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Abstract: p21 functions as a cell cycle inhibitor and anti-proliferative effector in normal cells, and is
dysregulated in some cancers. Earlier observations on p21 knockout models emphasized the role of
this protein in cell cycle arrest under the p53 transcription factor activity. Although tumor-suppressor
function of p21 is the most studied aspect of this protein in cancer, the role of p21 in phenotypic
plasticity and its oncogenic/anti-apoptotic function, depending on p21 subcellular localization and
p53 status, have been under scrutiny recently. Basic science and translational studies use precision
gene editing to manipulate p21 itself, and proteins that interact with it; these studies have led to
regulatory/functional/drug sensitivity discoveries as well as therapeutic approaches in cancer field.
In this review, we will focus on targeting p21 in cancer research and its potential in providing
novel therapies.
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1. p21 and Cancer

1.1. p21 in Early Days

Imbalance between cell proliferation and cell death (apoptosis) leads to tumorigenesis. p21,
a well-established cyclin-dependent kinase (cdk) inhibitor, was found to play an important
role in controlling cell cycle progression [1]. In 1994, p21 (also known as wildtype activating
factor-1/cyclin-dependent kinase inhibitory protein-1 or WAF1/CIP1) was introduced as a tumor
suppressor in brain, lung, and colon cancer cells; it was shown that p21 induces tumor growth
suppression through wild type p53 activity [2]. Mousses et al. reported some evidence that indicated
the link between tumor development and p21 protein alteration [3]. While p21 alteration was not
found to be responsible for cancer development in certain cancer types, such as ovarian or breast
cancer [4,5], there were evidence supporting the reverse scenario in other tumor types such as thyroid
or endometrial carcinoma [6,7]. An early study on non-small cell lung carcinoma showed that p21
is overexpressed in well-differentiated tumors [8]. p21 has been mostly associated with p53 protein
regarding its cell cycle arrest role; there are studies that showed p53-independent pathways leading
to p21 induction at early years of its discovery [9]. In one of these early studies, p21 was shown as
an immediate-early gene, with transcription peak at 2 hours in the presence of certain growth factor,
independent of p53 protein [9]. These studies were directed towards the fact that through p21 induction
in p53-null cancer cells, G1 checkpoint can be restored and cell cycle arrest could be activated [10]. p21
was found to be associated with cellular sensitivity to Transforming Growth Factor-beta (TGF-beta)
at the same time, exploring where p21 stands in cancer development [11], considering TGF-beta
role in premalignant state, malignant progression, invasiveness and dissemination, and metastatic
colonization [12]. As p21 was turning into an important gene in cancer development, several groups
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started to think about therapeutic approaches in using p21; one of the first attempts to induce growth
arrest via p21 was done in chicken embryo fibroblasts that were transformed by oncogenes [13].
Another pioneer study in T-cell leukemia virus type I-transformed lymphocytes showed p21 playing a
role in apoptosis, independent of p53 [14]. p21, continued to be a gene of interest for tumor growth
inhibition during the following years [15].

1.2. p21 and Cancer Evolution

Controversial aspects of p21 is decided by p21 location and p53 protein condition [16]. p53
(the most mutated protein in pediatric and adult cancer) induces expression of p21, in response to
cellular stress, such as DNA damage or oxidative stress. In addition to cell cycle arrest, p21 plays an
important role in senescence through p53-dependent and p53-independent pathways [17,18]. p21 also
regulates various cellular programs such as apoptosis, DNA damage response, and actin cytoskeleton
remodeling. This being said, p21 effect on the evolution of cancer tumors depends largely on the status
of the p53 protein in cancer cells [19]. Although p21 induction is p53-dependent in certain conditions
such as DNA damage, there are several scenarios in which p21 expression pattern is independent of
p53 such as normal tissue development, cellular differentiation, or following serum stimulation [20]. In
response to p53 transcription factor activity, p21 induction could lead to tumor growth arrest through
inhibition of cyclin-kinase complex, proliferation cell nuclear antigen (PCNA), transcription factors, and
coactivators [17]. On the other hand, p21 can direct tumor evolution towards cancer growth through
slowing down the accumulation of DNA damage [21]. p21 induction has been shown to be crucial for
promoting cancer cell motility and tumorigenesis [22]. Therefore, p21 can be an oncogenic protein or a
tumor suppressor, depending on its localization in the cytoplasm or the nucleus, respectively [23,24].
This controversy surrounding p21 roles in cancer evolution makes it more challenging to find the right
balance in which p21 function would selectively impede cancer progression.

