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Abstract

Motivation: A few algorithms have been developed for splitting the genome in nearly independent blocks of linkage
disequilibrium. Due to the complexity of this problem, these algorithms rely on heuristics, which makes them

suboptimal.

Results: Here, we develop an optimal solution for this problem using dynamic programming.
Availability: This is now implemented as function snp_Ildsplit as part of R package bigsnpr.

Contact: florian.prive.21@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction

A few algorithms have been developed for splitting the genome in
nearly independent blocks of linkage disequilibrium (Berisa and
Pickrell, 2016; Kim et al., 2018). Dividing the genome in multiple
smaller blocks has many applications. One application is to report
signals from independent regions of the genome (Berisa and Pickrell,
2016; Ruderfer et al., 2018; Wen et al., 2017). Another application
is for the development of statistical methods, e.g. for deriving poly-
genic scores (Ge et al., 2019; Mak et al., 2017; Zhou and Zhao,
2020), estimating genetic architecture and performing other statistic-
al genetics analyses (Shi ez al., 2016; Wen et al., 2016). Indeed, most
statistical methods based on summary statistics also use a correlation
matrix (between variants), and these methods often perform compu-
tationally expensive operations such as inversion and eigen decom-
position of this correlation matrix. These operations are often
quadratic, cubic or even exponential with the number of variants.
However, if we can decompose the correlation matrix in nearly inde-
pendent blocks, then we can apply these expensive operations to
smaller matrices with less variants, making these operations much
faster, and parallelizable. For instance, inverting a block-diagonal
matrix requires only inverting each block separately.

Implementation

We aim at optimally splitting the genome into K blocks, where each
block has a bounded number of variants (minimum and maximum
size). This splitting is optimal in the sense that it minimizes the sum
of squared correlations between variants from different blocks (here-
inafter denoted as ‘cost’). This problem is quite complex, and a naive
implementation would be exponential with the number of variants.
To solve this problem efficiently, we use dynamic programming,
which consists in breaking a problem into subproblems and then re-
cursively finding the optimal solutions to the subproblems. Dynamic
programming has been successfully used before to solve related
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problems such as haplotype block partitioning (Zhang et al., 2002).
Here, each subproblem consists in solving

C(i, k) = min{E(i,j) + C(j + 1,k — 1)}, (1)

where C(4, k) is the minimum cost for splitting the region from vari-
ant 7 to the last variant into k blocks exactly, and E(i, j) is the error/
cost between block (7, /) and the latter blocks. This is illustrated in
Figure 1. These subproblems can be solved efficiently by starting
with k=1 and with 7 from the end of the region, and working our
way up. Once all costs in the C matrix have been computed, and cor-
responding splits j have been recorded, the optimal split can be
reconstructed from C(1, K), where K is the number of blocks desired.

i om
To efficiently compute E(i,j) =3 > R(p,q)*, where m is the
=i gt
number of variants and R(p, q) is the correlation between variants p
and ¢, we first compute the matrix L defined as

m
LGi,j)= Y R(i,q)* Matrices L and E are sparse. E is the largest

go+1
matrix and requires approximately 72 X (maXgj,e — Mingi,e) X 4 bytes
to be stored efficiently. For m=100 000, min_size=500 and
max_size =10 000, this represents 3.5 GB. A description of the
parameters of function snp_ldsplit implementing this method can be
found in Supplementary section ‘Parameters of snp_ldsplit’.

Results

As input, function snp_ldsplit uses a correlation matrix in sparse for-
mat from R package Matrix, which can be computed using the avail-
able snp_cor function from R package bigsnpr (Privé er al., 2018).
This function is fast and parallelized. Then, to run snp_ldsplit using
a correlation matrix for 102 451 variants from chromosome 1, it
takes <6 min on a laptop to find the optimal split in K blocks (for all
K=1 to 133) with a bounded block size between 500 and 10 000
variants. Then, the user can choose the desired number of blocks,
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Fig. 1. lllustration of subproblems solved by the algorithm using a small LD matrix.
The cost of separating the region starting at variant 7 in k blocks exactly, C(i, k), is
broken down in two: the error E(i, j), the sum of all squared correlations between
variants from block (i, j) and variants from all the later blocks, and the cost of sepa-
rating the rest starting at (j + 1) using (k — 1) blocks. The variant j at which the split
occurs is chosen so that the cost (E(i,f) +CG+1,k— 1)) is minimized. The opti-
mal split is highlighted in red here.

which is a compromise between having more (smaller) blocks with a
higher overall cost (LD between blocks), and having less (larger)
blocks with a smaller cost. For chromosome 1 and Europeans, Ide-
tect report 133 linkage disequilibrium (LD) blocks (Berisa and
Pickrell, 2016); however, we find that they can hardly be considered
truly independent given the high cost (10 600) of the corresponding
split (Supplementary Fig. S1). When splitting chromosome 1 for
Europeans using the optimal algorithm we propose here, it can be
split into 39 blocks at a cost of 1, in 65 blocks at a cost of 10, and in
133 blocks at a cost of 296 (Supplementary Fig. S1). Similar results
are found for other chromosomes, and for Africans and Asians; how-
ever, splitting the LD from admixed Americans comes at a high cost
(Supplementary Figs S2-S5). Both methods largely pick block boun-
daries at recombination hotspots (Supplementary Figs S7 and S8).
We also provide an application to LD score regression in
Supplementary section ‘Application to LD score regression’, where
we show that standard errors for the SNP heritability using nearly
independent blocks tend to be larger than when there is substantial
LD between blocks, especially for phenotypes with large associations
in the HLA (human leukocyte antigen) region (a long-range LD
region).

Software, code and data availability

The newest version of R package bigsnpr can be installed from
GitHub (see https://github.com/privefl/bigsnpr). All code used for this
article is available at https://github.com/privefl/paper-ldsplit/tree/mas
ter/code. The HapMap3 variants annotated with 242 blocks can be
downloaded at https://www.dropbox.com/s/hdui60p9ohyhvvS/map_
blocks.rds?dl=1. LD score regression results are available at https:/
github.com/privefl/paper-ldsplit/tree/main/ldsc_blocks, with a descrip-
tion of the 245 phenotypes used at https://github.com/privefl/UKBB-
PGS/blob/main/phenotype-description.xlsx.
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