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ABSTRACT

Dosage compensation in Drosophila melanogaster
involves the selective targeting of the male X chro-
mosome by the dosage compensation complex
(DCC) and the coordinate, �2-fold activation of
most genes. The principles that allow the DCC to
distinguish the X chromosome from the autosomes
are not understood. Targeting presumably involves
DNA sequence elements whose combination
or enrichment mark the X chromosome. DNA
sequences that characterize ‘chromosomal entry
sites’ or ‘high-affinity sites’ may serve such a
function. However, to date no DNA binding domain
that could interpret sequence information has been
identified within the subunits of the DCC. Early
genetic studies suggested that MSL1 and MSL2
serve to recognize high-affinity sites (HAS) in vivo,
but a direct interaction of these DCC subunits with
DNA has not been studied. We now show that
recombinant MSL2, through its CXC domain,
directly binds DNA with low nanomolar affinity. The
DNA binding of MSL2 or of an MSL2–MSL1 complex
does not discriminate between different sequences
in vitro, but in a reporter gene assay in vivo, sug-
gesting the existence of an unknown selectivity
cofactor. Reporter gene assays and localization of
GFP-fusion proteins confirm the important contribu-
tion of the CXC domain for DCC targeting in vivo.

INTRODUCTION

Eukaryotic genomes are balanced systems of gene expres-
sion that rely on co-regulation of groups of genes by
shared regulatory sequence determinants. A powerful

model to study such co-regulation is presented by the
process of dosage compensation in Drosophila
melanogaster. Female fruit flies have two X chromosomes,
whereas males have only a single X in addition to a
gene-poor Y chromosome. In the absence of compensa-
tion this unequal dose of sex chromosomes leads to a
lethal imbalance of gene expression in males (1–3). In
order to counteract this imbalance, the transcription
output of most genes on the male X chromosome is
increased by roughly 2-fold, independent of their actual
expression levels, to match the combined transcription
from the two female X chromosomes (4,5). The activation
is achieved by the action of the dosage compensation
complex (DCC, also known as MSL complex), which
consists of five male-specific lethal (MSL) proteins and
the two non-coding roX RNAs. The DCC almost
exclusively associates with the male X chromosome
where it activates transcription by specific acetylation of
histone H4 at lysine 16 (H4K16ac) via its histone
acetyltransferase MOF (6–8).
The mechanism by which the DCC distinguishes the X

chromosome from the autosomes and which mediates
its specific association with the X is unclear to date.
Chromosome-wide high-resolution mapping of DCC
through chromatin immunoprecipitation coupled to
DNA microarrays (ChIP-chip analysis) showed that the
bulk of DCC interacts with the coding sequence of actively
transcribed genes. This suggested that dosage compensa-
tion acts at the level of transcriptional elongation rather
than in initiation (9,10). The DCC binding profile closely
follows that of lysine 36 methylation of histone H3
(H3K36me3), a modification placed co-transcriptionally
(11). This can be explained, at least in part, by the
ability of MSL3 to interact with H3K36me3 through its
chromodomain (12,13). In agreement with these findings,
genes need to be transcribed in order to be targets for
DCC association (14,15). However, transcribed chromatin
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methylated at H3K36 is not specific for the X chromo-
some and therefore does not qualify as primary targeting
determinant. According to the prevailing concepts, DNA
sequences are involved.
First evidence for X chromosomal sites of higher affinity

for the DCC has been obtained from the ectopic expres-
sion of the male-specific subunit MSL2 in females, which
leads to transcription of the roX RNA and—since all
other components are expressed to some levels in female
cells—to assembly of the DCC. Females are thus trans-
formed into ‘pseudo-males’, which allows assessing the
binding of the DCC to larval polytene chromosomes.
Importantly, DCC levels and integrity can be tuned by
genetic means to determine the requirements for X chro-
mosome binding (16). Early studies of this kind revealed
that for complete coating of the X chromosome an intact
DCC is required. Nevertheless, the targeting function
resides within the protein subunits of the DCC and does
not require the roX RNAs (17). Furthemore, a module
consisting of only MSL2 and MSL1 sufficed to recognize
a subset of sites (16,18,19). The same sites were still
occupied when the MSL complex concentrations were
limited, leading to the idea of a hierarchy for binding
sites (20,21) and a stepwise model for X chromosome tar-
geting and distribution (22–24). Accordingly, the MSL2–
MSL1 module recognizes a small number of primary tar-
geting elements on the X that are called the ‘chromosomal
entry sites’ (CES) (22–24), or ‘high-affinity sites’ (HAS)
(20,25). In subsequent steps the DCC would transfer to
secondary sites of lower affinity (including transcribed
chromatin) in the vicinity, hence limiting the distribution
to the X chromosome (1,26). Notably, efficient distribu-
tion over the entire chromosome only occurs if all DCC
subunits are intact (27,28).
Common to all high-affinity chromosomal entry sites is