1.3. LincRNA-p21 and Cancer

mRNA, with only 3–7% of total RNA mass in the cells, has been the focus of most studies so far [25].
Non-coding RNAs, on the other hand, are underappreciated regarding their functional/regulatory
activities; although long non-coding RNAs (lncRNA) are a small portion of the total non-coding
RNA population (regarding mass and the number of the molecules), they have been under scrutiny
in cancer development [26]. LincRNA-p21 (long intergenic noncoding RNA-p21) is located 15 kb
upstream of p21 gene and it regulates gene expression both at the transcriptional level as well as
post-transcriptionally. Regulated by p53, lincRNA-p21 is an important player in regulating p53
target gene expression through physically interacting with heterogeneous nuclear ribonucleoprotein
K (hnRNP K), functioning as a key repressor [27]. LincRNA-p21 regulates cell proliferation, DNA
damage response, and apoptosis through its regulatory role in p53 target gene expression [28,29].
LincRNA-21 regulates reprograming through several mechanism; as an example, lincRNA-p21 sustains
CpG methylation and/or H3K9me3 at the promoter region of pluripotency genes, causing somatic
cell reprogramming prevention [30]. LincRNA-p21 also modulates Warburg affect, hence playing an
important role in cancer cell metabolism [31]. It is not surprising that lincRNA-p21 is associated with
cancer progression [32]. PANDA (P21-associated noncoding RNA DNA damage-activated) is another
lncRNA located 5 kb upstream of p21 gene that regulates proapoptotic genes and senescence through
stabilizing p53 tumor suppressor gene [33]. p53 binds to transcription start site of p21 and activates
PANDA and p21 transcription in response to DNA damage [34].

2. p21 as a Target in Cancer Treatment

2.1. Gene Editing of p21 in Cancer Cells

Gene editing is mostly used for research purposes; CRISPR (clustered regularly interspaced short
palindromic repeats) [35], TALENs (transcription activator-like effector nucleases) [36], ZFNs (zinc



Cancers 2019, 11, 1178 3 of 19

finger nucleases) [37], rAAV (recombinant adeno-associated virus) [38], small interference RNA [39],
and homologous recombination [40] are gene editing tools that have been used to manipulate gene
expression (knocking out, mutating, or silencing). p21 has been altered in in vitro and in vivo models to
investigate tumor growth, apoptosis, and cell cycle arrest in cancer cells. Changing p21 expression levels
using gene editing can be used as an additive therapy for specific cancers to suppress tumorigenesis
phenotypes or to reduce drug resistance.

p21 has a dual role in cancer [16]. There are several studies that have shown the tumor suppressor
function of p21. We have addressed these studies in Table 1. In mouse studies, p21-deficient mice were
shown to become susceptible to hematopoietic, epithelial, and endothelial tumor formation [41]; in
another study, p21-deficient mice that were injected with colon carcinogen (azoxymethane), developed
more putative premalignant lesions [42]. p21 over-expression via adenovirus in prostate cancer cells
has been shown to induce apoptosis and reduce tumor volume in mice [43]. In an in vitro study, the
same results were shown regarding reduced tumor growth in cervical cancer cells after over-expressing
p21 [44]. On the other hand, other studies reported contradictory results, in vitro and in vivo. As for
in vitro works, it was shown that C-terminal mutation of p21 in human colon cancer [45] and decreased
expression of p21 in human melanoma SK-MEL-110 cells [46] promotes apoptosis. Gene delivery
of p21-p27 fusion protein into MCF-7 cell line (adenocarcinoma) was shown to induce apoptosis
and suppress proliferation [47]. As for in vivo studies, combined deletions of p21 and p27 in mice
models showed aggressive tumor and decreased lifespan [48]. p21 role in cancer gets even more
complicated when combined with other CDK inhibitors. Monocytic myeloid-derived suppressor cells
(Mo-MDSCs), potent suppressors of tumor immunity with increased p16 and p21 expression, were
genetically modified in a recent study; this research concluded that tumor progression was suppressed
through inhibiting MO-MDSC accumulation in tumors, following p21 and p16 deletion [49]. In another
study, cell proliferation and tumor growth were significantly decreased after introducing p21 and
p53 into breast cancer mouse models through injecting nanoparticles, and transfecting cell lines [50].
These studies point out the complexity of p21 in cancer therapy and the importance of combined
therapeutic approaches. p21 deficient mouse mammary tumor virus (MMTV)-ras and MMTV-myc
transgenic mice models showed different behavior after p21 deletion. Tumors in MMTV-ras/p21−/−

mice showed higher S-phase fractions than tumors in MMTV-myc/p21−/− mice. p21 deficiency in these
two different mouse models also affected apoptosis levels in different manners. Significant increase in
spontaneous apoptosis was reported in MMTV-ras/p21−/− mice tumor, whereas apoptosis levels of
MMTV-myc/p21−/− mice tumor did not change significantly. Different oncogene expression patterns
caused different cell proliferation profile in p21-deficient mice, pointing out context-dependence
function of p21 in cancer progression [51]. p21 was knocked out in NEMO∆hepa (hepatocyte-specific
NF-kB Essential Modulator knockout) mice, which are used as hepatocellular carcinoma model. In this
study, p21 deficiency was shown to result in higher DNA damage and higher number of hepatocellular
carcinoma (HCC) [52]. C57Bl6-FahDexon5 mice are liver failure in vivo model with increased risk for liver
cancer. Loss of p21 in C57Bl6-FahDexon5 mice was shown to cause rapid tumor formation and continuous
hepatocyte proliferation [53]. Interestingly, p21 deletion in prostate cancer mice model in another study
was shown to lead to less aggressiveness in prostates, lower adenocarcinoma incidence, and protection
against prostate tumorigenesis [54]. Adnane et al. showed that p21 deletion in MMTV/v-Ha-ras
transgenic mice leads to induced tumor aggressiveness and earlier tumor appearance [55]. In another
study p21 was knocked out in Apc1638+/− mice, an intestinal tumor model. Apc1638+/− /p21−/− mice
showed altered cell maturation, increased tumor formation and cell proliferation [56].

