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During development, infants learn to differentiate their motor behaviors relative to various
contexts by exploring and identifying the correct structures of causes and effects that they
can perform; these structures of actions are called task sets or internal models. The ability
to detect the structure of new actions, to learn them and to select on the fly the proper
one given the current task set is one great leap in infants cognition. This behavior is an
important component of the child’s ability of learning-to-learn, a mechanism akin to the
one of intrinsic motivation that is argued to drive cognitive development. Accordingly, we
propose to model a dual system based on (1) the learning of new task sets and on (2) their
evaluation relative to their uncertainty and prediction error. The architecture is designed
as a two-level-based neural system for context-dependent behavior (the first system) and
task exploration and exploitation (the second system). In our model, the task sets are
learned separately by reinforcement learning in the first network after their evaluation and
selection in the second one. We perform two different experimental setups to show the
sensorimotor mapping and switching between tasks, a first one in a neural simulation
for modeling cognitive tasks and a second one with an arm-robot for motor task learning
and switching. We show that the interplay of several intrinsic mechanisms drive the rapid
formation of the neural populations with respect to novel task sets.

Keywords: task sets, fronto-parietal system, decision making, incremental learning, cortical plasticity, error-reward
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1. INTRODUCTION
The design of a multi-tasks robot that can cope with novelty and
evolve in an open-ended manner is still an open challenge for
robotics. It is however an important goal (1) for conceiving per-
sonal assistive robots that are adaptive (e.g., to infants, the elderly
and to the handicapped people) and (2) for studying from an
inter-disciplinary viewpoint the intrinsic mechanisms underlying
decision making, goal-setting and the ability to respond on the fly
and adaptively to novel problems.

For instance, robots cannot yet reach the level of infants for
exploring alternative ways to surmount an obstacle, searching for
a hidden toy in a new environment, finding themselves the proper
way to use a tool, or solving a jigsaw puzzle. All these tasks require
to be solved within boundaries of their given problem space, with-
out exploring it entirely. Thus, robots lack this ability to detect
and explore new behaviors and action sequences oriented toward
a goal; i.e., what is called a task set (Harlow, 1949; Collins and
Koechlin, 2012).

The ability to manipulate dynamically task sets is however a
fundamental aspect of cognitive development (Johnson, 2012).
Early in infancy, infants are capable to perform flexible decision-
making and dynamic executive control even at a simple level
in order to deal with the unexpected (Tenenbaum et al., 2011).
Later on, when they are more mature, they learn to explore the
tasks space, to select goals and to focus progressively on tasks
of increasing complexity. One example in motor development is
the learning of different postural configurations. Karen Adolph

explains for instance how infants progressively differentiate their
motor behaviors into task sets (i.e., the motor repertoire) and
explore thoroughly the boundaries of each postural behavior
till becoming expert on what they discover (Adolph and Joh,
2005, 2009). Adolph further argues that the building of a motor
repertoire is not preprogrammed with a specific developmental
timeline but that each postural behavior can be learned indepen-
dently as separated tasks without pre-ordered dependencies to the
other ones (crawling, sitting, or standing).

This viewpoint is also shared by neurobiologists who conceive
the motor system to structure the actions repertoire into “internal
models” for each goal to achieve (Wolpert and Flanagan, 2010;
Wolpert et al., 2011). Each novel contextual cue (e.g., handling
a novel object) promotes the acquisition and the use of a dis-
tinct internal model that does not modify the existing neural
representations used to control the limb on its own (White and
Diedrichsen, 2013). Moreover, each task set is evaluated depend-
ing on the current dynamics and on the current goal we want
to perform (Orban and Wolpert, 2011). For instance, we switch
dynamically from different motor strategies to the most appro-
priate one depending on the context; e.g., tilting the racket to the
correct angle in order to give the desired effect on the ball, or
for executing the proper handling of objets with respect to their
estimated masses (Cothros et al., 2006).

