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A B S T R A C T   

Backfat thickness (BT) and intramuscular fat (IMF) content are closely appertained to meat 
production and quality in pig production. Deposition in subcutaneous adipose (SA) and IMF 
concerns different genes and regulatory mechanisms. And larger studies with rigorous design 
should be carried to explore the molecular regulation of fat deposition in different tissues. The 
purpose of this study is to gain a better understanding of the molecular mechanisms underlying 
differences in fat deposition among different tissues and identify tissue-specific genes involved in 
regulating fat deposition. The SA-associated datasets (GSE122349 and GSE145956) and IMF- 
associated datasets (GSE165613 and GSE207279) were downloaded from the Gene Expression 
Omnibus (GEO) as the BT and IMF group, respectively. Subsequently, the Robust Rank Aggre-
gation (RRA) algorithm identified 27 down- and 29 up-regulated differentially expressed genes 
(DEGs) in the BT group. Based on bioinformatics and three machine learning algorithms, four SA 
deposition-related potential biomarkers, namely ACLY, FASN, ME1, and ARVCF were selected. 
FASN was evaluated as the most valuable biomarker for the SA mechanism. The 18 down- and 34 
up-regulated DEGs in the IMF group were identified, and ACTA2 and HMGCL were screened as 
the IMF deposition-related candidate core genes, especially the ACTA2 may play the critical role 
in IMF deposition regulation. Moreover, based on the constructed ceRNA network, we postulated 
that the role of predicted ceRNA interaction network of XIST, NEAT1/miR-15a-5p, miR-16-5p, 
miR-424-5p, miR-497-5p/FASN were vital in the SA metabolism, XIST, NEAT1/miR-27a/b-3p, 
181a/c-5p/ACTA2 might contribute to the regulation to IMF metabolism, which all gave sug-
gestions in molecular mechanism for regulation of fat deposition. These findings may facilitate 
advancements in porcine quality at the genetic and molecular levels and assist with human 
obesity-associated diseases.   

1. Introduction 

Fat deposition and distribution are closely related to meat quality and flavor. Backfat thickness (BT) and intramuscular fat (IMF) 
content are two vital traits related to fat deposition. IMF content affects meat quality traits such as pH, meat color, tenderness and 
flavor, while BT is also associated with pork quality traits and economic value [1]. A decrease in BT is beneficial for an increase in lean 
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Table 1 
Details of all datasets.  

Group GEO Platform Tissue (pig) Index Breeds Samples (number) Attribution 

low group high group Total 

BT group GSE122349 GPL21186 Dorsal subcutaneous fat Backfat thickness Pulawska pigs (low/high-BT) 8 8 16 Test 
GSE145956 GPL11429 Dorsal subcutaneous fat Backfat thickness Bísaro pigs(low-BT), Alentejano pigs(high-BT) 4 4 8 Test 
GSE61271 GPL19176 Subcutaneous fat Obesity Index F2 population of Duroc × Göttingen minipig intercross (lean and obesity pigs) 12 12 24 Validation 

IMF group GSE165613 GPL22475 longissimus dorsi muscle Phenotypes (BT,IMF) Nanyang black pigs (low/high-fat deposition group) 3 3 6 Test 
GSE207279 GPL22475 longissimus dorsi muscle Intramuscular fat content Laiwu pigs(low/high-IMF) 3 3 6 Test 
GSE180840 GPL22918 longissimus dorsi muscle – Luchuan pigs (obese pig), Duroc boars (lean pig) 3 3 6 Validation  
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percentage, and an increase in IMF content contributes to palatability and meat quality [2]. Therefore, how to increase IMF content 
while reducing subcutaneous adipose (SA) deposition is a key issue for meat quality regulation in pig breeding. Moreover, pigs and 
humans share a high degree of homology in genome sequence and chromosome structure, as well as greater similarities in physio-
logical characteristics. Pigs are often used as an optimal biomedical model for the study of obesity and metabolic-related diseases [3,4]. 
Through relevant research, we may provide a new theoretical basis for health problems, and also make pigs more medically useful. 

Fat deposition is a dynamic process that includes the operations of fat synthesis, decomposition, and transportation [5]. The 
increasing number of studies has revealed that the relative development of fat deposition differs between SA and IMF. It was found that 
subcutaneous adipocytes were stronger than intramuscular adipocytes in terms of fat differentiation and deposition by comparing 
primary differentiated adipocytes of SA and IMF in pigs [6]. SA is a major fat type. It is not only a major energy storage organ but also a 
main endocrine organ. SA plays an essential role in many biological and physiological processes, such as regulating body temperature, 
energy balance, insulin sensitivity, inflammatory response and cardiovascular response [7]. IMF content has a high impact on various 
meat quality characteristics. The IMF proliferation rate hinges on the rate of muscle growth. For instance, animals with high 
muscularity are usually active in glycolysis, which exhibits a reduced development of IMF [8]. IMF has a lower growth rate and lipid 
content than SA [9]. Furthermore, the subcutaneous and intramuscular adipocytes have specific regulatory mechanism for fat 
deposition during differentiation owing to different ways of generating lipid droplets [10]. Levels of gene expression in distinct tissues 
can regulate different biology, indicating that they have different functions, such as RETREG1 plays an inhibitory role in IMF depo-
sition, but previous studies have identified that it could promote SA deposition [11]. Identifying gene-specific expression patterns in 
different tissues is useful in the understanding of molecular regulation mechanisms or characteristics assessment for fat deposition and 
meat quality. However, the intrinsic molecular mechanisms underlying fat deposition in different tissues remain incompletely 
elucidated, and more research is needed to perform deeper understanding and to explore more tissue-specific regulatory factors. 