SOCS1 (suppressor of cytokine signaling 1)-deficiency in mice, treated with hepatocarcinogen
diethylnitrosamine (DEN), was shown to cause large and numerous liver tumor nodules. p21 protein
level was shown to increase in SOCS1-deficient mouse liver, causing increased resistance to apoptosis
and induced proliferation in response to growth factor stimulation. However, these phenotypes
disappeared following p21 knockdown [57]. In another in vivo study, Forkhead Box F1 (FoxF1) and
Forkhead Box F2 (FoxF2) transcription factor deficiency in mice repealed Alveolar rhabdomyosarcoma
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(RMS) tumor growth, following increased transcription activity of p21; knocking down p21 in FoxF1
and FoxF2-deficient tumor cells rescued cell cycle progression [58]. p21-deficient prolactinomas (PRL)
showed increased tumor migration and proliferation [59]. miR-6734 upregulates p21 expression;
in vitro studies of colon cancer have shown that miR-6734 introduction into the cancer cells suppresses
phosphorylation of Rb (Retinoblastoma), and cleavage of PARP (Poly (ADP-ribose) polymerase) and
caspase 3, causing cancer cell growth inhibition and cell cycle arrest/apoptosis in HCT-116 cells [60]. In
another study, p21 deficiency in Eµ-Myc mice, which overexpress c-MYC in B-lymphoid cells, did not
change number and survival of pre-leukemic Eµ-Myc B-lymphoid cells [61].

p21 alteration can have a major effect on cancer susceptibility to chemotherapy, radiation, and
targeted therapy. As shown in Table 1, p21-deficient cell lines in mentioned in vitro studies showed
more sensitivity to cancer drugs (cotreatment of Chk1 (Checkpoint Kinase1 ) inhibitor and platinum
based drugs) and irradiation-induced apoptosis [62–64]. Cancer cells treated with ginseng [65],
imatinib and gefitinib [66], pyrazolo(1,5-a)pyrimidine [67], and microtubule inhibitor (Taxol and
vincristine) [68] were showed to have increased apoptosis and cell death when p21 is deficient.
Increased cell death with MK1775 checkpoint inhibitor treatment was observed in p21-deficient
cells [69]. Increased caspase-3-dependent apoptosis was reported in p21-deficient cells after ionizing
radiation [63,64]. In an in vivo study, p21-deficinet mice were exposed to chemical carcinogen (urethane)
that predominantly forms lung tumors in mice; tumor formation and tumor multiplicity were increased
in these p21-deficient mice [70]. In Table 1, we have illustrated p21-cancer studies with mouse models
and cancer cell lines.

Table 1. p21 deficient in vivo and in vitro models used in p21-cancer studies.

Phenotype of Mice Cancer Model Description Reference

p21−/−
Hematopoietic tumor
Epithelial tumor
Endothelial tumor

Susceptible to spontaneous tumors development [41]

p21−/− Colon cancer Increased putative premalignant lesions development [42]

p21−/− p16−/− Lewis lung carcinoma Inhibition of MO-MDSC, accumulation in tumors, and
suppression of tumor progression [49]

p21−/− p27−/−
Pituitary adenomas,
Pheochromocytomas
Thyroid adenomas

Aggressive tumor and decreased lifespan [48]

p21−/− HCT116 Combination of Chk1 inhibitors and cisplatin treatment
enhances cancer cell vulnerability [62]

p21−/− HCT116 Caspase-9 and caspase-3 dependent apoptosis after ionizing
radiation [63]

p21−/− HCT116 Enhanced caspase-3-dependent apoptosis after irradiation [64]

p21−/− HCT116
Increased apoptosis and cell death with treatment of ginseng,
imatinib and gefitinib, pyrazolo(1,5-a)pyrimidine, microtubule
inhibitors, MK1775 checkpoint inhibitor

[65]
[66]
[67]
[68]
[69]

p21−/− MMTV-ras Higher S-phase fractions, increased spontaneous apoptosis [51]
p21−/− MMTV-myc Lower S-phase fractions, no effect on apoptosis [51]
NEMO∆hepa/p21−/− HCC Higher DNA damage and higher number of HCC [52]
p21−/− Lung tumors Accelerated tumor onset, increased tumor multiplicity [70]
Fah−/−/p21−/− HCC Rapid tumor formation, continuous hepatocyte proliferation [53]

p21−/− Prostate cancer Less aggressiveness in prostates, lower adenocarcinoma
incidence and prostate tumorigenesis [54]

p21−/− MMTV/v-Ha-ras Increase in aggressiveness and tumor multiplicity, earlier tumor
appearance [55]

Apc1638+/− / p21−/− Intestinal tumor Increased tumor formation [56]

p21−/− miR-6734 expressing
HCT-116 cells

Tumor growth and not induction of cell cycle arrest and
apoptosis, phosphorylation of Rb and cleavage of PARP and
caspase 3

[60]

(SOCS)1−/− /p21−/− HCC No increased resistance to apoptosis and no increased
proliferation to growth factor stimulation [57]
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Table 1. Cont.

