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This study aimed to investigate the association of serum hsCRP and urinary AIMG in patients with T2DM. Numerous investigations
have proven that serum hypersensitive C-reactive protein (hsCRP) concentration in patients with type 2 diabetes mellitus (T2DM)
is increased. Also, increased urinary alpha-1 microglobulin (AIMG) can be an early sign of renal damage, primarily on the proximal
tubules in T2DM. Little information is available with respect to the associations of serum hsCRP levels and urinary AIMG
in T2DM. A total of 520 patients with T2DM were recruited to participate in this study. Serum hsCRP and UAIMG (urinary
alphal-microglobulin to creatinine ratio), UACR (urinary microalbumin to creatinine ratio), UIGG (urinary immunoglobulin G
to creatinine ratio), and UTRF (urinary transferrin to creatinine ratio) were obtained. The association of serum hsCRP level and
each urinary protein parameter was analyzed by using the regression analysis, respectively. LnhsCRP was positively associated with
the InUAIMG in all three linear regression models (adjusted 3 in model 3=0.122, SE=0.027, P<0.001). Furthermore, the high hsCRP
group (hsCRP > 3mg/L) was associated with increasing risk of high UAIMG (adjusted OR in model 3=1.610, 95% CI 1.037-2.499,
P=0.034) by logistic regression. This study suggests that serum hsCRP levels independently associate with UAIMG in patients with
T2DM. Further research is warranted to elucidate these interactions.

1. Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common
chronic diseases, and its incidence continues to increase.
T2DM causes a series of physiological and pathological
changes in the body and chronic lesions in lung, heart, brain,
kidney, nerve, and other organs and even leads to functional
defects and failure [1-3]. Novel findings are suggesting that
activation of innate immune system as well as low-grade
inflammation may have an important role in the pathogenesis
of T2DM [4]. It has been demonstrated that systemic low-
grade inflammation is associated with an increased risk for
the development of T2DM [5].

Hypersensitive C-reactive protein (hsCRP) is an acute
phase protein and it represents extremely sensitive systemic
marker of inflammation and tissue damage. Recent stud-
ies indicate that hsCRP might be activator of nonspecific

immunity and modulator of specific immunity [5]. Numer-
ous investigations have proven that serum hsCRP concen-
tration in patients with T2DM is increased. It has been
demonstrated that determination of serum hsCRP levels may
predict possibility for development of T2DM [5]. Most of the
authors consider that increased serum hsCRP concentration
might be the reflection of present low-grade inflammation
which precedes the development of T2DM [5, 6]. Thorand
et al. [7] have shown that hsCRP is a significant predictor
for T2DM development in middle aged men independent of
classical risk factors such as triglycerides level, body mass
index, fasting glucose, or smoking.

Diabetic nephropathy (DN) has been widely recognized
as a common complication of T2DM, which may fur-
ther progress into end-stage renal disease and premature
mortality[8, 9]. Growing evidence indicates that immuno-
logic and inflammatory mechanisms play a significant role
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in disease development and progression in DN. Studies
suggest that individuals who develop diabetic kidney disease
have low-grade inflammation years before the onset of the
disease [1]. Several human studies support these findings,
and several cross-sectional studies have reported that high
levels of inflammatory markers, such as IL-6, fibrinogen, or
hsCRP, are associated with diabetic nephropathy in patients
with diabetes [10]. HsCRP itself was induced by high level of
glucose, which then promoted renal inflammation, so hsCRP
may serve as an inflammatory mediator of high glucose levels
to promote the diabetic renal inflammation [11, 12].

A number of key biomarkers present in the urine have
been identified that reflect kidney injury at specific sites
along the nephron, including glomerular/podocyte damage
and tubular damage, oxidative stress, inflammation, and
activation of the intrarenal renin-angiotensin system [1].
Alpha-1 microglobulin (AIMG) is a small molecular weight
protein (27 kDa) present in various body fluids. In the healthy
kidney, it passes freely through the glomerular membranes,
and about 99% is reabsorbed and catabolized by the prox-
imal tubular cells [9]. When the reabsorption function of
renal tubules is failed, the output volume of AIMG will
increase. Therefore, increased urinary AIMG can be an early
sign of renal damage, primarily on the proximal tubules
[13-16]. Also, urinary microalbuminuria (mAlb), urinary
immunoglobulin G (IGG), and urinary transferrin (TRF)
were considered markers of glomerular dysfunction [17-
20]. Clinically, UAIMG (urinary alphal-microglobulin to
creatinine ratio), UACR (urinary microalbumin to creatinine
ratio), UIGG (urinary immunoglobulin G to creatinine
ratio), and UTRF (urinary transferrin to creatinine ratio)
were often used as the key biomarkers to evaluate the severity
of diabetic nephropathy.

However, because of the nature of a cross-sectional study,
the direct causality between high levels of inflammatory
markers and the panel of urinary protein parameters is
unknown. To the best of our knowledge, little information is
available with respect to the association of serum hsCRP level
and UAIMG in T2DM.

Therefore, we studied a cohort of Chinese patients with
type 2 diabetes from a single-center registry to determine
the prospective association between baseline serum hsCRP
concentration and the panel of urinary protein parameters
(UAIMG, UACR, UIGG, and UTRE).