With the widespread application of high-throughput sequencing technology, numerous key genes and pathways related to SA and 
IMF are also being discovered [11,12]. In addition, data re-mining using bioinformatics analysis and machine learning algorithms 
based on public databases has facilitated the screening of potential biomarkers for economic traits in pigs [13,14]. In particular, 
machine learning algorithms, as a new high-dimensional data analysis method, have shown great promise in predicting the accuracy of 
trait-related biomarkers [15]. Although a series of experiments have been performed to identify the differences in SA and IMF 
deposition in pigs, the sample size of each experiment was limited in these studies. Therefore, by merging the related datasets with 
similar experiments to increase the sample size is an optional method to gain more accuracy and effectiveness for the related studies 
with bioinformatics analysis and machine learning algorithms. 

Therefore, in this study, the SA-associated datasets GSE122349 and GSE145956 and the IMF deposition-associated datasets 
GSE165613 and GSE207279 were analyzed separately by robust rank aggregation (RRA) method. Moreover, we further explored the 
potential mechanism of fat deposition of SA and IMF through functional enrichment and protein-protein interaction (PPI) analysis. 
Then, the potential tissue-specific biomarkers related to fat deposition were screened by bioinformatics and three machine learning 
methods, and were subjected to real-time PCR analysis for further validation. Moreover, the ceRNA networks was constructed based on 
the interaction relationship between the predicted miRNAs, IncRNAs, and screened tissue-specific biomarkers to further explore the 
potential molecular mechanism. The objective of this study was to identify crucial tissue-specific genes associated with fat deposition 
and investigate their intrinsic mechanisms. Our findings extend the reports of single tissue type studies, and add support to the previous 
literature investigating associations between fat deposition in different tissues and specific molecular regulation mechanism. Our study 
may provide more targeted rationale for understanding the regulatory mechanisms of fat deposition in SA and IMF, and develop 
effective potential tissue-specific biomarkers for optimizing pig fat deposition and treating lipid metabolism-related diseases. 

2. Materials and methods 

2.1. Gene expression data processing 

Six transcriptome-wide gene expression profiles were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). 
The data of GSE122349, GSE145956 and GSE61271 were derived from SA, the pigs were divided into the low- and high-BT groups 
according to the BT, and GSE61271 was used to validate the expression of the selected genes. GSE165613, GSE207279 and GSE180840 
were derived from LDM, the pigs were divided into the low- and high-IMF groups based on the IMF content, and GSE180840 was used 
as a validation dataset. Details of all datasets are shown in Table 1. 

2.2. Datasets analysis 

The differentially expressed genes (DEGs) between the low- and high-BT group and the low- and high-IMF group were identified 
using the “limma” package based on R software (version 4.1.2) [16]. The genes with P value < 0.05 and |log2 FC| > 1 were considered 
significant DEGs. The expression level and distribution of DEGs were visualized using a heatmap and a volcano plot based on the 
“heatmap” and “ggplot2” packages (versions 3.3.6), respectively. 

2.3. RRA analysis 

The robust rank aggregation (RRA) method, which takes the intersection of multiple sequenced gene sets to screen out the genes 
that exhibit differences and rank high in each dataset, was utilized to integrate and analyze SA deposition-related datasets 
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(GSE122349, GSE145956) and IMF deposition-related datasets (GSE165613, GSE207279) to obtain the common DEGs based on 
“RRA” package [17]. Genes with P value < 0.05 and |log2 FC| > 0.5 in the ranking list were considered as robust DEGs. 

2.4. Merging of the datasets 

The SA deposition-related gene expression datasets were merged into a new dataset as BT group, which was corrected for batch 
effects via the “sva” R package [18]. The IMF deposition-related gene expression datasets were combined as the IMF group for sub-
sequent studies. 

2.5. Functional enrichment analysis 

The gene ontology (GO) analysis was performed using the R “clusterProfiler” package (version 4.4.4) in the Bioconductor project 
(version 3.15) to conduct large-scale functional enrichment, including BP, MF and CC analyses. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis was performed by the KOBAS (http://kobas.cbi.pku.edu.cn/). Functional terms with P 
value < 0.05 were considered to significantly change, and the top 10 GO functional terms were visualized using the ggplot2 package, 
and the top 10 KEGG terms were visualized using the Sangerbox online tool (http://sangerbox.com/). To further investigate the 
biological function of individual genes, Gene set enrichment analysis (GSEA) was performed via the “clusterProfiler” package and 
“GSEABase” (version 1.58.0) R software, and enrichment terms with statistically significant differences were visualized using the 
“enrichplot” package (version 1.16.1). 

2.6. PPI network construction and hub genes identification 

The interactive relationships among the protein-coding DEGs were elucidated though the STRING database (https://cn.string-db. 
org/) by constructing the PPI network and visualized by Cytoscape software (version 3.9.1). Hub genes were identified using the 
Maximal Clique Centrality (MCC) method in the Cytoscape plugin cytoHubba [19], and the top 10 genes with the highest score were 
selected as hub genes. The correlation of the hub genes was then analyzed and visualized by the Pearson analysis through the online 
website Sangerbox. 

2.7. Screening of potential biomarkers based on machine learning algorithms 

Three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) [20], support vector 
machine-recursive feature elimination (SVM-REF) [21] and Random Forest machine learning algorithm [22], were used to screen for 
biomarkers among the top 10 hub genes identified in the PPI network. First, the “glmnet” R package was utilized for proceeding with 
the analysis of the LASSO [23]. Then, the “e1071” R package was utilized for performing the SVM-REF [24]. Meanwhile, the “ran-
domForest” R package was utilized for proceeding with the Random Forest machine learning [25], and the five most significant genes 
were retained for the following analysis. The overlapping genes produced by the three machine learning algorithms were considered as 
potential biomarkers. GSEA of the potential biomarkers was then done to further explore their possible biological functions. 