their ability to recruit the DCC when inserted into an
autosome, which suggests DNA sequence could be a
major determinant for a HAS (20,22,23,29). Several
studies suggested that the clustering and combination of
particular sequence elements, such as degenerate
guanine-adenine (GA) repeats, may contribute to
defining a HAS (20,23,25,29–31) but so far it is not
possible to predict a HAS from DNA sequence alone.
It is clear that chromatin organization must also play a
role since HAS tend to reside in nucleosome-free regions
(22,23,25,29–31). Recently, we showed that HAS also tend
to associate in the volume of male nuclei, which hints at a
particular conformation of the X chromosome that
depends on MSL2–MSL1 (32).
The X chromosomal DNA determinants of DCC tar-

geting are poorly understood, but even less is known
about DNA binding domains within the DCC subunits.
It seems clear that MSL2 and MSL1 are able to associate
with HAS in the absence of other subunits (18,19), but
neither of them has an obvious DNA binding domain.
In MSL1, a short N-terminal region was suggested to be
involved in X chromosome association in vivo (33). MSL2
is characterized by several domains: a RING finger
mediates the interaction with MSL1 (18), a conserved
cysteine-rich (CXC) domain of unknown function and a
basic, proline-rich patch (Pro/Bas patch). Recently, Scott

and colleagues (34) have analysed the consequences of
C- or N-terminal deletions of MSL2 for chromosomal tar-
geting in transgenic flies and concluded that C-terminal
sequences including the Pro/Bas patch may mediate incor-
poration of roX RNA into the DCC and hence affect chro-
mosomal interactions of MSL2. However, naturally these
genetic experiments were unable to reveal direct, molecu-
lar interactions.

Employing a biochemical approach, we have now
searched for a DNA binding domain within recombinant
MSL2 and MSL1 proteins by measuring their affinities to
defined DNA sequences, including HAS. We show that
the CXC domain of MSL2 can mediate the DNA
binding of the MSL2–MSL1 heteromer. The importance
of the DNA binding function of the CXC domain and for
X chromosome targeting in vivo is confirmed by reporter
gene assays and localization studies involving GFP fusion
proteins in Drosophila cells.

MATERIALS AND METHODS

Cloning of MSL constructs

For heterologous expression and purification, MSL con-
structs were cloned with C-terminal FLAG tags into the
pFastBac1 vector, which was used in the Bac-to-Bac
expression system (Invitrogen) to create recombinant
baculoviruses. For transient transfections and reporter
gene assays MSL2 constructs were fused to a C-terminal
VP16 activation domain (VP16-AD) by cloning the coding
sequence into the previously described pVP16 vector (25).
For the creation of stable Drosophila SL2 cells and
immunofluorescence stainings MSL2 constructs were
fused to a C-terminal GFP by subcloning the coding
sequence into the previously described pHSP70-EGFP
vector (35). Point mutations in MSL2 (C544A/C546A
and Y547A) were introduced by site-directed mutagenesis
using the QuickChange Site-Directed Mutagenesis Kit
(Stratagene). The HsCXC domain from the human
protein KIAA1585 was isolated via PCR from cDNA of
HeLa cells and cloned into the vectors described above.
The CXC domain was additionally cloned into the
pGEX-2KG expression vector (Amersham) for expression
as a GST fusion protein in Escherichia coli
BL21-CodonPlus (DE3)-RIL cells (Stratagene). The
identity of all plasmids was confirmed by sequencing.

Heterologous expression of MSL proteins

MSL proteins were expressed in Sf21 cells using
recombinant baculoviruses. Wild-type MSL2 and MSL1,
as well as all truncated or mutated MSL2 versions con-
tained C-terminal FLAG-tags. The MSL2–MSL1
complex was purified from cells co-expressing untagged
MSL1 and FLAG-tagged MSL2. Baculovirus infections
were carried out in shaker flasks at a cell density of
1� 106 cells/ml in Sf-900 II SFM medium supplemented
with 9% FBS at 27�C and 75 r.p.m. for 2 days. The expres-
sion of the GST tag and the GST-CXC domain in E.coli
was induced at OD600=0.7 – 0.8 with 0.3mM IPTG for
2 h at 20�C. Harvested E. coli and Sf21 cells were washed
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with ice-cold PBS, frozen in liquid nitrogen and stored
at �80�C.