2. Materials and Methods

2.1. Patients. We recruited 520 inpatients with T2DM at the
Department of Endocrinology of Beijing Tongren Hospital,
Capital Medical University, in Beijing from August 2017 to
September 2018. Inclusion criteria were clinically diagnosed
T2DM longer than 5 years. T2DM was diagnosed on the basis
of the World Health Organization criteria [21]. Exclusion
criteria were presence of those with type 1 diabetes, those with
nephrotic syndrome, acute kidney injury, acute infection, and
malignancy including gastric cancer, active gastrointestinal
diseases including gastroenteritis and peptic ulcers, or liver
cirrhosis, and history of rapidly progressive renal failure,
glomerulonephritis, and polycystic kidney disease.
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We reviewed detailed demographic data, biochemical
data, and clinical and treatment histories from patient med-
ical records. All patients were informed of the purpose
of the study and written consent was obtained. The study
was approved by the Institutional Review Board of Beijing
Tongren Hospital, Capital Medical University.

2.2. Anthropometric Measurements. Basic anthropometric
measurements, body height (cm) and body weight (kg), were
obtained. Body mass index (BMI) was calculated by body
weight (in kilograms) divided by height (in meters) squared
[22]. Each patient’s arterial blood pressure was measured
by a physician after a 10-minute resting period to obtain
the systolic and diastolic blood pressures (SBP and DBP,
respectively).

The Chronic Kidney Disease Epidemiology Collabora-
tion (CKD-Epi) equation was used to estimate glomerular
filtration rate (eGFR CKD-Epi) [23, 24]. Insulin resistance
status was evaluated by the homeostasis model assessment-
insulin resistance (HOMA-IR) index. The HOMA-IR was
calculated using the formula [fasting insulin (uIU/mL) x
fasting blood glucose (mmol/L)]/22.5. The HOMA-IR score
was available in only 427 patients [25].

2.3. Sample Collection and Laboratory Methods. After at least
8h of an overnight fasting, a venous blood sample was
obtained from the forearm of each participant. Participants
were requested to provide two blood samples, one for whole
blood in K, EDTA for HbAlc (glycosylated hemoglobin)
determination and the other for serum extraction. Samples
for serum extraction were left to clot for 30 min and then
centrifuged at 3000 rpm for 10 min.

Participants were also asked to provide spot urine in the
morning to measure the panel of urinary protein param-
eters (UAIMG, UACR, UIGG, and UTRF). All items were
measured at Department of Clinical Laboratory of Beijing
Tongren Hospital, Capital Medical University, in Beijing.

Serum hsCRP concentration and other biochemical
items were measured on an AU5800 Automatic Analyzer
from Beckman Coulter (USA). Serum hsCRP concen-
tration was determined by means of Particle Enhanced
Immunotransmission Turbidimetry method. Other bio-
chemical items included FPG (fasting plasma glucose), BUN
(blood urea nitrogen), SCr (serum creatinine), UA (uric
acid), TP (total protein), ALB (albumen), Lpa (Lipopro-
tein a), TG (triglycerides), total cholesterol (TC), LDL-
C (low density lipoprotein-cholesterol), and HDL-C (high
density lipoprotein-cholesterol). Insulin (fasting) and C-
peptide (fasting) were measured by means of chemilumi-
nescent microparticle immunoassay method on ARCHI-
TECT i2000SR (USA). The whole blood in K, EDTA for
HbAlc determination was measured by means of High
Performance Liquid Chromatography with Ion Exchange
method on HPL-723 G8 Automated Glycohemoglobin Ana-
lyzer (Japan).

All urine samples were spun at 2,000g for 5 minutes in
a refrigerated centrifuge and were immediately transferred
to new sample tubes and measured. The urinary creatine
concentration was measured by means of sarcosine oxidase
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method on a DXC800 Automatic Analyzer from Beckman
Coulter (USA), The concentrations of urinary AIMG, mAlb,
IGG, and TRF were measured by means of scatter turbidime-
try method on the Immage 800 Immunochemistry System
from Beckman Coulter (USA). To account for variations
in urine concentrations among individuals, all concentra-
tions were expressed in units per gram urinary creatinine
excretion. All the detection procedures strictly followed
instructions.

2.4. Reference Interval for Serum hsCRP and Urinary Pro-
tein Parameters. In the present study, reference interval for
hsCRP with the use of this laboratory detecting system is
from 0 to 3mg/l, that for UAIMG is from 0 to 10 mg/gCr,
that for UACR is from 0 to 30 mg/gCr, that for UIGG is from
0 to 5mg/gCr, and that for UTRF is from 0 to 1.5 mg/gCr.
Furthermore, we defined hsCRP >3mg/L as high hsCRP,
UAIMG>10 mg/gCr as high UAIMG, UACR>30mg/gCr as
high UACR, UIGG>5mg/gCr as high UIGG, and UTRF
>1.5mg/gCr as high UTRE

2.5. Statistical Analysis. All statistical analysis was performed
using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). Two-tailed
P value <0.05 was considered statistically significant. Cat-
egorical variables are expressed as frequencies. Continuous
variables are described using mean + standard deviation
(SD) for normally distributed variables and medians with
interquartile range (IQR) for nonnormally distributed data.
According to hsCRP level, the participants were stratified into
two groups with cut-off value of 3 mg/L.