2.8. Validation and predictive evaluation of the potential biomarkers 

The predictive effect of the potential biomarkers was further validated in the SA deposition-related dataset GSE61271 and IMF 
deposition-related dataset GSE180840. Firstly, the unpaired t-test method was used for analyzing the expression levels of potential 
biomarkers in the validation dataset, with a P value < 0.05 considered significant. Subsequently, ROC analysis was performed in the 
validation sets, and the area under curves (AUC) values were calculated using GraphPad Prism 8 to evaluate whether potential bio-
markers had good distinguishing performance. The biomarker with an AUC ＞ 0.7 was considered a potential biomarker. 

2.9. Construction of potential TF-biomarker regulatory network 

TFs of potential biomarkers were predicted using the online database UCSC and JASPAR 2022(https://genome.ucsc.edu/) (the 
screening condition of minimum score: 500), Human TFDB 3.0 (http://bioinfo.life.hust.edu.cn/HumanTFDB#!/). The co-expression 
networks of the predicted TFs and potential biomarkers were then visualized through the Cytoscape software (version 3.9.1). 

2.10. Construction of ceRNA network 

The prediction of lncRNAs and miRNAs targeting the hub genes were performed to established the lncRNA-miRNA-mRNA ceRNA 
network, and the ceRNA network was constructed based on the ceRNA hypothesis, whereby LncRNAs act as miRNA sponges to 
indirectly modulate mRNA expression by directly binding to miRNAs [26]. To start, the miRNAs for the hub genes were predicted using 
the databases, miRanda [27], TargetScan [28]. Then, the co-expression of miRNA and lncRNA was researched according to these 
predicted miRNAs. Finally, the ceRNA network was constructed based on above co-expression results, and visualized using the 
Cytoscape software. 
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2.11. Animals and tissue collection 

Two types of pig breeds, Saba (fat type) and Large White (lean type) were used to validate the potential biomarkers, which Saba pig 
was an indigenous breed in Yunnan, China. Due to the diverse grouping of experimental animals in the dataset we used, including 
extremely different BT and IMF comparisons within the same breeds, as well as comparisons between different breeds, the pigs used for 
validation were grouped in two ways. For the validation of SA deposition-related biomarkers, six Saba pigs (three with extremely high 
and three with extremely low BT), three Saba pigs (fat pig with high BT) and three Large White pigs (lean pig with low BT) were used; 
six Saba pigs (three with extremely high and three with extremely low IMF content), three Saba pigs (fat pig with high IMF) and three 
Large White pigs (lean pig with low IMF) were used for the validation of biomarkers related to IMF deposition. All of the pigs were 
raised to 100–110 kg under identical environmental and feeding conditions, and then slaughtered. The dorsal SA and LDM samples 
were collected from the carcasses at slaughter, snap frozen in liquid nitrogen and maintained at − 80 ◦C until total RNA extraction, 
some LDM were stored at − 20 ◦C for determination of IMF content by the Soxhlet extraction method. BT was measured based on the 
average of three measurements including BT over the thickest part of the shoulder, at the last rib and at the sacrum part of the spine 
using vernier calipers. All animal procedures were performed according to the principles of the Laboratory Animal Care and Use 
Guidelines issued by the Animal Research Committee of Yunnan Agricultural University, the experimental protocol was approved by 
the Animal Ethics Committee of Yunnan Agricultural University (approval ID: 202310003). 

2.12. RNA extraction and qRT-PCR 

Total RNA was extracted from dorsal SA and LDM samples using RNA sample total Extraction Kit (Tiangen, Beijing, China). Reverse 
transcription was performed using PrimeScript™ RT reagent Kit with gDNA Eraser (Takara, Dalian, China) according to the manu-
facturer’s instructions. qRT-PCR assay was performed using TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) (Takara, Dalian, China) 
on a qRT-PCR system (Mx3000P, Agilent Technologies). The gene-specific qRT-PCR primers were listed in Supplementary Table S1. 
Each experiment was performed in triplicates, and the relative expression of mRNA was calculated through the 2− ΔΔCt method, GAPDH 
was used as the internal control for normalization. Relative mRNA expression levels were compared by unpaired t-test using SAS 
software (version 9.2), and P < 0.05 and P < 0.01 were considered significant and extremely significant, respectively. 

Fig. 1. Distribution and volcanogram of DEGs of the test datasets. (A, C) GSE122349. (B, D) GSE145956. (E, G) GSE165613. (F, H) GSE207279.  
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3. Results 

3.1. DEGs identification 

The GSE122349 dataset contained 552 DEGs, including 149 up- and 403 down-regulated genes (Supplementary Table S2). The 
GSE145956 dataset contained 284 DEGs, including 131 up- and 153 down-regulated genes (Supplementary Table S3). The GSE165613 
dataset contained 1190 DEGs, including 936 up- and 254 down-regulated genes (Supplementary Table S4). The GSE207279 dataset 
contained 132 DEGs, including 69 up- and 63 down-regulated genes (Supplementary Table S5). The DEGs of the SA deposition-related 
datasets GSE122349 and GSE145956 were shown in Fig. 1A and B, and the heatmap of the DEGs were shown in Fig. 1C and D. The 
DEGs of the IMF deposition-related datasets GSE165613 and GSE207279 were shown in Fig. 1E and F, and the heatmap of the DEGs 
were shown in Fig. 1G and H. 

Then, 56 integrated DEGs in the BT group, comprising 29 up- and 27 down-regulated genes, were identified by the RRA method 
based on SA deposition-related datasets as shown in Supplementary Table S6, and the top 20 DEGs (10 up- and 10 down-regulated) 
were shown in Fig. 2A. The 52 integrated DEGs of the IMF group, consisting of 34 up- and 18 down-regulated genes, were identified 
based on the IMF deposition-related datasets as shown in Supplementary Table S7, and the top 20 DEGs were shown in Fig. 2B. No 
overlapping DEGs between the BT and the IMF groups were found. 