Phenotype of Mice Cancer Model Description Reference

FoxF1−/− / FoxF2−/− /
p21−/− RMS Restored cell cycle progression [58]

p21−/− c-MYC-driven
lymphoma

No change on the number and survival of pre-leukemic Eµ-Myc
B-lymphoid cells [61]

p21−/− PRL Increase in migration and tumor formation [59]

Chk1: Checkpoint kinase 1, c-MYC: cellular Myelocytomatosis oncogene, FoxF1: Forkhead Box F1, FoxF2:
Forkhead Box F2, HCC: Hepatocellular carcinoma, HCT116: Human colon adenocarcinoma cell lines, MMTV:
mouse mammary tumor virus, Mo-MDSCs: Monocytic myeloid-derived suppressor cells, NEMO: NF-kB Essential
Modulator, PARP: (Poly (ADP-ribose) polymerase, PRL: Prolactinomas, RMS: Rhabdomyosarcoma, (SOCS)1:
Suppressor of cytokine signaling.

2.2. Targeting p21 Pathways

As we explained above, targeting p21 gene in cancer treatments is disputable; however,
p21 is involved in many pathways that could be targeted instead of p21 itself to overcome the
controversy. p21 is regulated in different levels: Transcriptionally, post-transcriptionally and
post-translationally [71]; genes or transcription factors that are found in downstream or upstream of
p21 in these functional/regulatory pathways could be the target in therapeutic approaches, bypassing
the dual role of p21 in cancer development. In Figure 1, we have illustrated several published strategies
targeting p21-engaged pathways through gene/miRNA manipulation or drugs intervention.

Figure 1. p21 expression induction through PI3K-Akt and c-Myc pathways. In this figure, drugs
are shown in green boxes and differentially expressed genes/miRNAs are shown in pink boxes.
These differentially expressed genes/miRNAs and drugs positively regulate p21 expression through
reducing Akt phosphorylation, inhibiting MDM2-p53 interaction, suppressing c-Myc expression,
preventing p21 ubiquitylation, preventing p21 mRNA destabilization, blocking negative regulation of
p21 protein, or suppressing histone deacetylation. As a conclusion, increased p21 expression induces
cell cycle arrest and decreases cell viability. PI3K: Phosphoinositide 3-Kinase, Akt: Protein kinase
B, ARHGAP15: Rho GTPase-Activating Protein 15, ARHGAP17: Rho GTPase Activating Protein 17,
c-MYC: cellular Myelocytomatosis Oncogene, CMTM5: CKLF (Chemokine Like Factor) Like MARVEL
Transmembrane Domain Containing 5, FBXO22: F-box Only Protein 22, FXR1: Fragile X-related Protein
1, GSTP1: Glutathione S-Transferase Pi 1, HDAC: Histone Deacetylase, hnRNP A2/B1: Heterogeneous
Nuclear Ribonucleoprotein A2/B1, IL-6: Interleukin 6, LRH-1: Nuclear Receptor Liver Receptor
Homolog-1, MAPKAPK5-AS1: MAPKAPK5 Antisense RNA 1, MDM2: Mouse Double Minute 2,
mTOR: Mammalian Target of Rapamycin, PI3K: Phosphoinositide-3-Kinase, PSMD2: 26S Proteasome
non-ATPase Regulatory Subunit 2, UBR5: Ubiquitin Protein Ligase E3 Component N-Recognin 5.



Cancers 2019, 11, 1178 6 of 19

2.2.1. Chemicals

There are several studies that investigate the effect of drugs and chemicals on p21 expression in
cancer cells; we have shown some of these works in Table 2. Histone deacetylase (HDAC) inhibitors
can increase p21 expression, causing cancer cells to undergo cell cycle arrest. Treatment of pancreatic
cancer cells with Trichostatin A [72], prostate cancer cells with PAC-320 [73] and ovarian cancer cells
with scriptaid, an HDAC inhibitor, combined with bortezomib or doxorubicin [74] enhances the
p21 protein expression and induce cell cycle arrest. Treatment of HCC cells with HDAC inhibitors,
sorafenib combined with Valproic acid, decreases HCC viability by upregulating p21 expression and
other apoptotic genes expression [75]. As mentioned before, p53 tumor suppressor protein induces
expression of p21 [76]. p53 is negatively regulated by Mouse Double Minute 2 (MDM2) [77]. p53-MDM2
interaction inhibitors could be used to increase p21 expression for cancer treatment. In literature,
there are many inhibitors to disrupt p53-MDM2 interaction such as HDM201 [78], MI-773 [79] and
RG7112 [80]. These drugs can restore expression of p53 and p21 and decrease cell viability in tumors.

Phosphoinositide 3-Kinase-Protein kinase B (PI3K-Akt) signaling pathway is involved in regulation
of cell survival, cell cycle progression and cell growth; Akt enhances cell growth and proliferation
by phosphorylating p21 [81]. Chemicals that inhibit PI3K-Akt pathway could be used to induce
p21 expression and cell cycle arrest in cancer cells. Oridonin, a natural tetracycline diterpenoid,
isolated from Rabdosia rubescens, suppresses cell proliferation and increases G2/M cell cycle arrest
via inhibiting PI3K-Akt pathway and upregulating p21 and p53 in cancer cells such as in esophageal
cancer [82] and oral squamous cell carcinoma cells [83]. Deguelin treatment in human gastric cancer
cells [84], β-2-himachalen-6-ol treatment of skin carcinogenesis mouse model [85], Valtrate treatment
in human breast cancer cells [86] and Aloperine treatment in prostate cancer cells [87] reduce tumor
growth and cell survival by inhibiting PI3K-Akt pathway and upregulating p21 expression. Chemicals
that have been shown to induce p21 expression in cancer research are listed in Table 2.

