
RESEARCH ARTICLE

Losartan Attenuates Myocardial Endothelial-
To-Mesenchymal Transition in Spontaneous
Hypertensive Rats via Inhibiting TGF-β/Smad
Signaling
MiaoWu1,2, Zhenyu Peng3, Changhao Zu1, Jing Ma1, Shijuan Lu2, Jianghua Zhong2,
Saidan Zhang1*

1 Department of Cardiology, Xiangya Hospital, Central South University, Xiangya Road No.88, Changsha, P.
R. China, 2 Department of Cardiology, Haikou People’s Hospital, People’s Road No.43, Haikou, Hainan, P.
R. China, 3 Department of Emergency, Second Xiangya Hospital, Central South University, Middle Ren-Min
Road No. 139, Changsha, P.R. China

* zhangsaidan_cs@outlook.com

Abstract

Background

Losartan plays an important role in the inhibition of myocardial fibrosis. But the underlying

mechanism is not entirely clear. Emerging evidences have indicated that endothelial-to-

mesenchymal transition (EndMT) plays a crucial role in cardiac fibrosis. Here the present

study aims to first investigated the effect of Losartan on EndMT in cardiac fibrosis of sponta-

neous hypertensive rats (SHRs).

Methods

Male SHRs were randomly divided into three groups and fed for 12 weeks, namely the SHR

group (Group S), the Losartan-treated group (Group L) and the Prazosin-treated group

(Group P). Wistar-Kyoto rats served as controls (Group W). The histological changes were

evaluated by Masson’s trichrome. Co-expression of CD31 and fibroblast-specific protein 1

(FSP1) were used as the markers of EndMT through immunofluorescence. The expres-

sions of FSP1, CD31, TGF-β, Smad were detected by Western blot analysis.

Results

It was identified that elevated blood pressure induced a significant increase in myocardial

fibrosis and EndMT in SHRs, which was reversed by Losartan and Prazosin treatment. Fur-

thermore, the activity of TGF-β/Smad signaling was detected in the four groups. TGF-β/

Smad signaling was activated in SHRs and suppressed by Losartan or Prazosin treatment.

Losartan exhibited more efficiently than Prazosin in inhibiting TGF-β/Smad signaling activa-

tion, EndMT and myocardial fibrosis.
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Conclusion

These results showed that EndMT played an important role in promoting hypertensive car-

diac fibrosis, and that losartan could suppress cardiac fibrosis through the inhibition of

EndMT via classical TGF-β/Smad pathway.

Introduction
Hypertension is an important health care burden worldwide. Heart failure is the most common
complication seen in patients with hypertension. The major mechanism of heart failure is car-
diac fibrosis, which is presented by increased stiffness and diastolic dysfunction[1]. Numerous
studies have demonstrated that renin-angiotensin system (RAS) plays a crucial role in the per-
plexed process[2]. Angiotensin II (AngII), the major effector of RAS, is a critical profibrotic
factor. AngII-receptor blockers (ARBs) could significantly decrease myocardial fibrosis, which
was confirmed by many studies in vivo and in vitro[3, 4]. However, the mechanism of AngII in
the progression of hypertensive cardiac fibrosis still needs further elucidation.

Hypertensive cardiac fibrosis is characterized by excessive accumulation of collagen in car-
diac extracellular matrix[5]. Cardiac fibroblasts are the primary producers of collagen and have
an important role in fibrosis of hypertensive heart. However, the source of fibroblasts has been
debated for decades[6]. Traditionally, the main sources of cardiac fibroblasts are considered to
be proliferation of resident fibroblasts and migration of bone marrow-derived circulating fibro-
cytes. But recent studies have indicated that Endothelial Mesenchymal Transition (EndMT) is
another source of cardiac fibroblasts[7–10]. During EndMT, endothelial cells lose their specific
phenotypes (such as E-cadherin, ZO-1, CD31, etc.) and gain the characterstics of fibroblasts
(such as FSP1, α-SMA, vimentin, etc.). Finally, these cells convert into activated fibroblasts and
migrate to the interstitial tissues through breakdown basement membranes[11–13]. Zeisberg
et al. first verified that pressure overload promoted cardiac fibrosis through EndMT in an aor-
tic constriction hypertensive rat model[14]. After that, EndMT was also found in animal mod-
els with diabetic cardiomyopathy, myocardial infarction and myocarditis[15–18]. However, to
the authors’ knowledge, there are no researches that focus on EndMT in spontaneously hyper-
tensive rats (SHRs). Losartan is a classic selective AT1 receptor antagonist. The antifibrotic
effect of losartan has been described in many fibrotic processes such as cardiac fibrosis[19].
Although EndMT is an important factor in promoting cardiac fibrosis, it requires further study
to verify whether losartan reverses fibrosis by inhibiting EndMT.