Purification of recombinant MSL proteins

Sf21 cell pellets were rapidly thawed and resuspended in
ice-cold Extraction Buffer EB (50mM Hepes/KOH pH
7.6, 5% glycerol, 0.05% NP-40, 0.5mM EDTA, 1mM
MgCl2, protease inhibitors Aprotinin 1 mg/ml, Leupeptin
1 mg/ml and Pepstatin 0.7mg/ml) containing 300mM KCl
(EB300). 15ml EB300 was added to the cell pellet
(250� 106 cells). After 10min incubation on ice, the sus-
pension was sonicated (4� 20 s pulses, 20% amplitude,
Branson digital sonifier model 250-D) and centrifuged
twice (30 and 15min at 30 000 g at 4�C). The soluble
protein fraction was incubated with equilibrated FLAG
beads (Anti-FLAG M2 Agarose, Sigma) for 2.5 h at 4�C
on a rotating wheel. Two hundred and fifty microliters
beads were used per 250� 106 cells. The beads were
washed several times with ice-cold EB300 and high-salt
EB1000. The FLAG-tagged MSL proteins were eluted
for 2.5 h at 4�C on a rotating wheel in the presence of
0.5mg/ml FLAG-Peptide (Sigma) in EB100 for MSL2
and in EB300 for MSL1 and the MSL2–MSL1 complex.

The GST-CXC fusion protein was purified from E.coli
cells according to standard protocols and finally eluted
from glutathione sepharose using 40mM glutathione in
200mM Tris/HCl pH 8.0, 150mM NaCl, 10% glycerol,
0.05% NP-40, 50 mM ZnCl2, 1mM DTT and protease
inhibitors (see above).

The eluted MSL proteins were further concentrated by
using Amicon Ultra-4 centrifugal filter devices (50 or
3 kDa exclusion limit, Millipore). Purified proteins were
then rapidly frozen in liquid nitrogen and finally stored
at �80�C. Protein concentrations were determined via
SDS–PAGE and Coomassie staining using BSA (New
England Biolabs) as a standard.

Preparation of oligonucleotides for electrophoretic
mobility shift assays

Double stranded (ds) DNA and RNA fragments for
electrophoretic mobility shift assays were obtained by
annealing equimolar concentrations of complementary
oligonucleotides in 10mM Tris/HCl pH 7.5, 50mM
NaCl, 0.1mM EDTA by slowly cooling from 95�C to
room temperature.

DBF12-L15 DNA: 50-TGCGGCCATCTCTTTCGTTT
TGATGTTTCTACGCCATGTG-30 and 50-CACATGG
CGTAGAAACATCAAAACGAAAGAGATGG-30.

DBF12-L18 DNA: 50-TGCGGCCAAAAAATTCGTT
TTGATGTTTCTACGCCATGTG-30 and 50-CACATGG
CGTAGAAACATCAAAACGAATTTTTTGG-30.

DBF12-L15 RNA:50-UGCGGCCAUCUCUUUCGU
UUUGAUGUUUCUACGCCAUGUG-30 and 50-CAC
AUGGCGUAGAAACAUCAAAACGAAAGAGAUG
GCCGCA-30. The 50-overhang left by the dsDNA frag-
ments was filled in by the Klenow enzyme with [a-32P]-
dCTP. The dsRNA fragments were end-labeled with
[g-32P]-dATP by T4 polynucleotide kinase. The longer
DNA fragments 3�DBF-L15 (163 bp) and the multiple
cloning site (170 bp) of pBluescript KS+ (Stratagene)

were obtained by digestion with either XhoI/BamHI
(pP12eL(15)3) or PvuII/XmaI (pBluescript KS+).
50-Overhangs of both DNA fragments were filled in by
the Klenow enzyme with [a-32P]-dCTP. All radiolabeled
duplexes were purified using the QIAquick Nucleotide
Removal Kit (Qiagen).

Electrophoretic mobility shift assays

Purified MSL proteins were incubated with sub-saturating
concentrations of radiolabeled DNA or RNA fragments
(<0.2 nM) in 50mM Hepes/KOH pH 7.6, 100mM KCl,
5% glycerol, 0.05% NP-40, 0.5mM EDTA, 1mM MgCl2
and 0.1 mg/ml BSA (New England Biolabs) in a total
volume of 12 ml. The binding reactions were started by
adding the MSL protein and were analyzed after 15min
incubation at 25�C on non-denaturing 1.2% agarose
(12� 7 cm) or 5% polyacrylamide gels (Novex Mini-Cell
system, Invitrogen) in 0.5�TBE at 20�C. Gels were dried
and radiolabeled nucleic acids were visualized by using a
Phosphor-Imager (FujiFilm FLA-3000). For competition
experiments MSL proteins were first incubated at a con-
centration close to their KD value (50 nM) with
sub-saturating concentrations of radiolabeled DNA for
15min at 25�C. Then unlabeled competitor DNA or
RNA was added. After additional 20min incubation at
25�C the reactions were analyzed by non-denaturing
electrophoretic mobility shift assays (EMSA) gels as
described above.

