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ABSTRACT The Horned Lark (Eremophila alpestris) is a small songbird that exhibits remarkable geographic
variation in appearance and habitat across an expansive distribution. While E. alpestris has been the focus of
many ecological and evolutionary studies, we still lack a highly contiguous genome assembly for the
Horned Lark and related taxa (Alaudidae). Here, we present CLO_EAlp_1.0, a highly contiguous assembly
for E. alpestris generated from a blood sample of a wild, male bird captured in the Altiplano Cundiboyacense
of Colombia. By combining short-insert and mate-pair libraries with the ALLPATHS-LG genome assembly
pipeline, we generated a 1.04 Gb assembly comprised of 2713 scaffolds, with a largest scaffold size of
31.81 Mb, a scaffold N50 of 9.42 Mb, and a scaffold L50 of 30. These scaffolds were assembled from
23685 contigs, with a largest contig size of 1.69 Mb, a contig N50 of 193.81 kb, and a contig L50 of
1429. Our assembly pipeline also produced a single mitochondrial DNA contig of 14.00 kb. After
polishing the genome, we identified 94.5% of single-copy gene orthologs from an Aves data set and
97.7% of single-copy gene orthologs from a vertebrata data set, which further demonstrates the high
quality of our assembly. We anticipate that this genomic resource will be useful to the broader ornithological
community and those interested in studying the evolutionary history and ecological interactions of larks, which
comprise a widespread, yet understudied lineage of songbirds.
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The Horned Lark (Eremophila alpestris) is a widespread species of
songbird that occupies grasslands, tundras, deserts, and other sparsely
vegetated habitats on five continents (Beason 1995). As is characteristic
of most species in the family Alaudidae, E. alpestris is a terrestrial
species that nests on the ground and relies on camouflage to avoid
predation by avian predators (Donald et al. 2017). The Horned
Lark has been studied extensively in terms of geographic variation
and systematics (Behle 1942; Johnson 1972), population genetics

(Drovetski et al. 2006, 2014; Mason et al. 2014; Ghorbani et al. 2019),
physiological adaptations (Trost 1972), breeding biology (de Zwaan et al.
2019), and responses to human activity, such as agriculture (Mason and
Unitt 2018) and wind energy (Erickson et al. 2014), among other focal
areas. Despite extensive past and ongoing research involving E. alpestris
and other alaudids, we lack a highly contiguous reference genome for the
species and the family as a whole (but see Dierickx et al. 2019). Generating
genomic resources for the Horned Lark and related taxa will enable
studies linking phenotypic and genetic variation (Kratochwil and Meyer
2015; Hoban et al. 2016), chromosomal rearrangements (Wellenreuther
and Bernatchez 2018), and many other avenues of future genomic
research for non-model organisms (Ellegren 2014).

Here, we describe CLO_EAlp_1.0, a new genomic assembly that
we built with DNA extracted from a wild, male lark captured from a
demographically small and geographically isolated population near
Toca, Boyacá, Colombia. We sampled this individual and population
because it had high a priori likelihood of high homozygosity compared
to larks elsewhere with much larger effective population sizes and vari-
able patterns of connectivity to adjacent populations. To generate this
de novo assembly,we used theALLPATHS-LGpipeline (Butler et al. 2008;
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Gnerre et al. 2011). Given the lack of genomic resources currently avail-
able for Alaudidae, we hope this de novo assembly will inspire and facil-
itate future studies on the genomic biology of larks—awidespread, diverse
lineage of songbirds.

MATERIALS AND METHODS

Sample collection, DNA extraction, and sequencing
We captured a male E. alpestris (EALPPER07; NCBI BioSample
SAMN12913182) approximately 170 km NE of Bogotá, Colombia
near the town of Toca on the shores of the Embalse de La Copa
in the Altiplano Cundiboyacense of the Boyacá department
(5.623299, -73.184156). This population is small and represents a sub-
species (E. a. peregrina) that is geographically isolated from other pop-
ulations of larks, the nearest population of which is in Oaxaca, Mexico.
The Colombian subspecies of Horned Lark likely underwent a popu-
lation bottleneck upon colonizing the distant, high-elevation plateaus
of the Altiplano Cundiboyacense region and therefore probably has
high homozygosity compared to other populations, which is preferable
for de novo genome assembly. We collected blood from the brachial
vein, from which we subsequently extracted genomic DNA with a
Gentra Puregene Blood Kit (Qiagen, Hilden, Germany) following
the manufacturer’s protocol. We confirmed the sex of the individual
using PCR amplification (Chu et al. 2015). After running the sample
on a 1% agarose gel to confirm the presence of high molecular
weight DNA, we sent the extraction to the Cornell Weil Medical
School (New York, USA), where they generated a 180 bp fragment
library, a 3 kb mate-pair library and a 8 kb mate-pair library. We
sequenced the 180 bp library across two lanes and combined the
3 kb and 8 kb mate-pair libraries on another lane of Illumina HiSeq
2500 to perform 100 bp paired-end sequencing.