Based on aforementioned findings, the authors propose that losartan may decrease cardiac
fibrosis in essential hypertension through inhibiting EndMT. In the present study, we investi-
gated the effect of the losartan on EndMT in cardiac fibrosis using SHRs model, and tried to
evaluate the role of the classic profibrotic TGF-β/Smad pathway.

Materials and Methods

Animals and experimental protocols
Eight-week-old male SHRs and Wistar-Kyoto rats (WKYs) were purchased from SJA Lab Ani-
mal Co. Ltd, China. After 1 week of adaptation, the SHRs were randomly divided into 3 groups
and fed for 12 weeks: SHR group (Group S, n = 10): 1 mL saline/day by gavage; losartan-treated
group (Group L, n = 10): 20 mg/kg/day by gavage, Wuhan Boxing, China; prazosin-treated
group (Group P, n = 10): 5 mg/kg/day by gavage, Shanghai Zhenzhun, China. WKYs were
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used as control (GroupW, n = 10; 1ml saline/day by gavage). All animals were housed in a
room at a constant temperature (25°C) and exposed to a 12-hour light-dark shift. All animals
were allowed free access to standard chow and water. All animal handlings were reviewed and
approved by the animal ethics committee of Central South University.

Blood pressure measurements
The SBP and DBP were measured by a tail-cuff method with the rats under conscious condi-
tion using a noninvasive blood pressure measurement system (Chengdu TME Technology
Company, China). Before the measurement, rats were placed in a holding device(37°C) for
5 min. SBP and DBP were determined 3 times blind to the randomization sequence on each
time point and the mean values were used as the result. SBP, DBP and heart rate measurements
were taken on a weekly basis by the same evaluator.

Echocardiographic measurements
Echocardiogram measures in this study were obtained by an experienced operator using
Philips SONOS 5500 on weeks 0, 4, 8 and 12. Rats were anesthetized with intraperitoneal 10%
chloral hydrate, and were underwent transthoracic two-dimensional (2D) guided M-mode
echocardiography. Two-dimensional parasternal long axis views and short axis views were
obtained at the papillary muscle level. Interventricular septal thickness(IVS), left ventricular
posterior wall thickness at the end of diastole(LVPWd), ejection fraction(EF) and fractional
shortening(FS) were measured. According to the curve of mitral diastolic flow, peak velocity at
early diastole (E), peak velocity at late diastole (A) and E/A ratio were measured. Each datum
was measured for 3 times and the average was taken.

Morphological analysis
After euthanization by sodium pentobarbital (50 mg/kg), rats were sacrificed and hearts were
harvested. Cardiac sections were fixed in 4% paraformaldehyde and then embedded in paraffin.
Paraffin-section slides were stained with Masson’s trichrome. Photomicrographs were analyzed
in a blinded manner. Photographs of left ventricle sections cut from the posterior inferior sep-
tal of each heart were for morphometrical analysis. Collagen volume fraction(CVF) and peri-
vascular collagen area/luminal area ratio(PVCA/LA) was were observed by use of an image
analysis system (Motic MED 6.0, Xiamen, China). Assessment of CVF used the following for-
mula: CVF = collagen area/ total area (total area is exclusive of perivascular collagen area and
luminal area). Mean CVF was determined by ten separate views per heart. Perivascular fibrosis
was calculated as the mean PVCA/LA ratio of five intramural Arterioles per heart.

