associated genes identified by
tests with five prediction models. LMM, Linear mixed model; BSLMM, Bayesian sparse linear mixed model; DPR, Latent Dirichlet Process Regression; ENET, elastic
net; ACAT, aggregated Cauchy association test.

14.79% (=1,867/12,623), 10.92% (=1,378/12,623), and 9.17%
(=1,158/12,623) genes, respectively. As expected, the resulting
p-values of these prediction methods in coxlmm are highly
correlated (Figure 4B). For example, the Pearson’s correlation
of the p-values (in a scale of -log10) ranges from 0.63 between
DPR-coxlmm and Lasso-coxlmm to 0.96 between LMM-coxlmm
and BSLMM-coxlmm.

Based on the results of coxlmm, a total of 14 unique
potential associated genes (FDR < 0.05) are identified (Table 2).
Specifically, we detect three genes with DPR-coxlmm, 10
genes via Lasso-coxlmm, and eight genes through ENET-
coxlmm but do not discover any potential associated genes
using LMM-coxlmm or BSLMM-coxlmm (Figure 5). Among
these, six genes (i.e., YJEFN3, SPATA5L1, C5orf55, PPIP5K2,
ESCO2, and ZNF225) are simultaneously found by Lasso-
coxlmm and ENET-coxlmm, while only one gene (i.e., VPS4B)
is simultaneously discovered by DPR-coxlmm and ENET-
coxlmm (Figure 4C).

Among these potential associated genes, we find that PCM1
(FDRENET = 0.032), classified to the cell cycle control network,
was previously discovered to be associated with the early stage
of cervical cancer (Güzel et al., 2018). SPR (FDRLasso = 0.003)
is located within the 1-Mb genetic region of previous GWAS-
identified gene ALMS1 (Masuda et al., 2020). In addition,
VPS4B (FDRDPR = 0.024 and FDRENET = 0.031) is a subtype
of VPS4 which is the component of the ESCRT machinery
and plays an essential role in HPV infectious entry and
capsid disassembly (Broniarczyk et al., 2017). The remaining
10 genes (i.e., YJEFN3, SPATA5L1, C5orf55, PPM1A, IMMP1L,
ZNF330, PPIP5K2, ESCO2, FICD, and ZNF225) are not directly
reported to be related to the survival risk of cervical cancer
in previous literature. However, for these genes we find
suggestive indirect evidence that may support their association
with the survival risk of cervical cancer. Specifically, for
example, YJEFN3 is a member of the human YJEFN domain-
containing protein family strongly expressing in Leydig cell
tumors and in the fibromas and participates in cholesterol
processing and steroid hormone metabolism (Rudolph et al.,

2007). SPATA5L1 might play a key role in inhibiting ATP
hydrolysis and four-way junction helicase activity and further
influence DNA replication and pathogenesis (White et al.,
2005; Rudolph et al., 2007). Smac/DIABLO was expressed
de novo in a certain subset of cervical tumors (Martinez-
Ruiz et al., 2008), while mature Smac/DIABLO was produced
on the mitochondrial inner membrane via IMMP1L (Burri
et al., 2005). PPIP5 kinases (e.g., PPIP5K2) mediate PP-IP
binding, activate casein kinase 2 (CK2), and promote the
phosphorylation of the TTT complex, which stimulates DNA-
PK/ATM to activate p53 on the cancer cells (Fridy et al.,
2007; Lee et al., 2020). There exists evidence that miR-135b
leads to cervical cancer cell transformation (Leung et al.,
2014) and downregulated miR-135b expression could inhibit the
proliferation and invasion of tumor cells by upregulating PPM1A
(Gao et al., 2019).