Calculation of affinity constants

Quantification of EMSA gels was performed with the
Aida Image Analyzer software. The signal of nucleic
acid-bound protein (AB) and the signal of total nucleic
acid (Atotal) were quantified and the fraction bound (AB/
Atotal) calculated. Binding curves were obtained by per-
forming non-linear regression with KaleidaGraph using
a standard bimolecular model: y ¼ ðABmax

�xÞ=ðKD þ xÞ,
where y is the fraction bound, x is the concentration of
protein, ABmax is the maximum of AB and KD is the
affinity constant. For competition experiments, first AB
was calculated from the difference between the signal
of total nucleic acid (Atotal) and the signal of free
nucleic acid (Afree). Then the fraction bound was
calculated (AB/Atotal) and normalized to the fraction
bound measured at 0 nM competitor. Competition
curves were obtained with the following competition
model: y ¼ ABmax=ð1þ ðx=IC50Þ

HillSlope
Þ, where y is the

normalized fraction bound, x is the concentration of com-
petitor, ABmax is the maximum of AB at 0 nM competitor,
IC50 is the half maximal inhibitory concentration and Hill
Slope describes the steepness of the curve. In Table 1
affinity constants and IC50 values are shown as the mean
value plus and minus the standard deviation from several
replicates obtained with at least two independent protein
preparations.

Reporter gene assays

Reporter gene assays in male D. melanogaster SL2 cells
were performed as described (25). In brief, 0.5� 106 cells
were transfected with 15 ng of a renilla luciferase
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construct, 315 ng reporter gene construct carrying the
DBF12 binding site attached to an inducible firefly
luciferase reporter gene, and 160 ng of a MSL2-VP16
activator construct using Effectene (Qiagen). After 2
days the luciferase activities were measured by using the
Dual Luciferase Kit (Promega) and normalized to renilla
activity (normalized RLU). Induction was calculated from
the ratio of normalized RLU of MSL2-VP16 to that of the
VP16 activation domain alone. Fold induction is shown as
the mean value plus and minus the standard deviation
from several replicates obtained with at least two indepen-
dent plasmid preparations. The expression of the
MSL2-VP16 constructs was verified by Western blots
using a rabbit anti-MSL2 antibody (Supplementary
Figure S7).

Generating stable cell lines

Drosophila SL2 cells (0.5� 106 cells) were cotransfected
with 400 ng of an pHSP70-EGFP-MSL construct and
20 ng of the pCoBlast selection vector (Invitrogen) using
Effectene (Qiagen). Stable cells were selected using
Blasticidin (25 ng/ml) and were kept under constant selec-
tion pressure (20 ng/ml Blasticidin) at 26�C in Schneider’s
Drosophila medium (Invitrogen) supplemented with
L-glutamine and 9% FBS. The expression of the
MSL2-GFP constructs was checked by Western blots
using a rabbit anti-MSL2 antibody (Supplementary
Figure S7).

Immunofluorescence staining

Immunofluorescence on Drosophila SL2 cells that express
a GFP-MSL2 construct was performed as described (36).
An anti-GFP antibody (Molecular Probes) was used to
visualize the MSL2-GFP constructs. Localization of
endogenous MSL1 was detected by rabbit anti-MSL1
serum (kindly provided by E. Schulze). Pictures were
taken at 1200�magnification using a Zeiss Axiovert
microscope coupled to a CCD Camera (AxioCamMR,
Zeiss). Images were level adjusted in Adobe
Photoshop CS4.

RESULTS

MSL2 is the DNA binding factor in the
MSL2–MSL1 complex

Following the suggestions from the genetic studies (18,19),
we hypothesized that MSL2–MSL1 may directly bind to
DNA sequences that characterize HAS. As a candidate
high-affinity sequence, we used the DCC-binding
fragment (DBF) DBF12-L15, which we had previously
isolated as a minimal sequence necessary for recruitment
of MSL2 in a reporter gene assay (25). The 40 bp element
contains a GA-rich sequence that conforms to the consen-
sus sequences defined by chromosome-wide analyses
(30,31). Insertion of a trimerized element into an
autosome created one of the strongest DCC recruitment
sites seen so far (25). Mutating the GA motif to a stretch
of thymidines (DBF12-L18) destroyed the function as a
DCC recruitment site (25).