Statistical differences for continuous variables in demo-
graphic and clinical characteristics between groups by gender
and hsCRP were evaluated by Student’s t test for normally
distributed variables or Mann-Whitney U test for nonnor-
mally distributed variables. The correlation of serum hsCRP
levels and each urinary protein parameter (UAIMG, UACR,
UIGG, and UTRF) was analyzed using the Pearson test. Also,
we compared the distribution of hsCRP and urinary protein
parameters in different groups according to each urinary
protein parameter.

To determine the association of serum hsCRP and each
urinary protein parameter (UAIMG, UACR, UIGG, and
UTRF) in patients with T2DM, three models of linear
regression and logistic regression were conducted for each
explanatory variable, respectively. Model 1 was univariate
analysis, model 2 was adjusted for age and gender, and
model 3 was adjusted for variables that were significantly
associated (p<0.05) in univariate analyses. In model 3,
gender, age, and Scr were excluded as variables, because
they entered the equation for eGFR calculation. Multivari-
ate logistic regression models used the backward stepwise
method, including variables that were significantly associated
(p<0.05) in univariate analyses, and results were reported
as odds ratios (OR) with 95% confidence intervals (95%
CI). Nonnormally distributed variables, hsCRP, and urinary
protein parameters (UAIMG, UACR, UIGG, and UTRF)
were transformed using the natural logarithm (In) before
regression analysis.

3. Results

3.1. Clinical Characteristics of the Participants. The 520
patients consisted of 317 men and 203 women. Their biologi-
cal parameters, biochemical and metabolic parameters, and
urinary protein parameters were presented in Table 1. The
mean age of the total participants was 58.59 years, and the
mean duration of diabetes was 12.69 years. The mean body
mass index (BMI) was 25.32 kg/mz.

As Table 1 showed, the median (IQR) level of serum
hsCRP was 1.31(0.51-3.27) mg/L and higher hsCRP were
found in female than in male (P=0.026). Regarding the
urinary protein parameters, higher UIGG (P < 0.001) and
higher UTRF (P=0.001) were found in female than in male,
but there were no significant differences in UAIMG and
UACR between female and male. For the other biochemical
and metabolic parameters, higher TC and HDL-C and lower
SCr, UA, and eGFR were found in female compared to male.

3.2. Comparisons of Clinical Variables according to Serum
hsCRP Levels. The clinical parameters according to serum
hsCRP levels were shown in Table 2. The participants were
divided into two groups according to serum hsCRP levels.
Patients with serum hsCRP <3 mg/L were classified as Low
hsCRP group, and patients with serum hsCRP > 3 mg/L were
classified as High hsCRP group. The median hsCRP levels in
Low hsCRP group and High hsCRP group were 0.80mg/L
and 5.50mg/L, respectively. The BMI (P < 0.001), UAIMG
(P < 0.001), and UIGG (P=0.001) significantly increased
in High hsCRP group. Higher FBG (P=0.003), higher TG
(P=0.017), and higher HbAIC (P=0.024) were found in High
hsCRP group compared to Low hsCRP group. The values of
metabolic variables such as BUN, SCr, TC, and LDL-C did
not differ significantly between the two groups. There were
no significant differences in the UACR and UTRF between
Low hsCRP group and High hsCRP group.

3.3. The Distribution of Serum hsCRP and the Panel of Urinary
Protein Parameters in Patients with T2DM. We compared
the distribution and difference of hsCRP and urinary protein
parameters in different groups according to each urinary pro-
tein parameter. As Table 3 showed, 266 cases were classified
as High UAIMG group (UAIMG >10mg/gCr) and 254 cases
were classified as Low UAIMG group (UAIMG<10mg/gCr).
Higher UACR (P<0.001), higher UIGG (P<0.001), and higher
UTREF (P<0.001) were found in High UAIMG group. It was
worth noting that higher hsCRP (P=0.001) was only found
in High UAIMG group. For hsCRP, there were no significant
differences when cases were grouped according to UACR,
UIGG, or UTRE respectively. The UAIMG was significantly
higher in High UACR group (UACR>30mg/gCr) in compar-
ison with Low UACR group (UACR<30mg/gCr) (P<0.001).