From a developmental viewpoint, the capability for flex-
ible decision-making gradually improves in 18 months-old
infants (Tenenbaum et al., 2011). Decision-making endows
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infants to evaluate the different alternatives they have for achiev-
ing one goal with respect to the ongoing sequence and to select the
correct one(s) among different alternatives. It owes them also the
possibility to inhibit some previously learned strategies in order
to explore new ones never seen before (Yokoyama et al., 2005).

IN AI, this craving to explore, to test and to embed new
behaviors is known as intrinsic motivation (Kaplan and Oudeyer,
2007). In Kaplan and Oudeyer’s words: “The idea is that a robot
(...) would be able to autonomously explore its environment not
to fulfill predefined tasks but driven by some form of intrinsic
motivation that pushes it to search for situations where learn-
ing happens efficiently”. In this paper, we focus more on the idea
that the rewards are self-generated by the machine itself (Singh
et al., 2010) and that the function of intrinsic motivation is
mainly to regulate the exploration/exploitation problem, driving
exploratory behavior and looking for different successful behav-
iors in pursuing a goal. In that context, we propose that the ability
to choose whether or not to follow the same plan or to create a
novel one out of nothing—in regard to the current situation—is
an intrinsic motivation. We studied for instance the role of the
neuromodulator acetylcholine in the hippocampus for novelty
detection and memory formation (Pitti and Kuniyoshi, 2011).

Meanwhile, the capability to make decision and to select
between many options is one important aspect of intrinsic moti-
vation because otherwise the system would be only passive and
would not be able to select or encourage one particular behavior.
Taking decisions in deadlock situations requires therefore some
problem-solving capabilities like means-end reasoning (Koechlin
et al., 2003) and error-based learning capabilities (Adolph and
Joh, 2009). For instance, means-end reasoning and error-based
learning are involved in some major psychological tests such
as the Piagetian “A-not-B error test” (Diamond, 1985; Smith
et al., 1999; Schöner and Dineva, 2007), Harlow’s learning set
test (Harlow, 1949) and tool-use (Lockman, 2000; Fagard et al.,
2012; Vaesen, 2012; Guerin et al., 2013). The A-not-B error test
describes a decision-making problem where a 9-month old infant
still pertains to select an automatic wrong response (e.g., the
location A) and cannot switch dynamically from this erronous
situation to the correct one (e.g., the location B). Above this age,
however, infants do not make the error and switch rapidly to the
right location. A similar observation is found in Harlow’s experi-
ments on higher learning (Harlow, 1949) where Rhesus monkeys
and humans have to catch the pattern of the experiment in a
series of learning experiences. Persons and monkeys demonstrate
that they learn to respond faster when facing a novel and simi-
lar situation by switching to the correct strategy, by catching the
pattern to stop making the error: they show therefore that they
do not master isolated tasks but, instead, they grasp the relation
between the events. In one situation, if the animal guessed wrong
on the first trial, then it should switch directly to the other solu-
tion. In another situation, if it guessed right on the first trial, then
it should continue. This performance seems to require that the
monkey, the baby or the person use an abstract rule and solve
the problem with an apparent inductive reasoning (Tenenbaum
et al., 2011). In line with these observations on the develop-
ment of flexible behaviors, researchers focused on tool-use: when
infants start to use an object as a means to an end, they serialize

their actions toward a specific goal, as for example reaching a toy
with a stick (Fagard et al., 2012; Rat-Fischer et al., 2012; Guerin
et al., 2013). Tool-use requires also finding patterns like the
shape of grasping, order and sequentiality of patterns (Cothros
et al., 2006).

Considering the mechanisms it may involve, Karen Adolph
emphasizes the ability of learning-to-learn (Adolph and Joh,
2005), a process akin to Harlow (1949). Harlow coined the expres-
sion to distinguish the means for finding solutions to novel
problems from simple associative learning and stimulus gener-
alization (Adolph, 2008). Adolph reinterprets this proposal and
suggests that two different kinds of thinking and learning are at
work in the infant brain, governing the aspects of exploration and
of generalization (Adolph and Joh, 2009). On the one hand, one
learning system is devoted to the learning of task sets from sim-
ple stimulus-response associations. For instance, when an infant
recognizes the context, he selects his most familiar strategy and
reinforces it within his delimiting parameter ranges. On the other
hand, a second learning is devoted to detect a new situation as is
and to find a solution dynamically in a series of steps. Here, the
acceptance of uncertainty gradually leads for making choices and
decisions in situation never seen before. However, which brain
regions and which neural mechanisms this framework underlies?