ACAT Combining p-Values From
Different Prediction Models
As mentioned before, because the p-values obtained from
coxlmm with diverse prediction models are highly dependent
(Figure 4B), we effectively apply ACAT to combine the five
p-values and generate an overall significance for each gene
(Figure 3 and Table 2). Nine associated genes are additionally
discovered (Figure 4C), including CRYZL1, ZNF605, ZNF266,
SNAI1, OSTC, FAM73A, COL6A1, GIPC1, and DCTPP1. We
found 87.0% (=20/23; except SPR, YJEFN3, and DCTPP1)
directions of gene effect consistent across the five genetic
prediction models (Table 2). In addition, for these genes it seems
that the association signals are mostly driven by LASSO and
ENET (Table 2). This observation might imply that there may be
only a few of methylations implicated in regulating the expression
levels of these genes. As a result, sparse prediction models
(i.e., LASSO and ENET) lead to higher power in subsequent
association analysis due to better accuracy (Zeng et al., 2021).
Among these genes, five (i.e., SNAI1, COL6A1, GIPC1, DCTPP1,
and FAM73A) were identified in prior work and SYDE1 locates
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TABLE 2 | A total of 23 associated genes identified via the proposed two-stage causal inference approach.

Gene CHR Position p-values Effect size

LMM BSLMM DPR Lasso ENET ACAT LMM BSLMM DPR Lasso ENET

Discovered by the two-stage inference with a single prediction model

SPR 2 73,089,746–73,122,092 0.795 0.820 0.890 0.003 0.791 0.007 −0.157 −0.161 −0.167 0.854 −0.216

YJEFN3* 19 19,637,360–19,648,336 0.848 0.877 0.936 0.003 0.006 0.007 0.065 0.045 0.010 −0.800 −0.800

SPATA5L1* 15 45,693,741–45,699,035 0.789 0.828 0.888 0.019 0.006 0.009 0.159 0.139 0.155 0.777 0.742

VPS4B 18 61,057,089–61,090,282 0.102 0.242 0.024 0.177 0.031 0.017 −0.637 −0.610 −0.779 −0.631 −0.772

IMMP1L* 11 31,464,983–31,531,760 0.058 0.073 0.024 0.623 0.343 0.017 −0.508 −0.510 −0.599 −0.314 −0.440

C5orf55* 5 440,158–444,229 0.704 0.684 0.825 0.014 0.034 0.018 −0.317 −0.326 −0.310 −0.657 −0.704

PPIP5K2* 5 102,455,924–102,548,824 0.058 0.079 0.169 0.027 0.033 0.019 −0.550 −0.574 −0.519 −0.521 −0.496

ZNF330* 4 142,141,696–142,155,292 0.070 0.132 0.024 0.162 0.146 0.019 −0.577 −0.549 −0.695 −0.516 −0.621

SYDE1 19 15,217,634–15,227,220 0.070 0.094 0.091 0.047 0.054 0.023 0.799 0.787 0.779 0.799 0.809

PPM1A* 14 60,711,064–60,761,525 0.347 0.331 0.438 0.020 0.328 0.023 −0.775 −0.801 −0.724 −0.848 −0.784

ESCO2* 8 27,630,985–27,661,590 0.254 0.141 0.323 0.033 0.032 0.024 −0.618 −0.678 −0.597 −0.778 −0.787

PCM1 8 17,779,996–17,886,268 0.097 0.136 0.180 0.066 0.032 0.027 −0.610 −0.530 −0.552 −0.624 −0.673

ZNF225* 19 44,617,124–44,620,505 0.241 0.273 0.282 0.043 0.048 0.034 −0.283 −0.278 −0.283 −0.324 −0.324

FICD* 12 108,851,555–108,920,535 0.759 0.828 0.879 0.033 0.264 0.038 −0.154 −0.116 −0.135 −0.638 −0.534

Newly discovered by ACAT which combines results obtained from various prediction models