3.2. Functional analysis of DEGs 

In the BT group, GO analysis of DEGs from low- and high-BT pigs showed that 52 biological processes (BPs), 7 cellular components 
(CCs), and 22 molecular functions (MFs) were significantly enriched (P < 0.05) (Supplementary Table S8). KEGG enrichment analysis 
revealed 12 significantly enriched pathways (P < 0.05) (Supplementary Table S9). The top 10 GO and KEGG terms with the smallest P 
values are shown in Fig. 3A and C. GO functional enrichment analysis revealed that DEGs were mainly involved in carboxylic acid 
metabolic/biosynthetic process, oxoacid metabolic process, organic acid metabolic/biosynthetic process, fatty acid biosynthetic 
process and cardiac muscle contraction. KEGG pathway analysis revealed that DEGs were significantly enriched in metabolic 

Fig. 2. The heatmap of top 20 DEGs (10 up- and 10 down-regulated) according to RRA method. (A) BT group. (B) IMF group. As the color goes from 
red to green, indicating the change from up to down regulation. Figure 0 represent genes with no statistical significance in one of the datasets, but it 
can be reflected in another using the RRA method. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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pathways, PPAR signaling pathway, ECM-receptor interaction, carbon metabolism and AMPK signaling pathway. 
In the low-vs. high-IMF comparison, GO analysis of DEGs from low- and high-IMF pigs showed that 164 BPs, 12 CCs, and 20 MFs 

were significantly enriched (Supplementary Table S10). KEGG enrichment analysis showed 14 significantly enriched pathways 
(Supplementary Table S11). The top 10 GO and KEGG terms are shown in Fig. 3B and D. GO functional enrichment analysis showed 
that DEGs were mainly involved in the negative regulation of lipid metabolic process, regulation of lipid metabolic process, Rac protein 
signal transduction, regulation of bone remodeling, lipid catabolic process, regulation of tissue remodeling and negative regulation of 
protein modification process. KEGG pathway analysis revealed that DEGs were significantly enriched in metabolic pathways, fatty acid 
elongation/metabolism, biosynthesis of unsaturated fatty acids, valine, leucine and isoleucine degradation and carbon metabolism. 

3.3. PPI network construction and hub genes identification 

From the BT group, 56 integrated DEGs were analyzed via the STRING online database to construct a PPI network consisting of 17 
nodes and 16 edges, as shown in Fig. 3E. And the top 10 genes with the highest MCC scores were identified as hub genes, which were 
shown in Fig. 3G. The GO analysis revealed that 10 hub genes were primarily enriched in the secretory granule, oxidation-reduction 
process (Fig. 3I–Supplementary Table S12). KEGG terms were enriched in metabolic pathways, fatty acid metabolism, PPAR signaling 
pathway, carbon metabolism and AMPK signaling pathway were intimately related to the fat metabolism process 
(Fig. 3K–Supplementary Table S12). Subsequently, the intersection of the 10 hub genes and the merge dataset in the BT group revealed 
that only seven genes (SCD, ACLY, ME1, FASN, HK2, ARVCF and TXNRD2) were obtained as hub genes for the following analysis. 
Finally, correlation analysis showed a significant positive correlation between the expression levels of ACLY, ME1, FASN and HK2 
(Fig. 3M). 

In the low-vs. high-IMF comparison, an interaction network of 52 integrated DEGs, consisting of 17 nodes and 16 edges, was 
constructed as shown in Fig. 3F. And the top 10 genes with the highest MCC scores were identified as hub genes, which were shown in 
Fig. 3H. The GO analysis revealed that 10 hub genes were primarily enriched in the mitochondrion organization, lipid metabolic 

Fig. 3. Hub genes identification and analysis. (A, C) Go and KEGG enrichment of DEGs in BT group. (B, D) Go and KEGG enrichment of DEGs in IMF 
group. (E) PPT network in BT group. (F) PPT network in IMF group. (G) Ten hub genes from PPT network based on MCC in BT group. (H) Ten hub 
genes in IMF group. (I, K) Go and KEGG enrichment of hub genes in BT group. (J, L) Go and KEGG enrichment of hub genes in IMF group. (M–N) 
Correlation matrixes of hub genes in BT group and IMF group. 
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process (Fig. 3J–Supplementary Table S13). Also, KEGG analysis showed that hub genes were enriched in valine, leucine and 
isoleucine degradation, peroxisome, carbon metabolism, apelin signaling pathway and metabolic pathways (Fig. 3L–Supplementary 
Table S13). Subsequently, the intersection of the 10 hub genes and the merge dataset in the IMF group was found to be obtained for 
nine genes (CEBPA, ELOVL6, PLIN1, CIDEC, CAST, ACTA2, CREM, HMGCL and PCCB) as hub genes for the following analysis. Finally, 
the correlation analysis showed a significant positive correlation between the expression levels of CEBPA, ELOVL6 and PLIN1 genes. In 
addition, the expression level of ACTA2 showed a negative correlation with that of CAST and a positive correlation with that of PCCB 
(Fig. 3N). 

3.4. Screening and verification of potential biomarker 

From the merged dataset in the BT group, machine learning approach was utilized to further investigate potential biomarkers 
associated with SA deposition in the hub genes. The LASSO regression algorithm yielded four potential candidate biomarkers (Fig. 4A). 
SVM–REF analysis revealed that the model incorporating seven genes had the best accuracy (Fig. 4B). In addition, the Random Forest 
algorithm ranked the genes based on the calculation of the importance of each gene (Fig. 4C). Finally, the intersection of the four 
potential candidate genes from LASSO, seven potential candidate genes from SVM-REF and the top five most important genes from the 
Random Forest was visualized via the Venn diagram, yielding ACLY, FASN, ME1 and ARVCF in the BT group as SA deposition-related 
potential biomarkers (Fig. 4D). We then used a validation set, GSE61271, as an independent dataset to validate the SA deposition- 
related potential biomarkers obtained above for reliability. As shown in Fig. 4I-L, only FASN showed significantly higher expres-
sion in the high-BT pigs. Meanwhile, the validation dataset GSE61271 was also used to validate the effectiveness of ACLY, FASN, ME1 
and ARVCF by ROC analysis, the AUCs of ACLY, FASN, ME1 and ARVCF were 0.61, 0.75, 0.68 and 0.72, respectively (Fig. 4I-L). Based 
on validation results, FASN as a potential biomarker showed excellent specificity and sensitivity in SA tissue between low- and high-BT 
pigs. GSEA functional analysis of four potential biomarkers detected multiple significant pathways (Fig. 5A–D) 