Among the different brain regions, we emphasize that the post-
parietal cortex (PPC) and the pre-frontal cortex (PFC) are found
important (1) for learning context-dependent behavior and (2)
for evaluating and selecting these behaviors relative to their uncer-
tainty and error prediction. Regarding the PPC, different senso-
rimotor maps co-exist to represent structured information like
spatial information or the reaching of a target, built on coordinate
transform mechanisms (Stricanne et al., 1996; Andersen, 1997;
Pouget and Snyder, 2000). Furthermore, recent studies acknowl-
edge the existence of context-specific neurons in the parieto-
motor system for different grasp movements (Brozovic et al.,
2007; Andersen and Cui, 2009; Baumann et al., 2009; Fluet et al.,
2010). Regarding the PFC, Johnson identifies the early develop-
ment of the pre-frontal cortex as an important component for
enabling executive functions (Johnson, 2012) while other studies
have demonstrated difficulty in learning set formation following
extensive damage of the prefrontal cortex (Warren and Harlow,
1952; Yokoyama et al., 2005). The PFC manipulates informa-
tion on the basis of the current plan (Fuster, 2001), and it is
active when new rules need to be learned and other ones rejected.
Besides, its behavior is strongly modulated by the anterior cin-
gulate cortex (ACC) which plays an active role for evaluating task
sets and for detecting errors during the current episode (Botvinick
et al., 2001; Holroyd and Coles, 2002; Khamassi et al., 2011). If we
look now at the functional organization of these brain structures,
many authors emphasize the interplay between an associative
memory of action selection in the temporal and parietal cortices
(i.e., an integrative model) and a working memory for actions
prediction and decision making in the frontal area (i.e., a serial
model) (Fuster, 2001; Andersen and Cui, 2009; Holtmaat and
Svoboda, 2009). All-in-all, these considerations permit us to draw
a scenario based on a two complementary learning systems.

More precisely, we propose to model a dual system based
on (1) the learning of task sets and on (2) the evaluation of
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these task sets relative to their uncertainty, and error prediction.
Accordingly, we design a two-level based neural system for
context-dependent behavior (PPC) and task exploration and pre-
diction (ACC and PFC); see Figure 1. In our model, the task sets
are learned separately by reinforcement learning in the post pari-
etal cortex after their evaluation and selection in the prefrontal
cortex and anterior cyngulate cortex. On the one hand, the learner
or agent stores and exploits its familiar knowledge through a rein-
forcement learning algorithm into contextual patterns called and
collected from all its different modalities. On the other hand, the
learner evaluates and compares the way it learns, and selects the
useful strategies while it discards others or tests new ones on
the fly if no relevant strategy is found. We perform two differ-
ent experimental setups to show the sensorimotor mapping and
switching between tasks, one in a neural simulation for model-
ing cognitive tasks and another with an arm-robot for motor task
learning and switching. We use neural networks to learn simple
sensorimotor mapping for different tasks and compute their vari-
ance and error for estimating the sensorimotor prediction. Above
a certain threshold, the error signal is used to select and to valu-
ate the current strategy. If no strategy is found pertinent for the
current situation, this corresponds to a novel motor schema that
is learned independently by a different map. In a cognitive exper-
iment similar to Harlow (1949) and Diamond (1990), we employ
this neural structure to learn multiple spatio-temporal sequences
and switch between different strategies if an error has occurred or
if a reward has been received (error-learning). In a psycho-physic
experiment similar to Wolpert and Flanagan (2010), we show how
a robotic arm learns the visuomotor strategies for stabilizing the
end-point of its own arm when it moves it alone and when it is
holding a long stick. Here, the uncertainty on the spatial location
of the end-point triggers the decision-making from the two strate-
gies by selecting the best one given the proprioceptive and visual
feedback and the error signal delivered.