3.4. Association of Serum hsCRP and the Panel of Urinary Pro-
tein Parameters in Patients with T2DM by Regression Analysis.
Multivariable linear and logistic regression analysis was car-
ried out to assess whether hsCRP was independently associ-
ated with these urinary protein parameters (UAIMG, UACR,
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TasLE 1: Clinical and biological characteristics of the patients studied by gender.
Characteristics Total Male Female P value
Biological parameters
Case number 520 317 203
Age (year-old) 58.59+12.54 57.05+12.86 60.98+11.65 0.001
Duration of T2DM 12.69+5.50 12.69+5.45 12.68+5.60 0.852
BMI (kg/m?) 25.3243.57 25.33+3.57 25.30+3.57 0.816
Systolic BP (mmHg) 131.03£16.66 130.22+15.71 132.30+18.01 0.657
Diastolic BP (mmHg) 77.39+10.92 77.73+10.93 76.87+10.89 0.517
Biochemical and metabolic parameters
hsCRP (mg/L) 1.31(0.51-3.27) 1.08(0.50-3.03) 1.90 (0.58-3.87) 0.026
FPG (mmol/L) 7.56(5.91-9.59) 7.39 (5.98-9.10) 7.78 (5.81-10.17) 0.292
BUN (mmol/L) 5.60(4.60-6.80) 5.60(4.55-6.80) 5.50 (4.60-6.90) 0.425
SCr(pmol/L) 65.60(53.56-77.50) 67.00(56.60-81.55) 59.20 (49.80-73.80) <0.001
UA(umol/L) 339.80(286.73-404.03) 345.90(302.30-414.85) 316.30(277.80-381.14) <0.001
TP(g/L) 64.90+5.29 64.58+5.16 65.39+5.47 0.168
ALB(g/L) 39.70(37.50-42.10) 39.70(37.40-42.05) 39.70 (37.60-42.10) 0.412
LPa (mg/dL) 11.92(5.10-26.75) 10.90 (4.30-25.30) 13.20 (6.10-27.50) 0.106
TG (mmol/L) 1.50(1.05-2.31) 1.47(1.03-2.34) 1.57 (1.11-2.27) 0.355
TC (mmol/L) 4.25(3.59-5.03) 4.22(3.52-4.87) 4.44 (3.72-5.46) 0.005
LDL-C (mmol/L) 2.42 (1.86-3.10) 2.39(1.84-2.99) 2.45 (1.92-3.23) 0.087
HDL-C (mmol/L) 1.03(0.86-1.25) 1.02(0.85-1.21) 1.07 (0.90-1.32) 0.009
Insulin (fasting)(ulU/mL) 7.40(4.50-12.50) 7.40(4.50-12.10) 7.40 (4.33-13.43) 0.807
C-peptide (fasting)(ng/mL) 1.17(1.10-2.60) 1.70(1.20-2.50) 1.70(1.10-2.68) 0.575
HOMA-IR 2.32(1.31-4.03) 2.23(1.31-3.98) 2.40 (1.30-4.14) 0.893
HbAIC(%) 8.84£1.91 8.91+1.94 8.71+1.88 0.240
eGFR (ml/min/1.73m?) 100.35(82.59-112.50) 105.70(92.71-117.63) 92.26 (74.79-101.70) <0.001
Urinary protein parameters
UAIMG (mg/gCr) 10.23 (5.85-19.94) 9.47(5.55-19.09) 11.44 (6.78-20.677) 0.134
UACR (mg/ gCr) 15.21(7.53-58.83) 14.42(7.10-54.84) 17.66 (8.35-61.88) 0.307
UIGG (mg/gCr) 6.59(3.90-13.50) 5.87(3.52-11.27) 8.08 (4.76-14.62) <0.001
UTRF (mg/gCr) 3.20(2.00-6.00) 2.90(1.80-5.35) 3.90 (2.40-6.50) 0.001

Data are shown as mean+SD or median (IQR).
T2DM:type 2 diabetes mellitus; hsCRP: hypersensitive C-reactive protein; BMI:Body mass index; IQR: interquartile range; FPG: fasting plasma glucose;
BUN: blood urea nitrogen; SCr: serum creatinine; UA: serum uric acid; TP: total protein; ALB: albumen Lpa: Lipoprotein a; TG: Triglycerides; TC:Total
cholesterol; LDL-C: low density lipoprotein-cholesterol; HDL-C: high density lipoprotein-cholesterol; HOMA-IR:homeostasis model assessment-insulin
resistance; HbAIC: glycosylated hemoglobin; eGFR: estimated glomerular filtration rate; UAIMG: Urinary alphal-microglobulin to creatinine ratio; UACR:
Urinary microalbumin to creatinine ratio; UIGG: Urinary immunoglobulin G to creatinine ratio; UTRF: Urinary transferrin to creatinine ratio; SD: standard
deviation; IQR: interquartile range.

UIGG, and UTRF) by adjusting for likely confounders. As
Table 4 showed, in multivariable linear regression analyses,
InhsCRP was positively associated with the InUAIMG in
all three models (adjusted  in model 3= 0.122, SE =
0.027, P<0.001). LnhsCRP was positively associated with the
InUIGG in model 1 (adjusted 5=0.148, SE=0.038, P<0.001)
and in model 2 (adjusted $=0.135, SE= 0.038, P<0.001)
after adjustment for age and sex, but the association turned
statistically insignificant after adjustment for confounders
in model 3 (adjusted 3= 0.039, SE=0.033, P=0.234). Similar
significant findings were also found in InUTRE Although
InUTRF showed significance for association with InhsCRP in
model 1 (adjusted 3=0.094, SE=0.039, P=0.016) and model
2 (adjusted B=0.081, SE=0.038, P=0.034), these were not
statistically significant for association with InhsCRP in model

3 (adjusted =0.014, SE=0.035, P=0.694). For InUACR, these
were not statistically significant for association with InhsCRP
in all three models.