From the merged datasets in the IMF group, the LASSO regression algorithm yielded four potential candidate biomarkers (Fig. 4E). 
The SVM-REF analysis revealed that the model incorporating four genes had the best accuracy (Fig. 4F). In addition, the Random Forest 

Fig. 4. Potential tissue-specific biomarkers detection, validation and analysis. (A–C) The machine learning algorithms, in order, was the LASSO, 
SVM-REF, and Random Forest to screen potential biomarkers in BT group. (D) Venn diagram showed the overlap of potential biomarkers identified 
by the three algorithms in BT group. Barplot showed the expression of biomarkers between low- and high-BT group in validation set, the ROC curve 
of the efficacy verification of biomarkers (I) ACLY, (J) FASN, (K) ME1, (L) ARVCF. (B–G) The machine learning algorithms in IMF group. (H) Venn 
diagram in IMF group. Barplot and ROC curve of potential biomarkers (M) ACTA2, (N) HMGCL in IMF group. (O–P) The network of TFs and 
potential biomarkers in BT group and IMF group. *P < 0.05, **P < 0.01, ns, no significant difference. 
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Fig. 5. The GSEA of potential biomarkers. (A) ACLY. (B) FASN. (C) ME1. (D) ARVCF. (E) ACTA2. (F) HMGCL.  
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algorithm ranked the genes (Fig. 4G). Finally, ACTA2 and HMGCL were obtained as potential biomarkers of IMF deposition from gene 
intersections obtained by three machine learning algorithms (Fig. 4H). The GSE180840 dataset was then used to validate the accuracy 
of the biomarkers. As shown in Fig. 4M − N, only ACTA2 was significantly upregulated in high-IMF pigs. The AUCs of ACTA2 and 
HMGCL were 1 and 0.78, respectively (Fig. 4M − N). According to the validation results, ACTA2, which had a significant difference in 
expression levels between high- and low-IMF pigs and a high AUC was considered to be the most specific and sensitive potential IMF 
deposition-specific biomarker. The GSEA analysis results for ACTA2 and HMGCL were shown in Fig. 5E and F. 

3.5. Analysis of gene regulatory network for potential tissue-specific biomarkers 

In the SA deposition-related latent biomarkers, a total of 63 transcription factors (TFs) were predicted based on the four latent 
biomarkers, including 17 TFs predicted by ACLY, 21 TFs predicted by FASN, 27 TFs predicted by ME1, and 5 TFs predicted by ARVCF 
(Fig. 4O). The results showed that FASN has the most common TFs with the other biomarkers, especially with the ME1. 

For potential biomarkers related to IMF deposition, a total of 44 TFs were predicted based on two potential biomarkers, including 
24 TFs predicted by ACTA2 and 21 TFs predicted by HMGCL (Fig. 4P). ACTA2 and HMGCL shared a common TF, FOXC2. 

3.6. Analysis of ceRNA network for potential tissue-specific biomarkers 

For the SA deposition-related latent biomarkers (ACLY, FASN, ME1 and ARVCF), a total of 16 lncRNA of 20 miRNA of four bio-
markers were predicted, which were paired into 170 IncRNA-miRNA interactions, and 20 miRNA-mRNA interactions (Fig. 6A). For the 
IMF deposition-related biomarkers (ACTA2 and HMGCL), a total of nine lncRNA of seven miRNA of two biomarkers were predicted, 
which were paired into 24 IncRNA-miRNA interactions, and seven miRNA-mRNA interactions (Fig. 6B). Based on the forecasted results 
of miRNAs and IncRNAs of tissue-specific biomarkers, we found that lncRNA NEAT1 and XIST could sponge different miRNAs to 
regulate tissue-specific genes association with fat deposition of SA and IMF, respectively. 

3.7. Phenotypes for the experimental pigs of qRT-PCR validation 

Information on the test animals, including characteristics related to fat deposition, is given in Table 2. In the BT group, the carcass 
BT level of Saba pigs at high-BT pigs was significantly higher than that in the low-BT pigs (P < 0.01), the carcass BT level (P < 0.01) and 
IMF content (P < 0.05) of Saba pigs was significantly higher than that in the Large White pigs. In the IMF group, the IMF content of 
Saba pigs at high-IMF pigs was significantly higher than that in the low-IMF pigs (P < 0.01), the carcass BT level and IMF content of 
Saba pigs was significantly higher than that in the Large White pigs (P < 0.01). 

3.8. Validation of the biomarkers by qRT-PCR 

The expression trends for the potential tissue-specific biomarkers were broadly consistent with the RNA sequencing results in the 
datasets, in particular FASN in high-BT pigs and ACTA2 in high-IMF pigs were significantly upregulated in RNA-seq, validation and 

Fig. 6. The integrated ceRNA network. (A) ceRNA network of lncRNA, miRNA, and SA deposition-related biomarkers. (B) ceRNA network of 
lncRNA, miRNA, and IMF deposition-related biomarkers. Red triangle: up-regulated biomarkers. Green arrow: down-regulated biomarkers. Yellow 
circle: lncRNA. Blue square: miRNA. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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qPCR data, except for HMGCL where qRT-PCR validation was not consistent with the sequencing results (Fig. 7A–D). The expression 
level of these tissue-specific biomarkers was detected in both SA and IMF tissues to exclude the universality (Fig. 7A–D). The results 
revealed that biomarkers associated with SA deposition (ACLY, FASN, and ARVCF) and IMF deposition (ACTA2) appeared to have 
better sensitivity and specificity. 