CRYZL1* 21 34,962,101–35,015,323 0.058 0.073 0.379 0.173 0.315 0.020 −0.673 −0.674 −0.540 −0.586 −0.488

ZNF605* 12 133,518,352–133,536,293 0.086 0.099 0.143 0.074 0.097 0.034 −0.480 −0.486 −0.452 −0.471 −0.444

ZNF266* 19 9,517,603–9,577,375 0.058 0.59 0.680 0.733 0.568 0.035 −0.479 −0.432 −0.511 −0.323 −0.433

SNAI1 20 48,595,808–48,629,343 0.093 0.121 0.143 0.074 0.082 0.037 0.614 0.596 0.597 0.579 0.578

OSTC* 4 109,571,401–109,588,819 0.092 0.116 0.147 0.090 0.100 0.039 −0.539 −0.535 −0.551 −0.510 −0.509

FAM73A 1 78,244,204–78,343,254 0.129 0.145 0.174 0.065 0.068 0.044 0.585 0.561 0.590 0.872 0.741

COL6A1 21 47,361,643–47,469,105 0.103 0.127 0.150 0.073 0.110 0.044 0.635 0.583 0.604 0.634 0.619

GIPC1 19 14,589,147–14,608,093 0.144 0.137 0.372 0.063 0.080 0.049 −0.655 −0.677 −0.553 −0.703 −0.697

DCTPP1 16 30,430,088–30,442,010 0.546 0.884 0.785 0.060 0.068 0.050 −0.284 0.028 −0.222 0.633 0.633

In the table, we show FDR and the effect size for each gene. CHR, chromosome; LMM, linear mixed model; BSLMM, Bayesian sparse linear mixed model; DPR, Latent Dirichlet Process Regression; ENET, elastic
net; ACAT, aggregated Cauchy association test. Position is built under hg19. The genes with asterisk are viewed as new novel genes (i.e., YJEFN3, SPATA5L1, IMMP1L, C5orf55, PPIP5K2, ZNF330, PPM1A, ESCO2,
ZNF225, FICD, CRYZL1, ZNF605, ZNF266, and OSTC).
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FIGURE 5 | Manhattan plot showing the significance of all genes. Each plot is in a -log10 [false discovery rate (FDR)] scale. Genes with -log10 FDR > 1.3 (i.e.
FDR < 0.05) are highlighted. DPR, Latent Dirichlet Process Regression; ENET, elastic net; ACAT, aggregated Cauchy association test.

within the 1-Mb generic region of GIPC1 (Chen et al., 2013a,
2016; Shi et al., 2013; Miura et al., 2014; Leo et al., 2017; Takeuchi
et al., 2019; Masuda et al., 2020). Specifically, it is shown that
SNAI1, along with ZEB1, regulated the epithelial–mesenchymal
transition and was then involved in the metastasis of cervical
cancer (Chen et al., 2013b). The upregulated COL6A1 expression
in the tissues of cervical cancer was related to poor clinical
prognosis and treated as an important biomarker of cervical
cancer progression (Hou et al., 2016). The downregulation of
GIPC1 in cervical cancer with HPV-18 infection can lead to the
resistance to cytostatic transforming growth factor β signaling
through TGFβR3 destabilization (Katoh, 2013).

In addition, DCTPP1 was found to be differentially expressed
in normal and cancerous tissues and it was significantly
accumulated in the nucleus of cervical carcinoma, implying
the important role of DCTPP1 under malignant pathology
(Zhang et al., 2013). Family with sequence similarity 73,
member A (FAM73A) is the downregulated gene of DNA
from exfoliated cervical cells in terms of the HPV-16 variant
analysis (Green, 2019; Meng et al., 2020). CRYZL1 contains
a reduced nicotinamide adenine dinucleotide (phosphate)
(NAD(P)H) binding site which is involved in cellular metabolism,
while cervical lesions are associated with cellular metabolic
abnormalities (Wang et al., 2020). It is previously found
that the members of the ZNF family interact with nucleic

acids, proteins, and small molecules and are involved in a
variety of crucial molecular processes in cervical tumor cells
at replication, transcriptional, and translational levels. Thus,
ZNF605 and ZNF266 may be potentially targetable (Das et al.,
2016; The Cancer Genome Atlas Research Network, 2017; Li
et al., 2018). OSTC can regulate gamma-secretase (Wilson et al.,
2011) while this secretase affects the ability of HPV pseudo-
viruses infection in both human HaCat cells and mouse cells
(Huang et al., 2010).

In summary, compared with the tests via individual prediction
methods, it is demonstrated that ACAT greatly improves
statistical power by combining dependent tests and thus identifies
more potential prognosis-associated genes for the survival risk
of cervical cancer. Totally, 23 genes are discovered to be related
to the survival risk of cervical cancer, among which 14 genes
are likely newly novel genes (i.e., YJEFN3, SPATA5L1, IMMP1L,
C5orf55, PPIP5K2, ZNF330, CRYZL1, PPM1A, ESCO2, ZNF605,
ZNF225, ZNF266, FICD, and OSTC).