As Table 4 showed, when hsCRP<3mg/L group was used
as the reference, hsCRP>3mg/L group was independently
associated with InUAIMG in model 1 (adjusted f3=0.452,
SE=0.089, P<0.001), in model 2 (adjusted 3=0.419, SE=0.087,
P<0.001), and in model 3 (adjusted f=0.317, SE=0.078,
P<0.001). For InUIGG, hsCRP>3mg/L group was positively
associated with the InUIGG in model 1 (adjusted 3=0.428,
SE=0.112, P<0.001) and in model 2 (adjusted B=0.389,
SE=0.110, P<0.001) after adjustment for age and sex, but the
association turned statistically insignificant after adjustment
for all confounders in model 3 (adjusted 8 = 0.162, SE= 0.094,
P=0.085). It was worth noting that no positive associations
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TaBLE 2: Clinical and biological characteristics of the patients studied by serum hsCRP group.

. Low hsCRP grou High hsCRP grou
characteristics (hsCRP<3 n%g/L)p (}%SCRP>3mgg /L)p P value
Biological parameters
Case number (Male/ Female) 379(238/141) 141(79/62)
Age (year-old) 58.09+13.15 59.92+10.67 0.333
Duration of T2DM 13.04+5.34 11.75+5.90 0.090
BMI (kg/m?) 24.70+3.20 26.93+3.99 <0.001
Systolic BP (mmHg) 131.19+16.23 130.60+17.81 0.803
Diastolic BP (mmHg) 77.27+11.04 77.71+10.62 0.337
Biochemical and metabolic parameters
hsCRP (mg/L) 0.80(0.40-1.49) 5.50 (4.12-7.96) <0.001
FPG (mmol/L) 7.30(5.76-9.11) 8.13 (6.35-10.41) 0.003
BUN (mmol/L) 5.70(4.60-6.90) 5.40 (4.50-6.60) 0.131
SCr(umol/L) 66.30(54.80-77.90) 61.90(52.25-77.25) 0.314
UA(umol/L) 333.30(283.50-403.50) 353.50(301.15-408.70) 0.166
TP(g/L) 64.72+5.25 65.38+5.38 0.053
ALB(g/L) 40.10(37.90-42.70) 38.80(36.30-40.95) <0.001
LPa (mg/dL) 11.70 (5.20-27.00) 12.60 (4.60-24.30) 0.716
TG (mmol/L) 1.47(1.00-2.21) 1.66 (1.18-2.48) 0.017
TC (mmol/L) 4.22(3.55-5.02) 4.39 (3.70-5.03) 0.234
LDL-C (mmol/L) 2.37(1.84-3.05) 2.57(1.96-3.19) 0.122
HDL-C (mmol/L) 1.06(0.88-1.29) 0.95(0.81-1.14) 0.001
Insulin (fasting)(ulU/mL) 6.75(4.10-11.88) 9.30(5.50-14.50) 0.002
C-peptide (fasting)(ng/mL) 1.60(1.10-2.40) 2.00(1.30-3.00) 0.001
HOMA-IR 2.07(1.19-3.76) 2.79(1.58-5.03) 0.004
HbA1C(%) 8.71+1.87 9.16+1.99 0.024
eGFR (ml/min/1.73m?) 100.19(82.60-113.17) 101.10(80.7-111.657) 0.533
Urinary protein parameters
UAIMG (mg/gCr) 9.47(5.50-17.07) 14.22(7.26-30.99) <0.001
UACR (mg/ gCr) 15.03(7.20-58.83) 19.47 (8.19-57.79) 0.371
UIGG (mg/gCr) 6.21(3.61-10.98) 7.81 (4.65-16.11) 0.001
UTRF (mg/gCr) 3.20(1.90-5.90) 3.50(2.20-8.25) 0.099

Data are shown as mean+SD or median (IQR).

T2DM:type 2 diabetes mellitus; hsCRP: hypersensitive C-reactive protein; BMI:Body mass index; IQR: interquartile range; FPG: fasting plasma glucose;
BUN: blood urea nitrogen; SCr: serum creatinine; UA: serum uric acid; TP: total protein; ALB: albumen Lpa: Lipoprotein a; TG: Triglycerides; TC:Total
cholesterol; LDL-C: low density lipoprotein-cholesterol; HDL-C: high density lipoprotein-cholesterol; HOMA-IR:homeostasis model assessment-insulin
resistance; HbAIC: glycosylated hemoglobin; eGFR: estimated glomerular filtration rate; UAIMG: Urinary alphal-microglobulin to creatinine ratio; UACR:
Urinary microalbumin to creatinine ratio; UIGG: Urinary immunoglobulin G to creatinine ratio; UTRF: Urinary transferrin to creatinine ratio; SD: standard

deviation; IQR: interquartile range.

were observed between hsCRP>3mg/L group and InUACR
in all models when hsCRP<3mg/L group was used as the
reference.

Furthermore, the analyses of multivariable logistic regres-
sion are presented in Table 5. Results showed that the High
hsCRP group (hsCRP>3mg/L) was associated with increasing
risk of high UAIMG (adjusted OR in model 3= 1.610, 95%
CI 1.037-2.499, P=0.034). Similar significant findings were
also found when we analyzed the relation between InhsCRP
and high UAIMG (adjusted OR in model 3= 1.366, 95% CI
1.147-1.626, P < 0.001). However, there were no significant
associations between high hsCRP and high UACR, high

UIGG, or high UTRF in model 2 and model 3 by analysis of
multivariable logistic regression.