Immunofluorescence analysis
Frozen tissues were cut into 5-μm-thick sections and fixed in 4% Polyoxymethylene at -20°C
for 10 min. After 10min×3 washes in PBS, Slides were blocked in 5% bovine serum albumin
(BSA) for 1 hour at room temperature. Then Slides were incubated with appropriate dilutions
of the two primary antibodies overnight. The primary antibodies were mouse anti-CD31
(1:50 dilution Abcam, England) and rabbit anti-FSP1 (1:50 dilution Abcam, England). After
10min×3 washes in PBS, slides were incubated with a mixture of two secondary antibodies for
1 hour at room temperature in the dark. The secondary antibodies are Goat Anti-Rabbit, FITC
(Liankebio, China) and goat anti-mouse, DyLight 549(Liankebio, China). Nuclei were counter-
stained with 4,6-diamidino-2-phenylindole (BioBox, China). Staining was analyzed
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independently by two investigators using LEICA DM5000B. Ten visual fields per heart were
analyzed for co-localization of endothelial and fibroblast markers.

Western blot analysis
The middle segment of left ventricular was collected, cut into 1.0 x 1.0cm in size, washed clean
with clear water, dried with filter paper, putted in sterile tubes and stored in liquid nitrogen
quickly. Frozen tissue was homogenized in liquid nitrogen, then the homogenate was lysed in
cell lysis buffer (CWBIO CW2333) and PMSF (Solarbio P0100) on ice for 30 min. After centri-
fugation at 12000g for 20 min at 4°C, the supernatants were collected and quantified with the
bicinchoninic acid (BCA) before degenerated by mixing with Laemmli buffer (biotime P0015)
at 100°C for 5 min. Equal mount of proteins were loaded and separated by 10% SDS-PAGE
before being transfered to polyvinylidene difluoride (PVDF) membranes. Membranes were
blocked with 5% skimmed milk for at least 1 hour at room temperature, and then incubated
with specific primary antibodies against CD31 (1:1000 dilution, Abcam, ab24590, England),
FSP1 (1:100 dilution, Abcam, ab27957, England), COL1 (1:1500 dilution, Abcam, ab6308,
England) or glyceraldehyde-3-phosphate dehydrogenase, GAPDH (1:1000dilution, Goodhere,
China) overnight at 4°C. Finally, membranes were incubated with peroxidase-conjugated goat
anti-rabbit IgG (1:5000 dilution, Multiscience, GAR007, China) or anti-mouse IgG (1:5000
dilution, ZSGB-bio, ZB2305, China;) and the immunoreactive bands were visualized by potent
ECL kit (multiscience, China) using BIO-RAD ChemiDOcTM MP imaging system(USA).
Western-blot analysis was done in 3 animals per group.

Statistical analysis
GraphPad Prism software were used to analyze data. The measurement data were presented as
mean ± s.e.m. ANOVA tests were used to compare variation between groups. In case any dif-
ference between-groups is significant, post-hoc tests for multiple testing were applied. Homo-
geneity of variance is measured by LSD and non-homogeneity of variance is measured by
Dunnet test. Results with P<0.05 were considered to have statistically significant difference.

Results

Body weight, left ventricular weight index(LVI) and blood pressure of the
rats
After 12 weeks of feeding, Group S presented higher SBP and DBP comparing with other three
groups (P<0.05, respectively). The SBP and DBP were significantly lower in Group P and
Group L than Group S, and the two groups showed no significant statistically difference
(P>0.05). Group W served as control with normal blood pressure. Despite a lower body
weight, the LVI [left ventricle mass(mg)/body weight(g)] of the Group S was higher than the
Group W (P<0.05), and it was significantly lower by Losartan or Prazosin treatment group
(P<0.05). There is no significant difference between Group L and Group P in LVI. (Table 1).

Echocardiographic assessment
After 12 weeks of feeding, the rats in Group S exhibited significantly increased levels of
LVPWd, IVSd, LVESd, LVEDd and decreased levels of LVEF, FS compared to the control
Group W (all P<0.05). However, LVEF and FS levels were significantly increased in Group P
and Group L compared to Group S. (Fig 1, Fig 2).

Endothelial-To-Mesenchymal Transition and Cardiac Fibrosis

PLOS ONE | DOI:10.1371/journal.pone.0155730 May 13, 2016 4 / 13



Masson trichrome
Cardiac fibrosis was examined by Masson's trichrome staining. The area of myocardial fibrosis
and perivascular fibrosis of Group S was significantly increased compared to the Group W
while it was significantly decreased in Group L and Group P. The rats in Group L had less myo-
cardial fibrosis and perivascular fibrosis than Group P (P< 0.05). (Fig 3, Fig 4).