Table 2. Drugs/Chemicals that could be used to upregulate p21 expression; target pathways and
studied cancer types are shown below.

Drug/Chemical Target/Pathway Cancer Type Reference

β-2-himachalen-6-ol Akt/PI3K-Akt Skin Carcinogenesis [85]
Valtrate Akt/PI3K-Akt Breast Cancer [86]
Deguelin Akt/PI3K-Akt Gastric Cancer [84]
Aloperine Akt/PI3K-Akt Prostate Cancer [87]
Oridonin
Oridonin

Akt/PI3K-Akt
Akt/PI3K-Akt

Esophageal Cancer
Oral Squamous Cell Carcinoma

[82]
[83]

HDM201 MDM2-p53 binding p53 Wild- Type Cancers [78]
MI-773 MDM2-p53 binding Mucoepidermoid Carcinoma [79]
RG7112 MDM2-p53 binding Neuroblastoma Cancer [80]
Trichostatin A HDAC Pancreatic Cancer [72]
PAC-320 HDAC Prostate Cancer [73]
Scriptaid+Bortezomib HDAC Ovarian Cancer [74]
Scriptaid + Doxorubicin HDAC Ovarian Cancer [74]
Sorafenib+Valproic Acid HDAC HCC [75]

PI3K: Phosphoinositide 3-Kinase, Akt: Protein Kinase B, MDM2: Mouse Double Minute 2, HDAC: Histone
Deacetylase, HCC: Hepatocellular Carcinoma.

2.2.2. Gene Editing

Manipulating genes that interact with p21 is another alternative to control p21 effect in cancer
development. Expression levels of tumor suppressors and oncogenes change in the tumor cells, which
leads to cell proliferation and metastasis through PI3K-Akt pathway [88] and c-Myc-p21 interaction [89].
Decreased expression of Rho GTPase-activating protein 15 (ARHGAP15) in colorectal cancer [90],
Rho GTPase Activating Protein 17 (ARHGAP17) in cervical cancer cells [91], CKLF (Chemokine Like
Factor) like MARVEL (MAL (myelin and lymphocyte) and related proteins for vesicle trafficking and



Cancers 2019, 11, 1178 7 of 19

membrane link) transmembrane domain containing 5 (CMTM5) [92] and glutathione S-transferase
pi 1 (GSTP1) [93] in HCC have been reported; overexpression of these genes was shown to induce
p21 expression by inhibiting PI3K-Akt pathway, leading to suppressed tumor growth and metastasis.
Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is overexpressed in cervical cancer.
Knocking down hnRNP A2/B1 in in vitro and in vivo studies caused p-AKT expression decrease and
p21 expression increase, followed by suppressed proliferation, migration and invasion [94]. c-Myc
binds to p21 promoter and negatively regulates p21 expression [95]. Xiao et al. group showed
that ectopic expression of liver receptor homolog-1 (LRH-1), which is increased in HCC, leads to
upregulation of c-Myc and downregulation of p21. Knocking out LRH-1, decreased cell proliferation
and tumor growth [96].

2.2.3. Synthetic Lethality in p21-Mutant Cancers

Synthetic lethality was first introduced by Calvin Bridges to describe when certain non-allelic
genes are lethal in combination, while parents with a homozygous mutation are viable; in other
words, when two genetic events happen together causing cell death, synthetic lethality occurs [97].
This genetic event becomes useful when undruggable genes are driver mutation in cancer [98]. p21
basal levels determine the sensitivity of cells to combined therapies; in a study on colorectal cancer,
synthetic lethality of Chk1 inhibitor in tumors with lower p21 was reported [99]. p21 was shown to
be responsible for protecting tumor cells from DNA damage cytotoxic effect after Chk1 inhibition.
p21 activated kinase (PAK) proteins, have different functions in different species; these proteins are
associated with cancer due to their role in cell survival, cell migration, and proliferation [100]. PAKs are
divided into group I (or group A) and group II (or group B), depending on their structure, expression
levels, and the tissue type they are expressed in [101,102]. Although PAKs are often not found to
be mutated in cancer, PAK dysregulation, especially overexpression, is shown to be correlated with
cancer [103]. Although PAK function is mostly found to be important in embryonic development
according to in vivo studies [104], there is a positive correlation between PAK expression level and
tumor grade, therefore members of both group I and group II PAKs are found to be associated with
tumorigenesis [103]. This being said, the most frequently dysregulated PAK members in cancer are
PAK1 (group I) and PAK4 (group II) [105]. PAK 1 and PAK4 are found on cancer-induced frequently
amplified chromosomal regions, predominantly in breast cancer [106]. PAK1 is a therapeutic target
for acute myeloid leukemia (AML); inhibition of PAK1 causes downregulation of MYC oncogene,
which leads to AML cell apoptosis [107]. PAK4 was shown to play an important role in prostate cancer
cell migration in response to hepatocyte growth factor (HGF); HGF is associated with invasiveness
of prostate cancer [108]. In Ras mutant cancers, a critical role for Rac/Pak signaling in promoting
mitogen-activated protein kinase (MAPK) activity has been shown [109]. PAK4 overexpression was
shown to cause drug resistance and poor survival in gastric cancer patients; knocking down PAK4
induced apoptosis in PAK4 overexpressing gastric cell lines [110]. In a network-based screening
method, PAK1 was mapped into many synthetic lethality pathways, such as MAPK signaling, ErbB
(Erythroblastic leukemia viral oncogene homologue) signaling, and focal adhesion pathways [111].
PAK1 inhibition in a mouse model of Kras-driven squamous cell carcinoma was shown to suppress
tumorigenesis, following loss of Erk and Akt activity. PAKs play an important role in cancer stemness
as well, which is briefly explained in “p21 role in stemness” section.