2. MATERIALS AND METHODS
In this section, we present the neural architecture and the mecha-
nisms that govern the dynamics of the neurons, of reinforcement
learning and of decision-making. We describe first the bio-
inspired mechanism of rank-order coding from which we derive
the activity of the parietal and of the pre-frontal neurons. In

second, we describe the reinforcement learning algorithm, the
error prediction reward and the decision-making rules.

2.1. PPC—GAIN-FIELD MODULATION AND SENSORIMOTOR MAPPING
We employ the rank-order coding neurons to model the sen-
sorimotor mapping between input and output signals with an
architecture that we have used in a previous research (Pitti
et al., 2012). This architecture implements multiplicative neu-
rons, called gain-field neurons, that multiply unit by unit the
value of two or more incoming neural populations, see Figure 2.
Its organization is interesting because it transforms the incom-
ing signals into a basis functions’ representation that could be
used to simultaneously represent stimuli in various reference
frames (Salinas and Thier, 2000). The multiplication between
afferent sensory signals in this case from two population codes,
Xm1 and Xm2 , {m1, m2 ∈ M1, M2}, produces the signal activity Xn

to the n gain-field neurons, n ∈ N:

XGF = XM1 × XM2 (1)

The key idea here is that the gain-field neurons encode two
information at once and that the amplitude of the gain-field neu-
rons relates the values of one modality conditionally to the other;
see Figure 2A. The task is therefore encoded into a space of lower
dimension (Braun et al., 2009, 2010). We exploit this feature to
model the parietal circuits for different contextual cues and inter-
nal models, which means that, after the encoding, the output
layers learn the receptive fields of the gain-field map and trans-
lates this information into various gain levels. In Figure 2B, we
give a concrete example of one implementation, here delineated
to two modalities, with N gain-fields projecting to three different
tasks set of different size. We explain thereinafter (1) how the gain
fields neurons learn the associations between various modalities
and (2) how the neurons of the output map learn from the gain
fields neurons for each desired task.

2.2. RANK-ORDER CODING ALGORITHM
We implement a hebbian-like learning algorithm proposed by
Van Rullen et al. (1998) called the Rank-Order Coding (ROC)
algorithm. The ROC algorithm has been proposed as a dis-
crete and faster model of the derivative integrate-and-fire neu-
ron (Van Rullen and Thorpe, 2002). ROC neurons are sensitive

FIGURE 1 | Framework for task set selection. The whole system is
composed of three distinct neural networks, inspired from Khamassi et al.
(2011). The PPC network conforms to an associative network. It binds the
afferent sensory inputs from each other and map them to different motor
outputs with respect to a task set. The ACC system is a error-based working

memory that processes the incoming PPC signals and feeds back an error to
them with respect to current task. This modulated signal is used to tune the
population of neurons in PPC by reinforcement learning, it is also conveyed to
the PFC map, which is a recurrent network that learns dynamically the
spatio-temporal patterns of the ongoing episodes with respect to the task.
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to the sequential order of the incoming signals; that is, its rank
code, see Figure 3A. The distance similarity to this code is trans-
formed into an amplitude value. A scalar product between the
input’s rank code with the synaptic weights furnishes then a dis-
tance measure and the activity level of the neuron. More precisely,
the ordinal rank code can be obtained by sorting the signals’ vec-
tor relative to their amplitude levels or to their temporal order in a
sequence. We use this property respectively for modeling the sig-
nal’s amplitude for the parietal neurons and the spatio-temporal
patterns for the prefrontal neurons. If the rank code of the input
signal matches perfectly the one of the synaptic weights, then
the neuron fully integrates this activity over time and fires, see
Figure 3A. At contrary, if the rank order of the signal vector does
not match properly the ordinal sequence of the synaptic weights,
then integration is weak and the neuron discharges proportionally
to it, see Figure 3B.