Identification of DEGs, GO, and KEGG
Pathway Annotation
In terms of the differential expression analysis, four DEGs are
detected among the 23 new potential causal genes identified
above (Figure 6A). COL6A1 and SYDE1 are upregulated genes,
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FIGURE 6 | (A) Heatmap of expression levels for these 23 newly identified causal genes of cervical cancer. (B) Heatmap for differentially expressed genes. (C) Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for the 23 genes; the p-values are also shown. Count Number
denotes the number of genes related to the enriched GO or KEGG pathway.

while ESCO2 and GIPC1 are downregulated genes (Figure 6B).
To explore the potential functions of these genes that may be
associated with the tumorigenesis and development of cervical
cancer, we performed functional enrichment analysis with GO
and KEGG using the R package clusterProfiler (version 3.16.0)
(Yu et al., 2012). The top five GO terms of three parts and two
KEGG pathways are shown in Figure 6C.

The GO biological process (BP) terms are remarkably
enriched in the polyol metabolic process, regulation of
biosynthetic process, and signaling pathway and chondrocyte
differentiation. For the GO cellular component (CC) terms, the
target genes are concentrated in the midbody, pericentriolar
material, and so on. The molecular function (MF) category
was focused on NADP binding, platelet-derived growth factor
binding (Supplementary Table 1). The KEGG enrichment
analysis indicates that these genes are remarkably enriched
in tumor-associated pathways, including protein export
(P = 0.028) and folate biosynthesis (P = 0.032) (Figure 6C).
The combined action of folate biosynthesis and graft-vs.-
host disease was demonstrated to be significantly associated
with cervical cancer in suit: HLA-DPB1 (Ivansson et al.,
2011). The upregulated differentially expressed genes are
mostly associated with cartilage morphogenesis (ontology:
BP), collagen trimer (ontology: CC), and extracellular matrix
structural constituent conferring tensile strength (ontology:
MF). The downregulated differentially expressed genes are
mostly associated with organic hydroxy compound biosynthetic
process (ontology: BP), organic hydroxy compound metabolic
process (ontology: BP), and dendritic shaft (ontology: CC)
(Supplementary Table 1). The functional enrichment results
suggest that these newly discovered potential causal genes may
participate in oncogenicity and tumor progression in cervical
cancer through regulating relevant biological processes and
critical pathways.

DISCUSSION

Given the severe health threat among women and little
knowledge of genetic basis for cervical cancer, persistent work
should be done to discover genes that are causally related to
cervical cancer (Chen and Gyllensten, 2015). The present study
is one of such efforts with the aim to detect newly possible
causal genes for the survival risk of cervical cancer through
integrative genomic methods. The two-stage inference analysis
pipeline applied in this work can be considered as a gene-centered
integration approach by aggregating omics datasets and clinical
information. With the growing high-throughput omics datasets
in cancer research over recent years (Hoadley et al., 2018), it
is well-recognized that the utilization of only one single level
of genomic measurements is insufficient to completely untangle
the etiology of cancer prognosis (Zhao et al., 2014; Hoadley
et al., 2018). Based on the omics datasets of TCGA measured
from multiple platforms, we treated the gene expression as the
exposure and the survival time as the outcome to explore the
possible causal genes of the survival risk of cervical cancer
within the framework of the two-stage MR study to avoid the
reverse causation.

One critical step in our two-stage inference is to evaluate
the effect relationship between a group of DNA methylation
CpG sites and the expression level for each gene. The power of
the subsequent association performed in coxlmm would greatly
depend on how well the prediction model utilized can capture the
underlying genetic architecture of the transcriptome (Gamazon
et al., 2015; Gusev et al., 2016; Zeng and Zhou, 2017; Barbeira
et al., 2019; Hu et al., 2019; Wainberg et al., 2019), which
can differ in the numbers, effect sizes, and effect directions
of causal methylation alterations in diverse genes. Therefore, a
powerful two-stage inference approach should in the first stage
choose a prediction model whose prior effect distribution closely
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matches the true effect distribution so that it can approximate
well the genetic architecture of the gene (Zhou et al., 2013;
Zeng and Zhou, 2017; Zhu and Zhou, 2020). For example, if
DNA methylation alterations have effect sizes following a normal
distribution, then LMM-coxlmm would be more powerful; on
the other hand, if only a very small fraction of DNA methylation
alterations may be predictive for the gene expression, then the test
with sparse prediction models (e.g., Lasso-coxlmm and ENET-
coxlmm) would be superior. Due to unknown true association
patterns, there is no uniformly most powerful test. As a result,
the two-stage association test may perform well for one gene, but
not necessarily for another.