4. Discussion

In the present study, higher serum hsCRP levels were asso-
ciated with a higher prevalence and severity of UAIMG in
patients with T2DM. On the other hand, there were no
associations of serum hsCRP levels with the presence of
other urinary protein parameters (UACR, UIGG, and UTRF)
by multivariable linear and logistic regression analysis. To
the best of our knowledge, this is the first report on the
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TABLE 3: The comparison of hsCRP and each urinary protein parameter in different groups.

UAIMG (mg/gCr)

UACR (mg/gCr)

UIGG (mg/gCr)

UTRF (mg/gCr)

Group Case number hsCRP (mg/L)
Group by UAIMG
UAIMG <10(mg/gCr) 254 1.00(0.49-2.80)
UAIMG >10(mg/gCr) 266 1.49(0.60-4.19)
P value P=0.001
Group by UACR
UACR<30(mg/gCr) 334 1.29(0.50-3.19)
UACR>30(mg/gCr) 186 1.32(0.54-3.30)
P value P=0.566
Group by UIGG
UIGG <5(mg/gCr) 190 1.10(0.49-2.70)
UIGG >5(mg/gCr) 330 1.38(0.55-3.82)
P value P=0.052
Group by UTRF
UTRF <1.5(mg/gCr) 81 1.10(0.50-2.42)
UTRF >1.5(mg/gCr) 439 1.30(0.52-3.40)
P value P=0.268

5.78(4.12-7.91)
19.25(14.09-32.85)
P<0.001

8.15(4.81-13.57)
18.54(10.35-35.86)
P<0.001

5.26(3.92-8.37)
15.22(9.13-28.10)
P<0.001

4.30(2.89-8.22)
12.41(7.10-22.94)
P<0.001

9.04(4.98-19.87)
33.07(12.41-178.52)
P<0.001

9.07(5.61-14.56)
103.47(52.24-399.14)
P<0.001

7.52(4.53-11.75)
33.47(12.05-133.04)
P<0.001

7.07(4.39-11.66)
21.70(8.70-74.76)
P<0.001

4.13(3.01-6.30)
11.26(7.08-26.45)
P<0.001

4.79(3.22-7.10)
16.68(9.17-45.42)
P<0.001

3.40(2.66-4.13)
10.09(6.95-20.53)
P<0.001

2.66(2.09-3.67)
7.68(4.77-15.37)
P<0.001

2.30(1.50-3.33)
5.50(3.00-13.05)
P<0.001

2.40(1.60-3.70)
6.65(3.88-21.53)
P<0.001

1.90(1.40-2.50)
4.95(3.40-10.23)
P<0.001

1.20(1.00-1.40)
3.80(2.50-7.10)
P<0.001

Data are shown as median (IQR)
hsCRP: hypersensitive C-reactive protein; UAIMG: Urinary alphal-microglobulin to creatinine ratio; UACR: Urinary microalbumin to creatinine ratio; UIGG:
Urinary immunoglobulin G to creatinine ratio; UTRF: Urinary transferrin to creatinine ratio.

TABLE 4: Multivariate linear regression for effects of serum hsCRP on each urinary protein parameter.

parameters Model 1 Model 2 Model 3
B (SE) P B(SE) P B (SE) P

LnUAIMG

LnhsCRP 0.179 (0.030) <0.001 0.169 (0.029) <0.001 0.122(0.027) <0.001

hsCRP<3mg/L Ref. Ref. Ref.

hsCRP>3mg/L 0.452 (0.089) <0.001 0.419 (0.087) <0.001 0.317(0.078) <0.001
LnUACR

LnhsCRP 0.101 (0.057) 0.080 0.091 (0.057) 0.112 -0.012(0.052) 0.825

hsCRP<3mg/L Ref. Ref. Ref.

hsCRP>3mg/L 0.207 (0.167) 0.216 0.175 (0.167) 0.294 -0.068(0.148) 0.649
LnUIGG

LnhsCRP 0.148(0.038) <0.001 0.135 (0.038) <0.001 0.039(0.033) 0.234

hsCRP<3mg/L Ref. Ref. Ref.

hsCRP>3mg/L 0.428 (0.112) <0.001 0.389 (0.110) <0.001 0.162(0.094) 0.085
LnUTRF

LnhsCRP 0.094 (0.039) 0.016 0.081 (0.038) 0.034 0.014(0.035) 0.694

hsCRP<3mg/L Ref. Ref. Ref.

hsCRP>3mg/L 0.251 (0.113) 0.027 0.212 (0.111) 0.057 0.036(0.099) 0.713

Model 1 univariate analysis

Model 2 adjusted for age and gender
Model 3 adjusted for duration of T2DM, systolic BP, FPG, BUN, TP, ALB, LDL-C, eGFR
hsCRP: hypersensitive C-reactive protein; UAIMG: Urinary alphal-microglobulin to creatinine ratio; UACR: Urinary microalbumin to creatinine ratio; UIGG:

Urinary immunoglobulin G to creatinine ratio; UTRF: Urinary transferrin to creatinine ratio.

relationship of serum hsCRP level and UAIMG in patients
with T2DM.