Confocal microscopy analysis
We next investigated in vivo evidence of endothelial cells undergoing phenotypic transition
into mesenchymal cells in hearts of the four groups. CD31 is endothelial cell marker (green)
and FSP1 is fibroblast marker (red). Double labeling immunofluorescence revealed

Table 1. Body weight, LVI, blood pressure and heart rate of the rats.

Parameters Group W (n = 10) Group S (n = 10) Gourp L (n = 10) Group P (n = 10)

Body weight(g) 358.70±10.13 314.78±11.79* 333.00±19.39*# 334.67±20.64*#

LVI(mg/g) 2.24±0.13 2.77±0.14* 2.47±0.16*# 2.49±0.20*#

SBP(mmHg) 138.2±7.0 168.5±6.9* 147.4±12.6*# 154.7±11.6*#

DBP(mmHg) 105.7±10.0 124.8±14.5* 111.0±10.0*# 109.0±9.7*#

HR(bpm) 381.90±28.52 407.80±26.52* 396.10±25.46 393.90±27.54

LVI: left ventricular index; SBP: systolic blood pressure; DBP: diastolic pressure; HR heart rate.

* P<0.05 versus Group W

# P<0.05 versus Group S.

doi:10.1371/journal.pone.0155730.t001

Fig 1. Echocardiographic parameters on the left ventricular morphology and function. LVEDd: left ventricular end diastolic internal
dimension. LVESd: left ventricular end systolic internal dimension. IVSd: Interventricular septal thickness at the end of diastole, LVPWd: left
ventricular posterior wall thickness at the end of diastole, LVEF: left ventricular ejection fraction. FS: fractional shortening. * P<0.05 versus Group
W; # P<0.05 versus Group S

doi:10.1371/journal.pone.0155730.g001
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colocalization of FSP1 and CD31 (Fig 5). Double positive cells, which suggest that endothelia
are beginning to acquire the fibroblast markers, an intermediate status of phenotypic conver-
sion, are considered the evidence of the occurrence of EndMT. There is a increase of double
positive cells in group S compared to group W. There were no double-positive cells in Group
W. Double positive cells were found in fibrotic areas of hearts in Group S, the cells were fewer
in Group P, and the fewest in Group L.

Expression of FSP1 and CD31
Furthermore, the authors evaluated protein expression of FSP1, Collagen I (COL I) and CD31
by Western blot. As shown in Fig 6, the protein expression of FSP1 and COL I were markedly
upregulated in the Group S comparing to Group W, and their expressions were inhibited by
prazosin and losartan treatment. On the contrary, the protein expression of CD31 was signifi-
cantly downregulated in the Group S compared to Group W, and their expressions were recov-
ered by prazosin and losartan treatment. Notably, there is a higher level of CD31 and lower
level of FSP1 and COL I in Group L comparing with Group P. (Fig 6)

TGF-β/Smad signaling in hearts of the SHRs
Because TGF-β/Smad signaling is considered as the most common and important signaling
involving in EndMT, we then evaluated the change of TGF-β/Smad signaling in the four
groups using western blot after 12 weeks of intervention. Our results showed that TGF-β and
phosphorylated state of Smad3 (P-Smad3) were elevated in Group S significantly comparing
with other three groups (P<0.05, respectively). TGF-β/P-Smad3 decreased more significantly
in Group L than in Group P (P<0.05), which indicated that losartan was more effective than
prazosin in inhibiting TGF-β/Smad pathway. (Fig 7)

Discussion
Cardiac fibrosis is an important pathological process in hypertensive heart remodeling and
other heart diseases. Although cardiac fibroblasts play a key role in the remodeling of the

Fig 2. left ventricular echocardiographic representative images. LVEF and FS were significantly decreased in the Group S compared to the controls.
Meanwhile, LVEF and FS were significantly increased in Group P and Group L compared to the Group S. According to the curve of mitral diastolic flow, peak
velocity at early diastole (E), peak velocity at late diastole (A) and E/A ratio were measured.

doi:10.1371/journal.pone.0155730.g002
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myocardial extracellular matrix, the exact origin of fibroblasts remains ill-defined. Recently,
EndMT is hotly considered as the pivotal process that converts endothelial cells to fibroblasts
in heart. In that, treatments which could interfere EndMT attract a lot of attention. In this
study, we demonstrated the anti-EndMT effect of losartan in SHRs by inhibiting TGF-β/Smad
Signaling.