3. p21 Regulation

3.1. Strict p21 Regulation

Transcriptional, post transcriptional, translational and post translational modifications are
regulatory checkpoints for protein expression; these regulations decide localization [112], activity [113],
and stability [114] of proteins. p21, induced by p53, binds to dimerization partner, RB-like, E2F and
multi-vulval class B (DREAM) complex, and causes downregulation of cell-cycle regulated genes, by
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stabilizing this complex [115,116]. Since p21 has a crucial role in cell cycle arrest, expression level of
p21 should be tightly controlled [117]. Several regulators balance p21 expression in different levels.
For example, Rbm24, an RNA-binding protein (RBP), induces expression of p21 mRNA, and therefore
p21 protein, by binding to 3´-untranslated region (3´-UTR) of p21 transcript [117]. Fragile X-related
protein 1 (FXR1), which is also an RBP, binds to the G-quadruplex RNA structure in mRNA and
controls mRNA turnover [118]. FXR1 is overexpressed in head and neck squamous cell carcinoma
(HNSCC). Overexpressed FXR1 binds and destabilizes mRNA of p21 and decreases p21 protein
expression. Silencing of FXR1 (fragile X-related protein 1) induces expression of p21, which causes
the cancer cells to go through senescence [119]. Interaction of telomere repeat binding factor TRF2
(Telomeric repeat-binding factor 2) with p21 promoter G-quadruplex, inhibits p21 expression. It has
been shown that induced DNA damage response did not put cancer cells into G2/M cell arrest due
to p21 repression through TRF2 binding [120]. Posttranscriptional and translational regulation of
p21 is regulated by lncRNA and microRNAs (miRNA). LncRNA MAPKAPK5-AS1 was shown to be
upregulated in colorectal cancer (CRC) cells through suppressing p21 expression. Knocking down this
lncRNA resulted in apoptosis and inhibition of proliferation in CRC cells [121]. Another study showed
that miR-345-5p in prostate cancer (PCa) [122], miR-93 in osteosarcoma cells [123] and miR-95-3p
in HCC cells and xenograft mouse models [124] were significantly overexpressed. Overexpressed
miRNA inhibits p21 expression which leads to induction of cell growth, proliferation and invasion in
cancer cells.

3.2. Targeting p21 Regulators for Therapy

Translational regulation and post translational modifications could be targeted to manipulate p21
function in cancer cells. DEAD-box (D-E-A-D (asp-glu-ala-asp) box) RNA helicase DDX41 (DEAD-box
helicase 41) binds to 3’-UTR of p21 mRNA and negatively regulates p21 expression [113]. Galectin-3
(Gal-3), a carbohydrate-binding protein, can also induce p21 expression in human prostate cancer
cells with wildtype p53, post-translationally [125]. m5C Methylation by NSUN2 (NOP2 (Nucleolar
Protein 2 Homolog)/sun RNA methyltransferase-2) and m6A Methylation by METTL3/METTL14 in
3´UTR of p21 mRNA increase expression of p21 at translation level [126]. Activation of integrated
stress response (ISR) kinase GCN2 (General Control Non-depressible 2) through phosphorylation of
the eukaryotic translation initiation factor eIF2α leads to induced p21 transcript variant translation
with 5’ upstream open reading frames (uORFs) [127]. Two lysine residues of p21 are acetylated
by histone acetyltransferase Tip60; Lee et al. showed that deletion of Tip60 causes destabilization
of p21 and prevents G1 arrest [128]. Arginine156 in p21 protein is methylated by protein arginine
methyltransferase 6 (PRMT6). Arginine156 methylation induces phosphorylation of threonine145 in
p21. These post translational modifications increase cytoplasmic localization of p21, which results in
more resistant cancer cells to cytotoxic agents [129]. Expression of F-box only protein 22 (FBXO22)
in HCC [130], UBR5 (ubiquitin protein ligase E3 component N-recognin 5) in colon cancer [131] and
PSMD2 (26S proteasome non-ATPase regulatory subunit 2) in breast cancer [132] is upregulated; these
genes regulate p21 stability by mediating ubiquitylation of p21. Following upregulation of mentioned
p21 negative-regulators, cell-cycle arrest is prevented, followed by tumor growth and cell proliferation
induction. Furthermore, silencing PSMD2 and FBXO22 knockdown were shown to decreased p21
ubiquitylation, inducing p21 expression. p21 is regulated at different levels and it is involved in
several pathways. A dominating idea according to most studies on p21 in cancer, is that inducing
p21 expression through targeting other genes in p21 cascades could be an effective way to prevent
tumor growth and metastasis. These target genes are promising candidates for therapeutic approaches.
Table 3 illustrates differentially expressed genes and RNAs that interact with p21.
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Table 3. Differentially expressed genes and RNAs in different cancer types and their target pathways
are shown below.