The neurons’ output X is computed by multiplying the rank
order of the sensory signal vector I, rank(I), by the synaptic
weights w; w ∈ [0, 1]. For a vector signal of dimension M and for
a population of N neurons (M afferent synapses), we have for the

GF neurons and for the output PPC neurons:

{
XGF

n =∑
m∈M

1
rank(Im)

w
GF−Modality
n, m

XPPC
n =∑

m∈M
1

rank(Im)
wPPC−GF

n, m

(2)

The updating rule of the neurons’ weights is similar to the
winner-takes-all learning algorithm of Kohonen’s self-organizing
maps (Kohonen, 1982). For the best neuron s ∈ N and for all
afferent signals m ∈ M, we have for the neurons of the output
layer: {

wPPC−GF
s, m = wPPC−GF

s, m +�wPPC−GF
s, m

�wPPC−GF
s, m = 1

rank(Im)
− wPPC−GF

s, m ,
(3)

the equations are the same for GF neurons (not reproduced here).
We make the note that the synaptic weights follow a power-scale
density distribution that makes the rank-order coding neurons
similar to basis functions. This attribute permits to use them as
receptive fields so that the more distant the input signal is to the
receptive field, the lower is its activity level; e.g., Figure 3B.

FIGURE 2 | Task sets mapping, the mechanism of gain-fields. (A)

Gain-fields neurons are units used for sensorimotor transformation.
They transform the input activity into another base, which is then
fed forward to various outputs with respect to their task. Gain-fields
can be seen as meta-parameters that decrease the complexity of the

sensory-motor problem into a linear one. (B) example of GF neurons
sensorimotor transformation for two modalities projecting to three
different task sets; each GF neuron contributes to one particular
feature of the tasks (Pouget and Snyder, 2000; Orban and Wolpert,
2011).

FIGURE 3 | Rank-Order Coding principle (Thorpe et al., 2001). This
type of neuron encodes the rank code of an input signal. Its
amplitude is translated into an ordered sequence and the neuron’s

synaptic weights are associated to this sequence. The neural activity
is salient to this particular order only, see (A), and otherwise not,
see (B).
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2.3. REINFORCEMENT LEARNING AND ERROR REWARD PROCESSING
The use of the rank-order coding algorithm provides an easy
framework for reinforcement learning and error-based learn-
ing (Barto, 1995). For instance, the adaptation of the weights in
Equation 3 can be modified simply with a variable α ∈ [0, 1] that
can ponder �w; see Equation 4. If α = 0, then the weights are not
reinforced: Wt+ 1 = Wt . If α = 1, then the weights are reinforced
in the direction of �W : Wt+ 1 = Wt + α�W . In addition, condi-
tional learning can be made simply by summing an external bias
β to the neurons output X. By changing the amplitude of the neu-
rons, we change also the rank-order to be learned and influence
therefore the long-term the overall organization of the network;
see Equation 5.

�w ← α�w, α ∈ [0, 1] (4)

X ← X + β, β ∈ [−1,+1] (5)

2.3.1. Cortical plasticity in PPC
For modeling the cortical plasticity in the PPC output maps,
we implement an experience-driven plasticity mechanism.
Observations done in rats show that during the learning of novel
motor skills the synapses rapidly spread in the neocortex imme-
diately as the animal learns a new task (Xu et al., 2009; Ziv and
Ahissar, 2009). Rougier and Boniface proposed a dynamic learn-
ing rule in self-organizing maps to combine both the stability of
the synapses’ population to familiar inputs and the plasticity of
the synapses’ population to novel patterns (Rougier and Boniface,
2011). In order to model this feature in our PPC map, we rede-
fine the coefficient α in Equation 5 and we rearrange the formula
proposed by Rougier and Boniface:

α = e1/η2/||max(XPPC)−XPPC
s || ∈ [0, 1] (6)

where η is the elasticity or plasticity parameter that we set to 1 and
max(XPPC) is the upper bound of the neural activity, its maximal
value, whereas max(XPPC) is the current maximum value within
the neural population, with α = 0 when XPPC

s = max(XPPC). In
this equation, the winner neuron learns the data according to its
own distance to the data. If the winner neuron is close enough
to it, it converges slowly to represent the data. At contrary, if the
winner neuron is far from the data, it converges rapidly to it.