4. Discussion 

The amount of SA and IMF deposition are critical factors affecting pork production and eating quality, and are also strongly 
associated with obesity and metabolism obstacle disease [29,30]. While increasing number of functional genes which play important 
role in fat deposition have been screened with the development of high-throughput sequencing technology, finding tissue-specific 
biomarkers related with fat deposition is a critical step in understanding the mechanisms of fat deposition in different tissue to 
regulate the content of fat and explore the potential therapeutic targets for metabolic diseases associated with obesity. Our results are 
generally consistent with and extend those of prior fat deposition studies. In our study, we systematically compared and analyzed the 
molecular regulatory mechanisms affecting SA and IMF deposition, and identified tissue-specific biomarkers involved in fat deposition 
using the RRA method combining respectively with multiple datasets related to SA and IMF deposition. At the same time, the 

Table 2 
The traits were compared between the Saba pigs with low- and high-BT, Large White and Saba pigs, Saba pigs with low- and high-IMF, which the 
capital and lowercase letters indicate P < 0.01 and P < 0.05, respectively.  

Validation Group n Live weight (kg) Carcass BT (mm) IMF (%) 

SA deposition-related biomarkers Saba pigs with low-BT 3 102.50 ± 6.75 38.25 ± 1.85A 4.64 ± 1.57 
Saba pigs with high-BT 3 102.33 ± 4.03 56.94 ± 1.98B 5.54 ± 1.37 
Large White pigs 3 100.08 ± 1.17 22.95 ± 5.83A 2.67 ± 0.94a 
Saba pigs 3 102.33 ± 4.03 56.94 ± 1.98B 5.54 ± 1.37b 

IMF deposition-related biomarkers Saba pigs with low-IMF 3 100.67 ± 1.25 53.62 ± 4.27 2.43 ± 0.27A 
Saba pigs with high-IMF 3 107.67 ± 4.03 46.98 ± 2.27 9.01 ± 0.74B 
Large White pigs 3 100.50 ± 1.47 25.37 ± 5.84A 2.80 ± 0.70A 
Saba pigs 3 107.67 ± 4.03 46.98 ± 2.27B 9.01 ± 0.74B  
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Fig. 7. Validation of potential biomarkers through qRT-PCR. (A) The same breed with low- and high-BT pigs as the test animals. mRNA expression 
of SA deposition-related biomarkers ACLY, FASN, ME1, and ARVCF showed the same trend with the results of bioinformatics analysis in datasets. 
FASN and ME1 showed significant difference. IMF deposition-related biomarkers ACTA2 and HMGCL showed the opposite trend. (B) The Large 
white (low-BT) and Saba (high-BT) pigs as the test animals. mRNA expression of ACLY, FASN, ME1, and ARVCF showed the same trend. ACLY, 
FASN, and ME1 showed significant difference. While ACTA2 and HMGCL showed the opposite trend. (C) The same breed with low- and high-IMF 
pigs as the test animals. mRNA expression of IMF deposition-related biomarkers ACTA2 showed the same trend, but HMGCL was opposite. SA 
deposition-related biomarkers ACLY and ARVCF showed the opposite trend, but FASN and ME1 showed the same trend. (D) The Large white (low- 
IMF) and Saba (high-IMF) pigs as the test animals. ACTA2 showed the same trend and significantly higher than large white pigs compared with Saba 
pigs, but HMGCL was opposite. ACLY and ARVCF showed the opposite trend, but FASN and ME1 showed the same trend. *P < 0.05, **P < 0.01, 
***P < 0.001. 
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prediction of TFs, lncRNAs and miRNAs targeting the biomarkers were performed for further investigating the potential regulatory 
mechanism. 

4.1. Potential biomarkers involved in subcutaneous fat deposition 

Fifty-six DEGs were filtered out, with 27 down- and 29 up-regulated genes in the BT group. Functional analysis of these DEGs 
indicated that these targets were primarily associated with the synthesis and metabolism of fats and fatty acids, the energy balance of 
the organism, such as the carboxylic acid metabolic/biosynthetic process [31], PPAR signaling pathway [32], ECM-receptor inter-
action [33] and AMPK signaling pathway [34]. These pathways aberrant expression genes mainly contained FASN, ME1 and ACLY 
among the DEGs. We also constructed PPI networks to obtain 10 hub genes. Among these hub genes, ACLY, FASN, ME1 and ARVCF 
were then screened as potential SA deposition-specific biomarkers using bioinformatics and three machine learning approaches. In 
particular, FASN was identified as the most sensitive biomarker and might play a vital role in the fat deposition process in SA. 

ACLY (ATP citrate lyase) is a crucial enzyme in fatty acid synthesis and cholesterol biosynthesis, which play a vital role in 
modulating carcass and muscle fat content [35]. ACLY can influence the synthesis and deposition of fatty acids in SA by regulating the 
level of acetyl coenzyme A, an essential precursor to the synthesis of fatty acids and triacylglycerols [36]. In addition, ACLY has been 
shown to activate SREBP-1c, a key regulator of lipid metabolism, by promoting its nuclear localization and enhancing its transcrip-
tional activity, thereby increasing fatty acid synthesis in subcutaneous adipocytes and promoting fat deposition [37,38]. Besides, the 
genes, ACLY, FASN and ME1, all of which play crucial roles in de novo fatty acid biosynthesis, elongation and desaturation, are found 
to be significantly up-regulated in the SA of fat breeds, indicating that they are critically involved in SA deposition [39]. 