To leverage the advantage of distinct prediction models to
improve power, instead selecting an optimal prediction model,
in the present study we considered a wide range of prediction
models in our two-stage inference procedure. It can be imaged
that the resulting p-values would be highly correlated because
they are generated with the same data set following the similar
logic (Figure 3). The correlation structure of these p-values
also depends on the true architecture of gene expression, which
however, is rarely known in advance and is likely to vary
from one gene to another across the genome. Therefore, it
is desirable to construct an omnibus test that integrates the
advantage of multiple prediction approaches and is robust against
distinct transcriptomic architectures. To achieve this aim, we
exploited ACAT (Liu et al., 2019; Liu and Xie, 2020) to combine
these correlated p-values and integrating individual strengths
of various tests. As illustrated in our empirical application,
ACAT achieves relatively higher power since it aggregates genetic
association information across different tests.

Compared to previous similar methods, the proposed two-
stage inference approach differs in three aspects. First, unlike
prediXcan (Gamazon et al., 2015) we constructed the two-stage
inference procedure in one sample, leading to the so-called
one-sample two-stage regression (Xue et al., 2020). Second,
multiple competing prediction models rather than a single model
were utilized and combined with ACAT which was p-value
calibrated (Liu et al., 2019; Sun et al., 2020; Xiao et al., 2020).
Thus, our strategy often has higher power compared to the
test with the single prediction model. Third, due to widespread
pleiotropic effects in omics (Bowden et al., 2015, 2016; Burgess
and Thompson, 2017; Slob et al., 2017; Barfield et al., 2018;
Verbanck et al., 2018), we also considered the direct influence of
methylations. Therefore, our results would be robust against the
bias of pleiotropy of instrumental variables that are commonly
encountered in MR.

However, the present study is not without limitation. First,
these newly identified methylation-regulated genes were detected
only in TCGA; no external relevant expression profiles were
applied for validation. Second, we only employed methylations
as instrumental variables; other omic measurements that regulate
gene expression (e.g., genetic variants; Manor and Segal,
2013, 2015; Zeng et al., 2017) can be also simultaneously
incorporated to further improve power. Third, we only utilized
local methylation CpG sites of a gene as candidate instruments.
It is not known whether the power can be further enhanced
if the global methylation CpG sites are exploited. Fourth,
the present study assumed a linear relationship for each

methylation–expression pair. While a linear relationship can be
methodologically interpreted as a first-order approximation to
nonlinear relationship (Zhou et al., 2013), modeling a linear
relationship may be suboptimal and suffer from power loss if
the true relationship is nonlinear. Fifth, due to the complicated
standard error structures for those prediction models, in
terms of the assumption of no measurement error (NOME)
(Bowden et al., 2016), we did not incorporate the uncertainty
in the estimated effect sizes of methylations into our two-
stage approach, although such uncertainty may be important in
integrative genomic causal inference (Yeung et al., 2019; Yuan
et al., 2020). Actually, we note that many previous two-stage
MR studies or TWAS approaches followed this NOME principle
(Gamazon et al., 2015; Bowden et al., 2016; Gusev et al., 2016;
Zeng and Zhou, 2017).

CONCLUSION

In summary, using the proposed two-stage causal inference
approach within the framework of MR analysis, we discovered
a total of 14 potential causal genes which were associated with the
survival risk of cervical cancer patients when separately applying
five commonly used prediction models. The number of possible
causal genes was brought to 23 when employing the combination
method of ACAT. Some of these genes were differentially
expressed between tumor and normal tissue and were enriched
in tumor-associated pathways. Our findings provide new insights
into the genetic etiology of the survival risk of cervical cancer
and suggest possibly potential therapeutic targets for cervical
cancer in the future.
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