Genome assembly, polishing, and assessment
We assembled the genome with ALLPATHS-LG v52415 (Butler et al.
2008; Gnerre et al. 2011). We did not perform additional adapter re-
moval or quality filtering with the short-insert 180 bp libraries because
ALLPATHS-LG has built-in steps that remove low-quality and
adapter-contaminated reads (Butler et al. 2008). Once the initial
assembly had finished, we aligned the short-insert and mate-pair
libraries back to the assembly genome using bwa 0.7.17-r1188
(Li and Durbin 2009) and samtools v1.9 (Li et al. 2009) and then
performed three iterations of scaffold polishing using pilon v1.22
(Walker et al. 2014) with default parameters. Once scaffold polish-
ing had finished, we ordered and correspondingly renamed the
scaffolds with respect to decreasing scaffold size using SeqKit
v0.7.2 (Shen et al. 2016). We assessed the contiguity of the de novo
genome using the function stats.sh from BBMap v38.73 (Bushnell
2014) and estimated genome completeness with BUSCO v3 (Simão et al.
2015; Waterhouse et al. 2018) alongside HMMER v3.1b2 (Finn et al.
2011) and BLAST+ v2.7.1 (Camacho et al. 2009) to identify single-copy
orthologous gene sets among birds and vertebrates. We subsequently
submitted our genome to the NCBI genome submission portal, which
performs an additional scan for contaminants, including adapter
contamination, and removed any additional contaminant sequences
that were detected.

Mitochondrial genome assembly
We also assembled the mitochondrial genome for the same individual
(EALPPER07) with NOVOplasty v3.7 (Dierckxsens et al. 2017) using a
ND2 sequence (GenBank Accession KF743558) from a previous study
(Mason et al. 2014) as the initial seed to begin the assembly process.

Data availability
Rawoutput fromsequencing runsand thefinal assembly,CLO_EAlp_1.0,
are available fromNCBI (BioProject PRJNA575884). Short-fragment and
mate-pair libraries are also available from the NCBI SRA (SUB6392689).
Outputs from BUSCO and BBMap analyses are available from
figshare (https://doi:10.6084/m9.figshare.9956063; https://doi:10.6084/
m9.figshare.9956042). Supplemental material available at figshare:
https://doi.org/10.25387/g3.9992360.

RESULTS AND DISCUSSION
Taken together, the three lanes of Illumina HiSeq 2500 sequencing
generated 1.59 · 109 total reads (�134x estimated coverage of a 1.2 Gb
genome), including 5.45 · 108 paired-end reads for the 180 bp short-
insert libraries, 1.24 · 108 paired-end reads for the 3 kb mate-pair
library, and 1.27 · 108 paired-end reads for the 8 kb mate-pair library.
Following scaffold polishing, the finalized CLO_EAlp_1.0 assembly
consisted of 2713 scaffolds that totaled 1.04 Gb. The largest scaffold
was 31.81Mb while the scaffold N50 was 9.42Mb and scaffold L50 was
30 (Table 1). The assembly consisted of 23,684 contigs, including a
largest contig size of 1.69 Mb, a contig N50 of 193.81 kb, and a contig
L50 of 1429. The average GC content of the assembly was 42.23%,
which is similar to other birds (Jarvis et al. 2014; Botero-Castro
et al. 2017), while the de novo genome assembly included 94.5% of
single-copy orthologs from the Aves data set and 97.7% of the
Vertebrata data set as identified by BUSCO (Table 2). The mito-
chondrial assembly pipeline generated a single mtDNA contig
of 14 kb.

We opted not to assemble pseudochromosomes by aligning our
de novo genome to an existing chromosome-level genome assembly
(e.g., Zebra Finch (Taeniopygia guttata). While birds generally exhibit
strong synteny (Derjusheva et al. 2004), avian sex chromosomes and
microchromosomes are often comprised of extensive rearrangements
(Volker et al. 2010). Our assembly could be further improved such that
scaffolds match full chromosomes through strategies such as Hi-C
(Burton et al. 2013) or ultra-long read sequencing technology

n■ Table 1 De novo genome assembly metrics estimated using
BBMap

Assembly Statistic CLO_EAlp_1.0

# scaffolds / contigs 2713 / 23684
Largest scaffold / contig 31.81 Mb / 1.69 Mb
Total length 1.04 Gb
Scaffold / contig N50 9.42 Mb / 193.81 kb
Scaffold / contig N90 1.20 Mb / 31.02 kb
Scaffold / contig L50 30 / 1429
Scaffold / contig L90 141 / 6205
# N’s per 100 kbp 3472.35
GC (%) 42.23

n■ Table 2 Output from BUSCO analyses to assess genome
completeness by searching for single-copy orthologs from aves
and vertebrata datasets

Aves Vertebrata

Complete BUSCOs 4645 (94.5%) 2530 (97.7%)
Complete and single-copy BUSCOs 4590 (93.4%) 2518 (97.4%)
Complete and duplicated BUSCOs 55 (1.1%) 12 (0.5%)
Fragmented BUSCOs 162 (3.3%) 36 (1.4%)
Missing BUSCOs 108 (2.2%) 20 (0.7%)
Total BUSCO groups searched 4915 2586
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(Ma et al. 2018). Functional annotation of our assembly could also be
improved by generating RNA-Seq and protein libraries specifically
for larks. Nonetheless, CLO_EAlp_1.0 represents a large step forward
toward leveraging the natural history of larks and advanced sequenc-
ing technology to further understand avian biology.
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