Recent studies suggest that activation of innate immune
system has an important role in the development of T2DM.
It is known that hyperglycemia stimulates release of inflam-
matory cytokines from different types of cells and leads to
induction and secretion of acute phase reactants such as

hsCRP. Role of hsCRP, extremely sensitive but not specific
marker of inflammation, in the pathogenesis of T2DM is a
subject of extensive investigations [5]. HsSCRP measurements
have been used to be one of inflammation markers. The
serum hsCRP levels in DM patients are known to be higher
than that in healthy populations [11]. Tan et al. have shown
that men with hsCRP concentration higher than 3 mg/L have
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TABLE 5: Multivariate logistic regression for effects of serum hsCRP on each urinary protein parameter.
Model 1 Model 2 Model 3
parameters
OR (95%ClI) P OR (95%CI) p OR (95%CI) p

UAIMG >10(mg/gCr)

LnhsCRP 1.297 (1.128-1.491) <0.001 1.282 (1.112-1.478) 0.001 1.366(1.147-1.626) <0.001

hsCRP<3mg/L Ref. Ref. Ref.

hsCRP>3mg/L 1.576 (1.064- 2.334) 0.023 1.498 (1.005- 2.234) 0.047 1.610(1.037-2.499) 0.034
UACR>30(mg/gCr)

LnhsCRP 1.045 (0.904- 1.207) 0.552 1.032(0.892-1.194) 0.669 1.022(0.876-1.204) 0.797

hsCRP<3mg/L Ref. Ref. Ref.

hsCRP>3mg/L 0.911 (0.594-1.399) 0.670 0.880 (0.571-1.354) 0.561 0.933(0.579-1.505) 0.777
UIGG >5(mg/gCr)

LnhsCRP 1.165 (1.012- 1.342) 0.034 1.138(0.985-1.314) 0.078 1.140(0.977-1.331) 0.096

hsCRP<3mg/L Ref. Ref. Ref.

hsCRP>3mg/L 1.510 (0.996-2.289) 0.052 1.407(0.922-2.147) 0.114 1.478(0.939-2.326) 0.091
UTRF >1.5(mg/gCr)

LnhsCRP 1.117 (0.926-1.348) 0.247 1.072(0.883-1.301) 0.485 1.101(0.899-1.348) 0.352

hsCRP<3mg/L Ref. Ref. Ref.

hsCRP>3mg/L 1.617 (0.901-2.903) 0.107 1.404(0.770-2.558) 0.268 1.547(0.831-2.881) 0.169

Model 1 univariate analysis
Model 2 adjusted for age and gender

Model 3 adjusted for duration of T2DM, systolic BP, FPG, BUN, TP, ALB, LDL-C, eGFR
hsCRP: hypersensitive C-reactive protein; UAIMG: Urinary alphal-microglobulin to creatinine ratio; UACR: Urinary microalbumin to creatinine ratio; UIGG:
Urinary immunoglobulin G to creatinine ratio; UTRF: Urinary transferrin to creatinine ratio.

2.7 larger risk for development of T2DM compared to men
whose CRP value was below 1 mg/L[26].

HsCRP is an acute-phase index of microinflammator
response that can activate the complement system in the
body and enhance the leukocyte phagocytosis by binding to
the chromatin and can play a regulatory role by stimulating
cell activation [2, 27]. Chronic endothelial inflammation is a
major risk factor in the occurring of diabetic complications
and has a pathogenic role in the progression of DN. The
possible mechanisms may be that hsCRP may associate with
DN through involving in the renal inflammation. Proin-
flammatory cytokines have been demonstrated as important
factors in the development of microvascular diabetic com-
plications, such as nephropathy [11, 28]. Previous findings
have shown that hsCRP is an independent risk factor of
obesity and T2DM and hs-CRP is closely related to DN
[2, 29]. As we know, nuclear transcription factor-kappa B
(NF-xB) is active in inflammation and immune responses in
human cells. NF-«xB signaling hs-CRP pathway is reported
to be activated in DN and hsCRP inducing a series of
proinflammatory cytokines through the NF-xB-dependent
mechanism [11, 30].

Results of this study showed that serum hsCRP was
positively correlated with UAIMG by multivariate regression
analysis. Higher hsCRP levels were found in higher UAIMG
group, and higher UAIMG levels were found in higher
hsCRP group. Urinary AIMG was recognized as a marker of
proximal tubular dysfunction over two decades ago, but its
use in clinical research studies was sparse until recent years.
Urinary AIMG was also related to the duration, severity, and
control of diabetes, indicating that it is a good marker of the

severity of renal impairment in T2DM subjects [9, 31, 32].
Urinary AIMG levels were markedly elevated in diabetic
patients when compared with control subjects and correlated
directly with urinary albumin excretion and UACR and
negatively with eGFR [33, 34], indicating the possible clinical
application of urinary AIMG as a complementary marker
for early detection of DN. In addition, the urinary excretion
of AIMG was significantly higher in microalbuminuric in
comparison with normoalbuminuric patients and controls,
indicating tubular damage at an early stage of DN [33-35].
In another study, urinary AIMG was increased in 27.9%
normoalbuminuric type 2 diabetic patients, indicating that
urinary AIMG precedes the onset of albuminuria and may
serve as a marker in early DN [36].