Gene/Protein/lncRNA/miRNA Expression in Cancer Cells Target/Pathway Cancer Type Reference

ARHGAP15 Downregulated Akt/PI3K-Akt CRC [90]
ARHGAP17 Downregulated Akt/PI3K-Akt Cervical Cancer [91]

CMTM5 Downregulated Akt/PI3K-Akt HCC [92]
GSTP1 Downregulated Akt/PI3K-Akt HCC [93]

hnRNP A2/B1 Overexpressed Akt/PI3K-Akt Cervical Cancer [94]
LRH-1 Overexpressed c-Myc/c-Myc-p21 HCC [96]

FBXO22 Overexpressed p21/ubiquitylation HCC [130]
UBR5 Overexpressed p21/ubiquitylation Colon Cancer [131]

PSMD2
FXR1

MAPKAPK5-AS1
miR-345-5p

miR-93
miR-95-3p

Overexpressed
Overexpressed
Overexpressed
Overexpressed
Overexpressed
Overexpressed

p21/ubiquitylation
p21/Posttranscriptional
p21/Posttranscriptional
p21/Posttranscriptional

p21/Translational
p21/Posttranscriptional

Breast Cancer
HNSCC

CRC
Prostate Cancer

Osteosarcoma Cells
HCC

[132]
[119]
[121]
[122]
[123]
[124]

ARHGAP15: Rho GTPase-activating protein 15, ARHGAP17: Rho GTPase Activating Protein 17, CMTM5:
CKLF(Chemokine Like Factor) Like MARVEL Transmembrane Domain Containing 5, CRC: Colorectal Cancer
Cells, FBXO22: F-box Only Protein 22, FXR1: fragile X-related protein 1, GSTP1: Glutathione S-Transferase Pi 1,
HCC: Hepatocellular Carcinoma, hnRNP A2/B1: Heterogeneous Nuclear Ribonucleoprotein A2/B1, HNSCC: Head
and Neck Squamous Cell Carcinoma, LRH-1: Nuclear Receptor Liver Receptor Homolog-1, MAPKAPK5-AS1:
MAPKAPK5 Antisense RNA 1, PI3K: Phosphoinositide 3-Kinase, Akt: Protein Kinase B, MDM2: Mouse Double
Minute 2, PSMD2: 26S Proteasome non-ATPase Regulatory Subunit 2, UBR5: Ubiquitin Protein Ligase E3 Component
N-recognin 5.

4. p21 Role in Stemness

4.1. p21 Expression and Stemness

p21 controls expansion of human hematopoietic stem cells and cell cycle progression; p21 knockout
stem cells were showed to induce cell cycle and stem cell exhaustion, under normal homeostatic
condition [133,134]. SOX2 (sex-determining region Y (SRY)-box2) has a role in the maintenance of
cancer stem cells (CSCs). In a study on human pancreatic tumors with ectopic SOX2 expression, deletion
of SOX2 in cancer cells was shown to cause cell growth inhibition, induced by p21 and p27 [135].
There are several studies showing p21 regulation in CSCs. Han et al. showed that evodiamine
specifically targets CSCs in breast cancer cell lines through p53 and p21 function. This study reported
accumulation of cancer cells at G2/M phase after evodiamine treatment, and selective cell death
of CSCs [136]. In another study, curcumin treatment was shown to sensitize CSC subpopulation
to cisplatin chemotherapy by increasing expression of p21; CSC subpopulation in this study was
double-positive (CD166+/EpCAM+) and highly migratory, derived from non-small cell lung cancer
(NSCLC) cell lines (A549 and H2170) [137]. Benzyl isothiocyanate (BITC) has chemoprevention effect on
breast CSC (bCSC). This inhibition was shown to be negatively regulated by KLF4 (Kruppel-like factor
4) transcription factor and its target gene, p21, in transgenic mouse model of breast cancer [138]. Similar
results in another study demonstrated that knocking out p21 in PyMT (polyoma middle tumor-antigen)
mammary tumor model inhibits tumor formation/initiation and ALDH1 (aldehyde dehydrogenase 1)
activity, all properties of CSCs. This study showed that p21 creates CSC-like phenotype formation by
suppressing Wnt/TCF1 (Wingless INT/ Transcription factor T cell factor 1)/Cyclin D1 signaling [139].

4.2. Non-Coding RNA and Stemness

LincRNA-p21 is downregulated in glioma stem cells (GSCs) following increased expression of
Hu antigen R (HuR) through miR-146b-5p downregulation. Overexpression of miR-146b-5p is shown
to decrease viability of cell and stemness, increasing apoptosis and radiosensitivity. However, these
phenotypes were rescued following lincRNA-p21 knockdown. This study concluded that targeting
miR-146b-5p/HuR/lincRNA-p21/β-catenin signaling pathway could be implemented as a co-therapy for
glioma cancer patients [140]. In another research, LincRNA-p21 was overexpressed, using adenoviral
vector containing miRNA responsive element (MRE) for miR-451. lincRNA-p21 introduction into
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CSCs, derived from primary colorectal cancer tissues and cell lines, was shown to inhibit β-catenin
signaling, causing decreased self-renewal, viability, and glycolysis of these cells. lincRNA-p21 showed
no off-target effect on normal liver cells, in vivo [141]. microRNA-7 is a novel tumor-suppressor and
its expression is downregulated in prostate cancer cells. Restoration of microRNA-7 suppresses KLF4
(Kruppel-like factor 4 )/PI3K/Akt/p21 pathway in prostate cancer cells, causing decreased tumorigenesis
and inhibition in stemness of prostate CSCs [142].