ME1 (malic enzyme 1) is a cytosolic NADP+-dependent enzyme that plays a critical role in NADPH production, fatty acid 
biosynthesis and lipogenesis in cells and tissues [40]. ME1 also plays a considerable role in glucose metabolism to the initial steps of 
lipogenesis [41]. In addition, ME1 activity and expression levels are regulated by several factors, including hormones such as insulin 
and glucagon, as well as nutritional factors. For example, ME1 expression levels in adipocytes increases with high-fat feeding [42]. 
Some previous studies have shown that ME1 expression levels and activity were related to the BT in pigs. For instance, Ramı’rez et al. 
found that ME1 activity in Iberian × Duroc hybrids was positively correlated with BT and IMF content [43]. Xing discovered that ME1 
was significantly associated with BT at 171 days in Landrace pigs, and expression levels were more abundant in pigs with high BT [44]. 
ME1 expression levels were also found to significantly impact leanness in turkeys and regulate fat deposition in yak [45,46]. Our results 
are consistent with previous studies and again confirm that ME1 plays a critical role in SA deposition. The Armadillo Repeat gene 
deleted in Velo-Cardio-Facial syndrome (ARVCF) is a member of the vertebrate p120 catenin subfamily that responds to components of 
the canonical WNT pathway, which plays an important role in adipocyte differentiation and fatty acid synthesis [47]. Currently, 
primary research on ARVCF has focused on gene function, such as influencing the splicing of specific pre-mRNAs, and human diseases, 
such as schizophrenia and tumors [48,49]. The role of ARVCF in fat deposition is largely unstudied. GSEA pathway-based analyses 
implicated ARVCF in fatty acid metabolism, such as the AMPK signaling pathway, biosynthesis of unsaturated fatty acids. Thus, we 
speculate that ARVCF may be implicated in the subcutaneous fat deposition process in pigs. 

FASN (fatty acid synthase), a critical adipogenic gene, plays a key role in de novo fatty acid synthesis as the main long-chain fatty 
acid synthesizer [50]. In addition, FASN mediates de novo lipid synthesis via catalyzing the production of palmitate from 
acetyl-coenzyme A (CoA), malonyl-CoA and NADPH [51], and the palmitate is the precursor of major nutritional, energetic and 
signaling lipids [52]. Besides, FASN can be regulated by PPAR-γ and SREBP-1C, which are the key TFs for adipocyte differentiation and 
lipid accumulation, thus regulating fatty acid synthesis [53]. FASN also participates in regulating adipocyte differentiation and the 
formation of mature adipocytes, and promotes differentiation of pre-adipocytes into mature adipocytes, which contributes to the 
formation of adipose tissue [54]. Previous studies have shown that elevated levels of FASN significantly increased triglyceride 
deposition in the body, leading to obesity [55]. FASN is highly expressed in porcine adipose tissue, with positive correlations between 
FASN expression and carcass adipose content in pigs [56]. It was also found that the expression of FASN was up-regulated at higher BT 
and had a positive regulatory effect on BT in pigs, consistent with its fat-accumulating function found in previous studies [57–59]. But, 
remarkably, the previous study alsofound that FASN expression levels were negatively correlated with IMF contents in the LDM of 
Kazak sheep [60]. In the current study, we found that FASN might specifically regulate fat deposition in pigs with SA, with a positive 
relationship between FASN expression levels and BT. Moreover, qRT-PCR validated gene expression levels in both low and high BT pigs 
and lean and obese pigs of the same breed showed high agreement with transcriptome sequencing, all suggesting that FASN was 
significantly higher in high BT pigs. Although we also found that the expression of FASN was relatively low in high-IMF pigs compared 
to low-IMF pigs in LDM, this was not significant, indicating that FASN might have different activity in different species to stimulate 
adipose accumulation. Therefore, we speculated that FASN has a great possibility to be a critical gene in SA deposition process, but its 
specific mechanism and function needs more experiment verification. 

The bio-functional analysis of the GSEA of ACLY, FASN, ME1 and ARVCF detected the synthesis and metabolism of fats and fatty 
acids, energetic balance of the organism-related pathways such as AMPK signaling pathway [61], biosynthesis of unsaturated fatty 
acids [62], suggesting that these biomarkers may effect these pathways to mediate the regulation of energy metabolism in porcine 
adipocytes of SA to regulate fat deposition. In addition, the expression level of FASN was positively correlated with those of ACLY and 
ME1. Moreover, we also explored the regulatory mechanisms of these potential biomarkers, and FASN has commonalities with other 
biomarkers in TFs, particularly ME1. FASN and ME1 were found to have higher levels of gene expression in mice fed a high-fat diet [63] 
and these genes were transcriptionally regulated by ChREBP belong to lipid synthesis genes [64]. Following discovering possible 
tissue-specific biomarkers for fat deposition, we also predicted the miRNAs and lncRNAs linked to biomarkers and constructed ceRNA 
networks to connect them. From the mRNA–miRNA interaction, we found that FASN interact with different fat metabolism-related 
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miRNAs such as miR-15a-5p [65], miR-16-5p [66], miR-424-5p [67] and miR-497-5p [68]. Also, it is notable that lncRNA XIST and 
NEAT1 were predicted to regulate FASN through miRNA mentioned above, respectively. Since many investigations pointed out that 
the XIST and NEAT1 are the key players in regulation of lipid metabolism [69,70], we postulated that the role of ceRNA interaction 
network of XIST, NEAT1/miR-15a-5p, miR-16-5p, miR-424-5p, miR-497-5p/FASN are vital in the SA metabolism, which may give 
suggestions for regulation of fat deposition. 