We expressed MSL2, MSL1 and the MSL2–MSL1
complex from baculovirus vectors in Sf21 cells, purified
the proteins via a C-terminal FLAG tag (Figure 1A and
C) and tested their ability to bind to DBF12-L15 in
electrophoretic mobility shift assays (EMSAs). MSL2
bound to DBF12-L15 with an affinity in the low
nanomolar range (33±13nM) as derived from the
binding curve (Figure 2A and C; Table 1). In contrast,
MSL1 did not form a stable complex with this DNA
fragment (Figure 2A and C; Table 1). Since MSL1 and
MSL2 may cooperate for DNA binding in vivo we also
assayed an MSL2–MSL1 complex (Figure 2B). The
affinity of the MSL2–MSL1 complex to DBF12-L15 was
similar to the affinity of MSL2 alone (Figure 2C and
Table 1). Clearly, the DNA binding potential of the
MSL2–MSL1 complex is contained within MSL2.

The CXC domain of MSL2 is necessary but not
sufficient for DNA binding

Since MSL2 does not contain a typical DNA binding
motif, we explored whether the known MSL2 domains
are involved in DNA binding. We focused on three can-
didate domains: The RING finger, the CXC domain and
the Pro/Bas patch, a C-terminal sequence rich in prolines
and basic amino acids. We constructed and purified MSL2
derivatives that lack each of these domains (Figure 1A and
C) and measured their affinity to the DBF12-L15 fragment
by EMSA (Figure 3 and Table 1). Deletion of the RING
finger or the Pro/Bas patch reduced the affinity of MSL2
to the DNA only modestly (<2-fold). On the other hand
the deletion of the CXC domain strongly reduced the
affinity to the DNA (189±18nM versus 33±13nM,
see Table 1). To explore whether the CXC domain alone
would be able to bind DNA we fused the domain to
glutathione-S-transferase (GST) or to a FLAG-tag and
tested the fusion protein for DNA binding. The
CXC-GST and CXC-FLAG bound DNA at least a
1000-fold less well than full length MSL2
(Supplementary Figure S1). These data suggest that the
CXC domain is necessary but not sufficient to endow
MSL2 with robust DNA binding and that additional
regions of MSL2 are required.

Table 1. Comparison of binding affinities of different recombinant

MSL2 derivatives to 40 bp DBF12-L15 dsDNA and RNA

MSL protein KD dsDNA [nM] KD dsRNA [nM]

MSL2 33±13 21±4
�CXC 189±18 29±12
�RING 51±5 23±5
�Pro / Bas 61±5 37±10
C544A/C546A 82±4
Y547A 81±5
HsCXC 33±9
MSL2-MSL1 26±15
MSL1 no binding

KD values were calculated from binding curves obtained from quanti-
fication of EMSA gels and fitting to a standard bimolecular model.
Mean values are shown plus and minus the standard deviation from
several replicates obtained with at least two independent protein prep-
arations. For details see the ‘Materials and Methods’ section.
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Point mutations in the CXC domain had been shown
earlier to delay the development and to reduce viability of
male transgenic flies (19). When the corresponding
cysteine to alanine mutations (Figure 1B) were introduced
into the CXC domain the affinity of recombinant MSL2
for DNA dropped from 33 to 82 nM, suggesting that
DNA binding of MSL2 is an important aspect of DCC
function. A similar drop in affinity was also observed if
tyrosine 547, adjacent to C546, was replaced by alanine
(Table 1 and Supplementary Figure S2). This latter sub-
stitution leaves all zinc-coordinating cysteines intact and
thus minimizes the risk of a general unfolding of the
structure.
An important DNA binding function may be conserved

through evolution. Dosage compensation mechanisms are
poorly conserved, however, an MSL2 homolog of
unknown function is present in Homo sapiens (37). The
HsMSL2 also contains the CXC scaffold and several con-
servative amino acids changes, yet most amino acids
between the CXC domains differ (Figure 1B). To assess
the DNA binding properties of the human CXC domain,
we generated a chimeric MSL2 protein where the CXC
domain in the fly MSL2 was replaced by the correspond-
ing human sequence (HsCXC, Figure 1B and C).

Strikingly, the HsCXC protein exhibited a similar
affinity for DNA as Drosophila MSL2 (Table 1 and
Supplementary Figure S3). This functional conservation
despite of very limited sequence similarity suggests that
DNA binding is an important property of MSL2.