Fibroblasts are the most important fibrotic cells, but there still been many aspects needed to
be clarified. The origin of cardiac fibroblasts is still not fully understood. Recent studies have
confirmed that endothelial cells can contribute to the accumulation of fibroblasts in cardiac
fibrosis through EndMT[20, 21]. In 2007, Zeisberg and colleagues published a milestone
research of EndMT in cardiac fibrosis. The group confirmed 27% to 35% of all fibroblasts are
endothelial origin using aortic banding double-transgenic rats[14]. Similarly, to our knowledge,
we report for the first time that EndMT also plays an important part in cardiac fibrosis of
SHRs. During EndMT, endothelial cells lose their intercellular adhesion complexes including

Fig 3. (A) Representative myocardial fibrosis were analyzed by Masson trichrome after 12 weeks of
intervention. Scale bars, 50μm. (B) Quantification of myocardial fibrosis. * P<0.05 versus GroupW; # P<0.05
versus Group S. Δ P<0.05 versus Group P

doi:10.1371/journal.pone.0155730.g003
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E-cadherin, ZO-1, CD31, etc., and detach from the surrounding cells and basement membrane.
In the meantime, the transformed endothelial cells acquire mesenchymal markers, such as
FSP1, α-SMA, vimentin, etc. and gain the morphology and function of activated fibroblasts. In
the present study, CD31 was used as a specific endothelial marker and FSP1 as mesenchymal
marker. Coexpression of CD31 and FSP1 indicates that endothelial cells are undergoing
EndMT. Our experiments show that WKYs have less double labeling cells, but SHRs have sig-
nificant CD31+/FSP1+ cells in the three groups through double immunofluorescence staining.

Moreover, it is find the more myocardial fibrosis was, the more obvious EndMT happened.
After 12 weeks of observations, untreated and losartan or prazosin treatment SHRs developed
left ventricular dilation, heart dysfunction, EndMT and fibrosis, suggesting that EndMT con-
tributes to cardiac fibrosis in SHRs. Zeiberg has confirmed EndMT in an aortic banding model
in which pressure overload is abruptly increasing during a very short period. It is inconsistent

Fig 4. (A)Representative perivascular fibrosis were analyzed by Masson trichrome after 12 weeks of
intervention. Scale bars, 50μm. (B)Quantification of perivascular fibrosis. * P<0.05 versus GroupW; #
P<0.05 versus Group S. Δ P<0.05 versus Group P

doi:10.1371/journal.pone.0155730.g004
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with the pathophysiological mechanisms of human essential hypertension. There are many fac-
tors that can cause hypertension in SHRs, such as increasing peripheral arterial resistance, oxi-
dative stress, RAS activation, etc. On the contrary, pressure overload via ascending aortic
constriction leads to an acute increase of heart afterload, which lead to myocardial fibrosis in a
short time. It is distinct from pathophysiology of human essential hypertension. Thus, we
investigate the role of EndMT in SHRs which is more similar to the natural history of human
essential hypertension. Our data are consistent with the results of other cardiac fibrosis models
including diabetic cardiomyopathy, myocardial infarction, aortic banding and myocarditis. It
may be concluded that EndMT is a common process in cardiac fibrosis despite of causes.

Fig 5. EndMT occurs in hearts of the four Groups.Confocal microscopy demonstrates FSP1 (red), CD31 (green) and DAPI (blue) in GroupW,
Group S, Group L and Group P. Scale bars, 50 μm.

doi:10.1371/journal.pone.0155730.g005
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Previous evidence suggested that elevated blood pressure was linked to an increase of fibro-
sis in the heart. In our study, antihypertensive drugs reduce cardiac fibrosis and EndMT, which
is consistent with the result of the aortic banding rats. Numerous studies showed that hyperten-
sive cardiac fibrosis is related to RAS. RAS is a complex and crucial system in cardiovascular
disease. AngII is the principal effector of RAS, which play an important role in cardiac fibrosis.
However, there have been no researches about the role of AngII in EndMT of hypertensive car-
diac fibrosis. Our results indicate losartan, an angiotensin receptor 1 inhibitor, decreases fibro-
sis and EndMT in SHRs. Therefore, AngII takes an essential effect in hypertensive cardiac
fibrosis through promoting EndMT.