2.3.2. Error-reward function in ACC
For modeling ACC, we implement an error-reward function sim-
ilar to Khamassi et al. (2011) and to Q-learning based algorithms.
The neurons’ value is updated afterwards only when an error
occurs, then a ihnibitory feedback error signal is sent to the win-
ning neuron to diminish its activity Xwin: ACC(Xwin) = −1; the
neurons equation X is updated as follows:

XPPC
n =

∑
m∈M

1

rank(Im)
wn, m + ACC(XPPC

n ). (7)

The neurons activity in ACC is cleared everytime the sys-
tem responds correctly or provides a good answer. ACC can be
seen then as a contextual working memory, a saliency buffer

extracted from the current context when errors occur inhibiting
the wrong actions performed. Its activity may permit to establish
an exploration-based type of learning by trial and errors and an
attentional switch signal from automatic responses, in order to
deal with the unexpected when a novel situation occurs.

2.4. PFC—SPATIO-TEMPORAL LEARNING IN A RECURRENT NETWORK
We can employ the rank-order coding for modeling spike-based
recurrent neural network in which the amplitude values of the
incoming input signals are replaced by its past spatio-temporal
activity pattern. Although the rank-order coding algorithm has
been used at first to model the fast processing of the feed-forward
neurons in V1, its action has been demonstrated to replicate
also the hebbian learning mechanism of Spike Timing-Dependent
Plasticity (STDP) in cortical neurons (Bi and Poo, 1998; Abbott
and Nelson, 2000; Izhikevich et al., 2004). For a population of
N neurons, we arbitrarily choose to connect each neuron to a
buffer of size 20× N so that they encode the rank code of the
neurons amplitude value over the past 20 iterations. At each
iteration, this buffer is shifted to accept the new values of the
neurons.

XPFC
n =

∑
m∈M

1

rank(bufferm)
wn, m + XPPC

n . (8)

Recurrent networks can generate novel patterns on the fly
based on their previous activity pattern while, at each iteration,
a winning neuron gets its links reinforced. Over time, the sys-
tem regulates its own activity whereas coordinated dynamics can
be observed. These behaviors can be used for anticipation and
predictive control.

3. RESULTS
We propose to study the overall behavior of each neural system
during the learning of task sets and the dynamics of the ensemble
working together. The first three experiments are performed in
a computer simulation only. They describe the behavior of the
PPC maps working solely, working along the ACC system and
working along the ACC and PFC systems for learning and select-
ing context-dependent task sets. Experiment 4 is performed on
a robot arm. This experiment describes the acquisition and the
learning of two different task set during the manipulation or not
of a tool.

3.1. EXPERIMENT 1—PLASTICITY vs STABILITY IN LEARNING TASK
SETS

In this first experiment, we test the capabilities of our net-
work to learn incrementally novel contexts without forgetting the
older ones, which corresponds to the so-called plasticity/stability
dilemma of a memory system to retain the familiar inputs as well
as to incorporate flexibly the novel ones. Our protocol follows the
diagram in Figure 4 in which we show gradually four different
contexts for two input modalities with vectors of ten indices. The
input patterns are randomly selected from an area in the current
context chosen randomly and for a period of time also variable. In
this experiment, the PPC output map has 50 neurons that receive
the activity of twenty gain-fields neurons, see Figure 2B.
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We display in Figure 5A the raster plot of the PPC neurons’
dynamics with distinct colors with respect to the context.
Contexts are given gradually, one at a time, so that some neu-
rons have to unlearn their previous cluster first in order to fit
the new context. It is important to note that categorization is
unsupervised and decided due to the experience-driven plastic-
ity rule in Equation 6. In order to demonstrate the plasticity of
the PPC network during the presentation of a new context, we
present the context number four, plotted in magenta and never
seen before, at t = 11500. Here, the new cluster is rapidly formed

FIGURE 4 | Protocol setup in task sets learning. This simple protocol
explains how the experimental setup is done for acquiring different
contexts incrementally and for selecting them.

and stable over time due again to the cortical plasticity mech-
anism from Equation 6. The graph displays therefore not only
the plasticity of the clusters in the PPC network but also their
robustness.