MSL2 has a higher affinity for DNA over RNA

The in vivo cross-linking analyses had pointed to sequence
motifs that are enriched in HAS, but they could not dis-
tinguish whether these sequences attract the DCC as
dsDNA, as melted, single stranded (ss) DNA or as
RNA. We therefore determined the relative affinities of
MSL2 for the DBF12-L15 sequence presented in the
form of ssDNA, dsDNA, ssRNA or dsRNA in a series
of competition assays (Figure 4). Neither ssDNA nor
ssRNA competed efficiently with the MSL2-bound
dsDNA. In contrast, dsRNA was able to compete for
the binding, albeit with a lower relative affinity
compared to dsDNA (IC50 dsDNA of 13.0±6nM
versus IC50 dsRNA of 36±8nM). The competition
curve for dsRNA reveals a slight sigmoid shape, raising
the possibility that there might be more than one binding
site for RNA.
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The possibility that MSL2 might directly bind dsRNA
was new and unexpected given that the association of
MSL2 with the X chromosome resists extensive RNase
treatment of nuclei (38,39). To determine whether the
RNA binding function mapped to any of the domains in
question, we measured the affinity of the different MSL2
deletion variants to dsRNA (Figure 5 and Supplementary
Figure S4). Interestingly, the affinity of MSL2 for RNA
was not affected significantly by deletion of the RING or
CXC domains. This highlights the function of the CXC
domain as a DNA binding domain. On the other hand,
the region(s) responsible for RNA binding must reside
elsewhere in the protein. The Pro/Bas patch may contrib-
ute to this as its deletion led to a modest 1.5-fold reduced
affinity for RNA.

DNA binding of MSL2 is sequence-independent but
length-dependent

The observation that the CXC domain enables MSL2 to
bind DNA with nanomolar affinity suggests that it could
be directly involved in targeting the DCC to the X

chromosome. To explore this possibility, we tested
whether MSL2 was able to discriminate between
DBF12-L15 and a derivative, DBF12-L18, which can no
longer recruit MSL2 in a cell-based reporter gene assay
due to mutation of the GA-rich consensus element (25).
The affinity of MSL2 for both DNA fragments was in the
same range (KD of 33±13nM versus 23±8nM,
Figure 6), indicating that MSL2 did not bind the HAS
sequence preferentially. An MSL2–MSL1 complex also
bound the two fragments with similar affinity (data not
shown), which shows that the MSL1 interaction does not
increase MSL2’s discriminative power.
We had found previously that a single copy of the 40 bp

DBF12-L15 fragment had only a weak ability to recruit
the DCC to both, a reporter gene in cells and to an
autosomal insertion site in flies, but trimerization of this
sequence resulted in a very strong recruitment site (25).
We, therefore, tested whether trimerization of
DBF12-L15 increases the affinity and selectivity of
MSL2 for this sequence. MSL2 bound the trimeric
element with a dramatically improved affinity (KD of
0.59±0.18 nM, as opposed to 33±13nM for the single
site). However, a synthetic control sequence of identical
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length (the multiple cloning site of a vector) was bound
with the same affinity (Figure 6). MSL2 also bound a
226 bp fragment derived from the roX1 gene and known
to contain a strong HAS (22) with similar affinity
(Supplementary Figure S5).
Binding of MSL2 to DNA obviously is very length

dependent. The EMSA patterns derived from analysis of
the DNA elements tested so far suggest the possibility that
more than one MSL2 protein might be bound, either as a
complex of unknown stoichiometry or occupying neigh-
boring binding sites. To clarify this point we performed
EMSAs with progressively shorter fragments of
DBF12-L15 and L18 (30 and 20 bp, Supplementary
Figure S6). Reducing the length of the DNA fragments,
the affinity of MSL2 for DNA decreased such that binding
to a 20 bp fragment was not detectable anymore. This
placed the minimum length of a target sequence between
20 and 30 bp. Comparison of 30 bp fragments containing
the ‘core’ of the DBF12-L15 and L18 sequences
(Supplementary Figure S6A) revealed no binding prefer-
ence for the HAS sequence. The affinities were similar
within error for both 30 bp long fragments (KD of
116±22nM versus 87±15nM, Supplementary Figure
S6); if anything, the control sequence bound slightly

better. In summary, we conclude that the affinity of
MSL2 for DNA increases with the length of the
fragment, but we have no evidence for sequence discrim-
ination that is based on differential binding affinities of
MSL2 in vitro.

The CXC domain is necessary for targeting MSL2
to a reporter gene

As shown above, the CXC domain is necessary for DNA
binding of MSL2 in vitro. To explore the relevance of this
domain in vivo, we used the previously described reporter
gene assay in D. melanogaster SL2 cells (25). In this assay,
the 40 bp DBF12-L15 element precedes a minimal
promoter driving transcription of a luciferase reporter
gene. The plasmid is transfected into SL2 cells together
with a vector that directs expression of an MSL2-VP16
fusion protein. Binding of MSL2 to the candidate target-
ing element tethers VP16, which then leads to strong acti-
vation of luciferase transcription. Importantly, all
transfected MSL2 constructs were expressed at similar
levels (Supplementary Figure S7A). Recruitment of
MSL2-VP16 to the DBF12-L15 element activated the
luciferase reporter roughly 5-fold [Figure 7 and reference
(25)]. Deletion of the RING domain did not affect
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reporter gene activation indicating that MSL1, which
interacts with the RING domain of MSL2 (18), is not
involved in targeting MSL2 to DBF12-L15. In contrast,
MSL2 lacking the CXC domain or carrying point muta-
tions therein were unable to activate. Deletion of the Pro/
Bas patch had an intermediate effect. Surprisingly, even
though the chimeric HsCXC protein bound DNA with
wild-type affinity in vitro, it was unable to activate
luciferase expression (Figure 7). Evidently, an unknown
Drosophila factor that synergises with Drosophila MSL2
but does not match the human counterpart confers selec-
tivity of DNA binding in vivo. This notion is further sup-
ported by the finding that the mutated DBF12-L18
sequence was unable to attract any of the MSL2-VP16
proteins, including wild-type, to the reporter gene
[Figure 7 and reference (25)]. We conclude that the CXC
domain is required for DNA binding in general, but that
sequence discrimination requires an as yet unkown prin-
ciple present in Drosophila cells.