4.3. PAK and Stemness

p21-activated kinase 3 (PAK3) controls Akt-GSK3β (Glycogen Synthase Kinase 3 beta)-β-catenin
signaling in pancreatic cancer cells. PAK3 inhibition leads to suppressed tumorigenesis and CSCs
expansion [143]. PAK1 was shown to upregulate CSC markers and cause resistance to 5-fluorouracil
(5-FU) chemotherapy, leading to colorectal cancer progression [144]. Expression of PAK4 in the
triple-positive (CD24+/CD44+/EpCAM+) subpopulation of pancreatic CSCs is higher than triple-
negative (CD24−/CD44−/EpCAM−) cells. PAK4 expression correlates with nuclear accumulation
and transcriptional activity of signal transducer and activator of transcription 3 (STAT3). PAK4
silencing in pancreatic cancer (PC) cells was shown to decrease tumorigenesis, increasing PC cells
sensitivity to gemcitabine toxicity [145]. PAK4 also affects stemness and cancer resistance to endocrine
therapies. Introducing PAK4 small molecule inhibitor (CRT PAKi) and PAK4-targeting siRNAs results
in suppressed self-renewal and CSC activity [146].

5. Discussion

In this review, we tried to list the available approaches for p21-directed cancer treatment. Not
only p21 is involved in many important pathways that are dysregulated in cancer, but the expression
of the protein itself is altered in human cancers [17,147]. As p21 function/regulation becomes clearer,
the imbalance of p21 in cancer will be easier to address. The dual role of p21 in cancer progression as
an oncogene and tumor suppressor [16,148] makes it harder to have one approach for all cancer types;
nevertheless, according to the literature, we believe that p21 induction has a synergic effect on other
treatments, as it has been shown for several combination therapies, mentioned in this review [149]. On
the other hand, looking at studies on cancer stem cells, one could agree that p21 plays an important
role in inducing stemness, especially through p21 activated kinases (PAK1, PAK3, and PAK4) [143–146].
lincRNA-p21, on the other hand, suppresses stem cell expansion and renewal [140,141]. The more we
understand p21-associated pathways, the better we can make sense of the contradictory results on
p21 role in cancer, as a tumor suppressor or a tumor-promoting protein. It is also very important to
realize that p53 status has a great influence on p21 role in cancer development, as p53-independent
upregulation of p21, causing DNA replication dysregulation, has been reported in aggressive cancer
cells [150]. p21 mutation has been detected in 14% of invasive bladder cancer patients in genome
sequencing studies, with half of them also carrying p53 mutation [151]. It is worth noting that
p21/p53 double mutant bladder cancer cells have unique Chk1-dependency regarding G2/M cell
cycle checkpoint following chemotherapy induced DNA damage [152]; this makes it very crucial
to comprehend p21 and p53 status in cancer tumors to choose the most appropriate treatment. For
example, gemticabine-Chk1 inhibitor treatment is an effective treatment for p21/p53 double mutant
bladder cancer; nevertheless, cancer cells lose their sensitivity to the combined therapy once p21 is
restored, pointing out the importance of considering p21-p53 balance in therapeutic approaches [152].
p21 is involved in many aspects of tumorigenesis, and having a deeper understanding of p21 as
a double agent protein could be very helpful for adjusting p21 expression levels to control cancer
development. Georgakilas et al. has argued that rare p21 mutation rate in cancer might be due to an
evolutionary favorable tumor heterogenicity, enforced by p53-independent p21 activity [16]. As we
have explained in different contexts, p21 role in promoting or suppressing tumorigenesis depends
largely on p53 status. With wildtype p53, p21 acts as guardian of the genome, whereas when p53 is
absent or deficient, p21 activity causes genome instability. We discussed several chemical compounds
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and drugs that could potentially fix p21 imbalance in cancer cells; here again, knowing p53/p21 state
is crucial. Another therapeutic scheme could be downregulation of p21, combined with activated
p53; for example, adenovirus-expressing p53 combined with p21-targetting microRNA [153] or p53
induction through MDM2 suppression combined with adenovirus-mediated p21 downregulation [154].
Aside from p53 condition, p21 localization also should be taken into account when considering
p21 therapeutic approaches since cytoplasmic p21 favors antiapoptotic activities, and nuclear p21
is linked to cell cycle arrest [155,156]. According to the literature, the absence or presence of p21
influences sensitivity to chemotherapy or radiotherapy, largely due to p21 involvement in important
signaling pathways such as PI3K-Akt and c-Myc. Although p21 status in cancer development and
progression remains controversial, p21 is an important contributor in cancer aggressiveness/stemness,
drug resistance, and invasiveness; p21 mutation being rare in cancer should not distract us from
considering this protein’s influence in the fate of cancer cells.
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