This property is also shown in Figure 5B where the conver-
gence rates of the PPC weights vary differently for each task. This
result explains how the PPC self-organizes itself into different
clusters that specialize flexibly with respect to the task. The ratio
between stability and plasticity in shown in Figure 5C within the
network with the histogram of the neuron’s membership over a
certain time interval. The stability of one neuron is computed as
its probability distribution relative to each context. The higher
values correspond to very stable neurons, which are set to one
context only and do not deviate from it, whereas the lower val-
ues correspond to very flexible neurons that change frequently
context from one to another.

The histogram shows two probability distributions within the
system and therefore two behaviors. For the neurons correspond-
ing to values near the strong peak at 1.0, their activity is very stable
and strongly identified to one context. This shows that for one
third of the neurons, the behavior of the neural population is very
stable. At reverse, the power law curve centered on 0.0 shows the

FIGURE 5 | Raster plot of the PPC output map and plasticity vs.

stability within the map. (A) the graph displays the neural dynamics
during task switch among four different contexts. (B) Convergence rate
of the PPC network with respect to each task. (C) The degree of
plasticity and stability within the PPC output map is represented as the
probability distribution of the neurons membership to the cluster relative

to a context. This histogram shows two behaviors within the system. On
the one hand, one third of the neurons present very stable dynamics
with membership to one context only. On the other hand, two third of
the neurons are part of different clusters and therefore to different
contexts. The later neurons follow a power law distribution showing very
plastic dynamics.
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high variability of certain neurons, which are very dynamic for
one third of the neural population.

We study now the neurons’ activity during a task switch
in Figure 6. In graph (A), the blue lines correspond to the neu-
rons’ dynamic belonging to the context before the switch and
the red lines correspond to the neurons’ dynamic belonging to
the context after the switch. The activity level in each cluster
is very salient for each context. The probability distribution of
the neurons’ dynamic, with respect to each context is plotted
in Figure 6B. It shows a small overlap between the contexts before
and after the switch.

3.2. EXPERIMENT 2—LEARNING TASK SETS WITH A REINFORCEMENT
SIGNAL

In this second experiment, we reproduce a decision-making prob-
lem similar to those done in monkeys and humans with multiple
choices and rewards (Churchland and Ditterich, 2012). The rules
are not given in advance and the tasks switch randomly after a
certain period of time with no regular pattern. The goal of the
experiment is to catch the input-output correspondence pattern
to stop making the error. The patterns are learned dynamically
by reinforcement learning within each map and should ideally be
done without interference from each other. The error signal indi-
cates when an input-output association is erronous with respect
to a hidden policy, however, we make the note that it does not
provide any hint about how to minimize the error. To understand
how the whole system works, we focus our experiment on the PPC
network with the ACC error processing system first, then with the
PFC network. We choose to perform a two-choices experiment,
with two output PPC maps initialized with random connections
from the PPC map. The PPC network consists therefore of the
gain-field architecture with the two output maps for modeling the
two contexts. The two maps are then bidirectionally linked to the
ACC system; the input signals for modality 1 and 2 are projected
to the PPC input vectors of twenty units each; map1 has twelve
output units and map2 has thirteen output units and project to
ACC of dimension twenty-five units.

The hidden context we want the PPC maps to learn is to have
output signals activated for specific interval range of the inputs

signals, namely, the first output map has to be activated when
input neurons of indices below ten are activated, and recipro-
cally, the second output map has to be activated when input
neurons of indices above ten are activated—this corresponds to
the two first contexts in Figure 4. The error prediction signal is
updated anytime a mistake has been done on the interval range
to learn. As expressed in the previous section, the ACC error sig-
nal resets always its activity when the PPC maps start to behave
correctly.