The CXC domain is necessary for targeting the DCC to
the X chromosome

As a final test for the role of the CXC domain of MSL2,
we explored its contributions to targeting a GFP-tagged
MSL2 to the X chromosome in male SL2 cells. Vectors
were created that code for MSL2, MSL2-�CXC and
MSL2-C544A/C546A fused to the Green Fluorescent
Protein (GFP), transfected into SL2 cells and stable lines
were selected for several weeks. All cell lines expressed
roughly similar amounts of endogenous MSL2 and
GFP-MSL2 transgenes (Supplementary Figure S7B).
The localization of MSL2-GFP and of endogenous
MSL1 was then assessed by parallel immunofluorescence
microscopy employing antibodies directed against GFP
and MSL1 (Figure 8). Wild-type MSL2-GFP co-localized
perfectly with endogenous MSL1 at a defined chromo-
somal territory that corresponds to the X chromosome
(35). In contrast, when the DNA binding function of
MSL2 was impaired by deletion of the CXC domain or

mutation of its critical cysteines the X chromosomal tar-
geting was disturbed: in �75% of the cells the
MSL2-�CXC and MSL2-C544A/C546A GFP fusion
proteins did not associate with well defined X chromo-
some territories, but were delocalized to many, dispersed
foci in the nucleus. Interestingly, endogenous MSL1 was
delocalized to these ectopic sites as well, which shows that
the impairment of the CXC domain did not perturb the
MSL1 interaction. Clearly, MSL2 was revealed as the
primary targeting determinant, whose delocalization
moved MSL1 with it and MSL1 was unable to target
MSL2 to the X chromosome. We conclude that for the
proper targeting of the DCC in vivo the functional DNA
binding domain of MSL2—the CXC domain—is required.

DISCUSSION

Dosage compensation is appreciated as a model for
chromosome-wide, coordinate fine-tuning of gene expres-
sion. Understanding how the DCC discriminates between
the X chromosome and autosomes for selective activation
of X-linked genes is, therefore, of general interest. The
recent identification of DNA sequence motifs enriched
within HAS for the DCC in vivo have given new support
to the idea that an X-specific DNA sequence signature
must be involved. However, so far no DNA binding
surface has been identified within the DCC subunits that
may serve to recognize and interpret such a signature. We
have taken a biochemical approach to assaying direct
protein–DNA interactions in a fully defined system. We
identified the first DNA binding function, the CXC
domain of MSL2, within the MSL2-MSL1 module of
the DCC and showed that it is important not only for
in vitro binding but also for proper X chromosomal tar-
geting. A heteromeric assembly of MSL2-MSL1 is
thought to be minimally required for initial recognition
of a relatively small number of HAS or chromosomal
entry sites (19,20,23,30,31). We came to conclude that all
DNA binding potential resides within MSL2 and that the
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important role of MSL1 cannot be explained by contribu-
tions to DNA binding.

MSL2 binds DNA with high-affinity and low sequence
discrimination

We quantitatively measured the binding of MSL proteins
to a number of DNA fragments that vary in length and
sequence. The affinity constant KD of MSL2 to the short
40 bp DBF12-L15 DNA element is around 33 nM.
Increasing the size of the target DNA to 167 bp led to a
robust improvement of affinity (KD around 1 nM). Such
low nanomolar affinities are typical for sequence-specific
DNA binding proteins. For example, the glucocorticoid
receptor bound with a KD of 21 nM to a glucocorticoid
response element in the context of a 33 bp DNA fragment
and with a lower affinity of 165 nM to a mutated DNA
element (40). To our surprise, we found that the
high-affinity of MSL2 for DNA did not involve
sequence discrimination in vitro, yet MSL2 binding was
sensitive to mutation of the HAS in the reporter gene
assay in Drosophila cells. Apparently, a crucial cellular
selectivity factor is still missing. Several scenarios are con-
ceivable. MSL2 may synergize with an abundant
sequence-specific DNA binding protein. Inspired by the