Clinically, urinary excess excretion of albuminuria, IGG,
and TRF are usually markers of glomerular injury, while
urinary AIMG is a sensitive marker for proximal tubular
damage [9, 37-40]. The pathophysiology of albuminuria and
tubulointerstitial damage are considered to be intertwined,
where on one hand the reabsorption of increased amount of
protein from the tubular lumen induces the proinflammatory
and the profibrotic responses in tubular cells while, on the
other hand, the damage of the proximal renal tubules alone
can lead to albumin leak and consequently albuminuria
[39, 41]. The detrimental effects of proteinuria appear to
be mediated both at the glomerulus and in the proximal
tubule, where the protein overload is toxic. In vitro, proximal
tubular cells stimulated with serum proteins (albumin, IgG,
and transferrin) produce a number of profibrotic and proin-
flammatory markers at the basolateral membrane including
endothelin and IL-8, signaling for the recruitment of local



macrophages. High molecular weight proteinuria has also
been associated with proximal tubular cell apoptosis [42, 43].
Currently, there is a debate as to whether early DN in T2DM
may be attributed to the glomerulus or to the proximal tubule
(PT). It is assumed that albuminuria is caused primarily by
impaired tubular uptake of intact albumin rather than by
an increased leakiness of the glomerular filtration barrier.
In previous works performed by us in normoalbuminuric
patients with T2DM, we demonstrated that PT dysfunction
precedes the occurrence of albuminuria and is dissociated
from endothelial dysfunction [1, 34, 36].

In this study, it is interesting that UAIMG excretions had
a significant relationship with serum hsCRP in patients with
T2DM, but UACR, UIGG, and UTRF levels did not show
significant correlation with hsCRP. Although it is not clear
why serum hsCRP levels were positively correlated with the
severity of UAIMG in T2DM, some possible explanations
can be suggested. In response to autonomic dysfunction
promoted by endothelial dysfunction, inflammation, and
oxidative stress, the serum hsCRP level may be increased
compensatorily. Physiologically, AIMG is involved in the
defense against oxidative tissue damage [44]. Oxidative stress
and increased inflammation play a key role in DN devel-
opment. Chronic hyperglycemia enhances reactive oxygen
species (ROS) production which causes the damage of the
glomerular filtration barrier integrity, leading to albumin
leakage, which can with ROS in the tubular ultrafiltrate
further activate a variety of aberrant signaling pathways to
cause overall renal function deterioration [9, 45].

Clinically, “microalbuminuria” is still accepted as an early
biomarker of glomerular damage; some studies have also
explored the relationship between hsCRP and UACR, but the
conclusions are controversial [17]. In 2002, Stehouwer et al.
[46] reported for the first time that CRP levels were associated
with a subsequent increment in urinary microalbumin levels
in patients with diabetes. Navarro et al. [47, 48] studied
patients with type 2 diabetes and revealed that CRP levels
were high in patients with microalbuminuria compared with
those with normoalbuminuria. However, Schalkwijk et al.
[49] reported they did not observe a significant difference
in CRP levels between those with microalbuminuria and
macroalbuminuria.

In our study, we found a significant relation of serum
hsCRP with UAIMG, which suggested the proximal tubule is
an important link in the development of DN. This association
raises the possibility that renal tubular function defects pre-
cede the onset of microalbuminuria. Similar data have been
provided by several studies performed in normoalbuminuric
patients with type 2 DM, with increased levels of urinary
alphal-microglobulin [32, 36, 50], and showed that tubular
functional defects precede the onset of albuminuria. Results
of some studies showed that diabetic tubulopathy is an
emerging entity that explains the occurrence of albuminuria
in the early stages of diabetic nephropathy as a result
of the impaired tubular reabsorption of albumin, rather
than of its increased glomerular filtration [51-53]. Fu et al.
[54] suggested that there is a link between the glomerular
functional changes and the tubular damage: the glomeru-
lar hyperfiltration, which characterizes the early stages of
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diabetic nephropathy, could be a trigger for the proximal
tubule dysfunction.

The strengths of the present study are that it is the first
report on the association of serum hsCRP and UAIMG in
patients with T2DM. Nevertheless, this study has several
limitations. First, the sample size was small and from a single
center. The cross-sectional nature of the study prevented
the analysis of the associations between biomarkers and
response to therapy. In addition, each patient’s data came
from the retrospective analysis of the patients test at the
time of admission, although the quality control of each index
of the whole test system is within the controllable range,
which may introduce some bias. Second, only a limited
panel of biomarkers was assessed, and additional markers
could be explored, such as tumor necrosis factor a (TNF-
a), neutrophil gelatinase-associated lipocalin (NGAL), and
interleukin (IL)-6[1, 17, 55]. Third, we did not have access
to serum concentrations of AIMG, and, therefore, we cannot
exclude the possibility that higher serum levels in susceptible
individuals contributed to our observations. Finally, although
we adjusted for multiple potential confounders, the possibil-
ity of residual confounding exists for our associations of urine
UAIMG with hsCRP.

5. Conclusions

In conclusion, this present study suggests that serum hsCRP
levels independently associate with UAIMG in patients with
T2DM. The study highlighted the importance of hsCRP and
UAIMG and is beneficial to the early diagnosis of renal
injury. Future prospective studies with a larger sample size are
required to explore the function of hsCRP and to establish
a direct relationship between serum hsCRP levels and the
UAIMG in development and treatment of T2DM.
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