4.2. Potential biomarkers involved in IMF deposition 

Fifty-two DEGs were filtered out and 18 down- and 34 up-regulated genes were presented in the IMF group. Functional analysis of 
these DEGs showed that these targets were primarily associated with lipid metabolism, energy metabolites and amino acid biosynthesis 
and degradation, such as lipid metabolic process [71], valine, leucine and isoleucine degradation [72], peroxisome [73], apelin 
signaling pathway [74]. Subsequently, ACTA2 and HMGCL were screened as potential biomarkers specific to IMF deposition through 
bioinformatics and three machine learning approaches, with ACTA2 in particular identified as the most potentially sensitive 
biomarker. 

ACTA2 (alpha-smooth muscle actin) is a gene encoding alpha-smooth muscle actin (αSMA) and identified as a marker of myofi-
broblast formation [75]. Additionally, it has been suggested that ACTA2 might act an important role in the regulation of intramuscular 
adipocyte differentiation and lipid metabolism. Such as ACTA2 contributes to the formation of adipocytes under certain conditions 
[76,77]. A previous study showed that ACTA2-positive myofibroblasts could regenerate de novo adipocytes [78]. In addition, ACTA2 
has been shown to be involved in the differentiation of adipocytes and smooth muscle cells through the regulation of 
myocyte-associated transcription factor-A (MRTF-A) [79]. Besides, it was reported that ACTA2 was highly expressed in LDM of 
Xinjiang brown cattle with higher fat percentage and larger area of LDM, and better beef tenderness compared with Kazakh cattle, 
indicated that ACTA2 exerted a crucial regulatory impact on the composition and characteristics of adipose and meat quality [80]. In 
our study, ACTA2 showed a significantly high level only in the LDM of pigs with high IMF, differences in the expression level of ACTA2 
may be an important reason for the degrees of differentiation of adipocytes of adipocytes in adipose tissues at different sites. Thus, we 
speculated that ACTA2 could potentially be used as a biomarker to regulate the IMF metabolism, but more investigations are needed to 
identify specific mechanisms. 

HMGCL (3-hydroxy-3-methylglutaryl-CoA lyase), which encodes a protein belonging to the HMG-CoA lyase family, is widely 
implicated in butanoate metabolism, synthesis and degradation of ketone body, and valine, leucine, and isoleucine degradation [81]. 
Meanwhile, HMGCL has also been reported to be connected with lipid metabolism [82]. Several studies have reported that HMGCL 
might play a critical role in regulating SA deposition in pigs by being involved in the synthesis and degradation of ketone bodies and 
propanoate metabolism, but limited work has been done to validate this function in fat deposition [11]. In our study, the expression of 
the HMGCL gene was significantly downregulated compared to that in low-IMF pigs from the dataset analysis. However, the expression 
level of the HMGCL was relatively high in the high-IMF pigs in the validation dataset and in the qPCR results compared to the low-IMF 
pigs. This variation is most likely related to differences in pig breeds, but further researches are required to identify the function of 
HMGCL in IMF deposition. 

Bio-functional analysis of the GSEA of ACTA2 and HMGCL detected lipid metabolism, amino acid biosynthesis and degradation- 
related pathways such as fatty acid metabolism [83] and biosynthesis of amino acids, alanine, aspartate and glutamate metabolism 
[84], which were largely concordant with the results of our previous DEG functional analysis results. We also identified signaling 
pathways involved in the regulation of protein synthesis, such as protein processing in the endoplasmic reticulum [85].Furthermore, 
we inferred a regulatory network by connecting predictive TFs with the biomarkers ACTA2 and HMGCL. The results showed that 
ACTA2 shared a common TF FOXC2 with HMGCL. FOXC2 is a forkhead TF that plays an essential role in lipid metabolism, muscle tube 
formation and vascular remodeling in muscle tissue [86]. Previous studies have shown that FOXC2 had the ability to block adipo-
genesis by increasing the activity of the β-adrenergic-cAMP-protein kinase A (PKA) signaling pathway and by inhibiting PPARG to 
promote the expression of mature adipocyte genes [87,88]. Further studies are also needed to define the mechanism of association with 
FOXC2. From the mRNA–miRNA interaction, we found that ACTA2 interact with different fat metabolism and adipocyte 
differentiation-related miRNAs such as miR-27a/b-3p [89–91], miR-181a/c-5p [92]. It is also found that circRNA XIST and NEAT1 
were predicted to regulate ACTA2 through miRNA mentioned above. Therefore, we postulated that the ceRNA interaction network of 
XIST, NEAT1/miR-27a/b-3p, 181a/c-5p/ACTA2 may contribute to the regulation to IMF metabolism. Certainly, further experimental 
analysis is needed for all potential interactions among biomarkers, miRNAs, and lncRNAs. 

Although potential tissue-specific biomarkers related to fat deposition have beenscreened, and some genes have been validated in 
previous studies, some limitations of the current study must be noted. Firstly, the potential biomarkers were obtained through bio-
informatics method. Moreover, the regulation mechanism targeting fat deposition has not been experimentally validated. Secondly, 
the specific functions and expression pattern of the biomarkers need to be verified in cells or animals using overexpression or 
knockdown methods. Therefore, although our results were validated in multi-datasets and qPCR, further trials are needed to affirm the 
value of tissue-specific biomarkers. 

5. Conclusions 

We identified four SA genes related to AMPK signaling pathway, PPAR signaling pathway and biosynthesis of unsaturated fatty 
acids, and 2 IMF genes related to fatty acid metabolism and biosynthesis of amino acids, alanine, aspartate and glutamate metabolism, 
displayed a tissue-specific association with BT and IMF content, respectively. Moreover, the predicted RNA pathways of XIST, NEAT1/ 
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miR-15a-5p, miR-16-5p, miR-424-5p, miR-497-5p/FASN and XIST, NEAT1/miR-27a/b-3p, 181a/c-5p/ACTA2 may contribute to the 
regulation to SA and IMF metabolism, respectively. Collectively, this study provides reliable molecular biomarkers for the analysis of 
fat deposition in SA and IMF. It also lays the foundation for meat quality improvement in pig breeding. 
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