Fig 6. Expression ofCD31, COL I and FSP1. * P<0.05 versus GroupW; # P<0.05 versus Group S. Δ
P<0.05 versus Group P.

doi:10.1371/journal.pone.0155730.g006

Fig 7. Western blot analysis for the expression of TGF-β/Smad pathway was performed on protein
isolated from the hearts of the four groups. * P<0.05 versus GroupW; # P<0.05 versus Group S. Δ
P<0.05 versus Group P.

doi:10.1371/journal.pone.0155730.g007
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Pressure overload and RAS are two main triggers of cardiac fibrosis in hypertension[22, 23].
In most situations, it’s difficult to separate the two factors apart completely because they closely
interact with each other. Prazosin, a peripherally alpha-adrenoceptor antagonist, reduces blood
pressure but with no direct effect on RAS. In this study, SHRs treated with Losartan and Prazo-
sin have similar blood pressure. Both groups have decreased cardiac fibrosis area and CD31
+/FSP1+ cells comparing to untreated SHRs. But cardiac fibrosis and double-positive cells
were more significantly decreased in Group L than Group P. As we know, Losartan is associ-
ated with the lowering blood pressure and anti-RAS effects, from which the stronger inhibition
of EndMT comes. Therefore, the results suggest that both pressure overload and RAS contrib-
ute to EndMT in cardiac fibrosis. Losartan inhibits EndMT in hypertensive cardiac fibrosis via
decreasing blood pressure and inhibiting RAS. This provides a new mechanism for the anti-
fibrotic effect of ARB.

In the present study, the results suggested that losartan inhibits EndMT and fibrosis more
effectively than prazosin, but this does not lead to functional improvements. This result dif-
fered from previous researches that angiotensin receptor blockers more effectively decrease
fibrosis, inhibit myocardial remodeling and improve heart function than prazosin. There may
be several reasons for the inconsistency. First, the duration of observation and dose of losartan
may not be enough. The dose range of losartan in previous studies was very wide from 5 mg/
kg/day to 50 mg/kg/day[24,25]. Differences between the two groups may occur with a higher
dose or a longer observation time. Second, the techniques used to evaluate cardiac function
were probably not sensitive enough. Though echocardiography is widely used to measure left
ventricular function, accuracy of EF is affected by left ventricular preload, afterload, heart rate,
left ventricular shape, operator, etc. Additional methods, such as hemodynamics measure-
ments, tissue Doppler imaging and heart magnetic resonance imaging (MRI), will provide
more accurate information of heart structure and function[26]. These are the limitations of the
paper.

EndMT is regulated by a variety of bioactive molecules, including transforming growth fac-
tor-β (TGF-β), endothelin-1 (ET-1), angiotensin II (AngII), connective tissue growth factor
(CTGF), and platelet-derived growth factor (PDGF)[27–29]. Numerous studies showed TGF-
β/Smad is a vital signaling pathway in EndMT[30]. It's well-known that AngII activate TGF-β/
Smad pathway in cardiac fibrosis[11, 31–33]. Our results demonstrated that the decreasing of
EndMT is consistent with reducing signaling of TGF-β/Smad. TGF-β/Smad signaling pathway
was more prominently inhibited in SHRs treated with losartan than prazosin. Altogether, these
in vivo data suggested that the inhibition of EndMT in SHRs is mediated by losartan through
inhibition of TGF-β/Smad signaling pathway.

Conclusion
In summary, our work shows EndMT is one of the origins of fibroblasts in hypertensive cardiac
fibrosis, and that losartan decreases cardiac fibrosis partly through inhibition of EndMT via
classical TGF-β/Smad pathway. EndMTmight be a therapeutic target to prevent cardiac fibro-
sis and slow down heart failure in the future.
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