frequent occurrence of GAGA motifs in HAS an
involvement of the GAGA factor had been considered
earlier, however, interfering with GAGA factor function
does not affect the majority of binding of MSL2 to the X
chromosome (41). DNA recognition by MSL2 may be
modulated through allosteric interactors within the DCC
(such as roX RNA) or yet unknown factors. It is also
possible that the sequences that characterize HAS have
to be presented in a non-B form secondary conformation
or in the context of chromatin [discussed in (42)]. We did
not explore a nucleosomal organization of the candidate
sequence since HAS tend to reside in nucleosome-
free regions (30,31). DNA sequences themselves may
function as allosteric effectors that modulate the
properties of interacting factors, including co-regulator
recruitment. This was recently shown for the examples
of the transcription factors NF-kB and glucocorticoid
receptor (43,44). Moreover, selectivity for target sequences
do not need to be based on binding affinity, but rather on
conformational changes subsequent to binding, as shown
for DNA topoisomerase II (45). Considering these cases,
one may hypothesize that target and non-target DNA
sequences for MSL2 are not distinguished by their
different affinities, but by their effects on the confor-
mation of MSL2 upon binding and DCC assembly.
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Accordingly, only interactions with the HAS sequence
would be productive for the assembly of a DCC.

Recently, Scott and colleagues hypothesized that the
N-terminus of MSL1 may be involved in DNA binding
(33), since deletion of the N-terminal 26 amino acids pre-
vented the association of MSL1 with the X chromosome.
Our biochemical analysis now shows that MSL1 by itself
does not have DNA binding potential and that it does not
influence the sequence-independent binding of MSL2 to
B-form DNA. However, given that we found strong asso-
ciation of MSL1 with chromatin in vitro in the presence of
MOF (36), it is possible that MSL1 contributes to target-
ing the complex in a chromatin context.

The CXC domain—a conserved DNA binding module

Our studies highlight the important contribution of the
conserved CXC domain for direct association of MSL2
with DNA. Deletion of the CXC domain also impaired
the targeting of MSL2 to a HAS in the reporter gene assay
and to the X chromosomal territory in male cells.
Importantly, deletion of or point mutations in the CXC
domain did not abolish the interaction of MSL2 with
MSL1 in vitro or in vivo, nor did it affect the RNA
binding of MSL2, which shows that the folding of
MSL2 was not generally perturbed. Our finding that the
CXC domain from the H. sapiens MSL2 homolog has
similar DNA binding properties suggests that this
function is evolutionary conserved, despite of different
dosage compensation strategies in flies and humans. Our
results provide a mechanistic explanation for the earlier
observation of Kuroda and colleagues (19), who had
shown that the very same mutations in the CXC domain
that in our hands diminish DNA binding caused a
developmental delay and reduced viability (to 16–64%
of wild-type) in male flies. The phenotype described in
this study qualifies as a partial loss-of-function, which
suggests that in addition to the CXC domain, other struc-
tures may contribute to targeting. A targeting influence of
the Pro/Bas domain had recently been suggested by Scott
and colleagues (34). These authors hypothesized that the
C-terminus of MSL2 may be involved in roX RNA
binding. Our study unveiled the RNA binding potential
of recombinant MSL2, and although we were unable to
attribute the RNA binding to any specific domain, a con-
tribution of non-coding RNA to MSL2 targeting remains
an interesting possibility.

The CXC domain had not been identified as particu-
larly important in the previous structure–function analysis
in transgenic flies by Scott and colleagues, but in this case
the domain was only deleted as part of an N- or C-
terminal truncation series, of which most MSL2 deriva-
tives did not localize properly (34). CXC domains are
frequent protein structure modules that occur in a
variety of different arrangements, however, for none of
the CXC domains the structure has been solved.
According to Marin, a common denominator is the
presence of one to three CXC motifs N-terminal to the
general C-X4-CXC-X6-C-X4-5-C-X2-C formula (37). Like
for other cysteine-rich structures, it is likely that the
structuring of the domain involves zinc coordination

(46). Two recent studies on novel Drosophila testis-specific
protein complexes identified proteins of the tesmin/
TSO1-family (Mip120 and Tomb), which share one or
two CXC domains. A common role for all proteins of
this family in DNA binding via their CXC domains has
been proposed (47,48) but so far only for one related
member of the tesmin/TSO1-family, the CPP1 protein of
the soybean, in vitro DNA binding of two clustered CXC
domains was shown (49). It is possible that in MSL2 the
CXC cooperates with other structures, such as the Pro/
Bas patch, the deletion of which led to a slightly lower
affinity of MSL2 for nucleic acids and a modest reduction
of MSL2 targeting to a HAS in cells. Further evaluation
of these hypotheses will require knowledge of the MSL
domain structures at atomic resolution.
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