We analyze the performance of the PPC-ACC system in the
following. We display in Figures 7A,B the raster plots of the PPC
and ACC dynamics with respect to the context changes for dif-
ferent periods of time. The chart on the top displays the timing
for context switch, the chart on the middle plots the ACC sys-
tem working memory and the chart below plots the output of
the PPC units. The Figure 7A is focusing on the beginning of
the learning phase and the Figure 7B when the system has con-
verged. We observe from these graphs that the units of the output
maps self-organize very rapidly to avoid the error. ACC modulates
negatively the PPC signals. We make the note that the error sig-
nal does not explicitly inhibit one map or the other but only the
wrongly actived neuron of the map. As it can be observed, over
time, each map specializes to its task. As a result, learning is not
homogenous and depends also to the dimension of the context;
that is, each map learns with a different convergence rate. ACC
error rapidly reduces its overall activity for the learning of task1
with respect to map1, although the error persists for the learn-
ing of task2 with respect to map2 where some neurons still fires
wrongly.

We propose to study the convergence of the two maps and
the confidence level of the overall system for the two tasks. We
define a confidence level index as the difference of amplitude
between the most active neurons in map1 and map2. We plot
its graph in Figure 8 where the blue color corresponds to the
confidence level for task1 with vs_map1 − vs_map2 and the color
red corresponds to the confidence level for task2 with vs_map2 −
vs_map1 during the learning phase. The dynamics reproduce sim-
ilar trends from Figure 7 where the confidence level constantly
progresses till convergence to a stable performance rate, with a

FIGURE 6 | Cluster dynamics at the time to switch. (A) Neural dynamics of the active clusters before and after the switch; resp. in blue and in red.
(B) Histogram of the neural population at the time to switch with respect to the active clusters before and after the switch.
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FIGURE 7 | Experiment on two-choices decision making and task

switching. (A) Neural dynamics of PPC neurons and ACC error system
during task switch. We plot in the chart in the top the temporal interval for
each task. Below the, neural dynamics of the PPC maps and in the middle, its
erronous activity retranscribed in the ACC system. ACC works as a working

memory that keep tracks of the erronous outputs, which is used during the
learning stage. ACC is reset each time the PPC system gives a correct
answer. Through reinforcement learning, the PPC maps converge gradually to
the correct probability distribution. (B) Snapshot of the PPC maps in blue
modulated negatively by ACC in red.

FIGURE 8 | Confidence Level of PPC maps during task switch, dynamics

and histogram. (A) The confidence level is the difference between the
amplitude of most activated neuron and the second one within each map.
After one thousand iterations, the two maps rapidly specialize their dynamics
to its associated task. This behavior is due to the ACC error-based learning.

(B) histogram of the probability distribution of the confidence level with and
without ACC. With ACC, we observe a clear separation in two distributions,
which correspond to a decrease of uncertainty with respect to the task. In
comparison, the confidence level in an associative network without an error
feedback gives a uniform distribution.

threshold around 0.4 above which a contextual state is recog-
nized or not. Before 1000 iterations, the maps are very plastic so
the confidence level fluctuates rapidly and continuously between
different values but at the end of the learning phase, the maps
are more static so the confidence level appears more discrete.
This state is clearly observable from the histogram of the con-
fidence level plotted on the right in Figure 8B for the case
where the ACC error signal is injected to the associative net-
work. The graph presents a probability distribution with two
bell-shaped centred on 0.1 and 0.7, which corresponds to the
cases of recognition or not of the task space. In comparison,
the probability distribution for the associative learning without
error-feedback is uniform, irrespective to the task; see Figure 8B
in blue.

3.3. EXPERIMENT 3—ADAPTIVE LEARNING ON A TEMPORAL
SEQUENCE BASED ON ERROR PREDICTION REWARD

We attempt to replicate now Harlow’s experiments on adaptive
learning, but, in comparison to the previous experiments, it is the
temporal sequence of task sets that is taken into account for the
reward. We employ our neural system in a cognitive experiment
first to learn multiple spatio-temporal sequences and then to pre-
dict when a change of strategy has occurred based on the error
or on the reward received. With respect to the previous section
also, we add the PFC-like recurrent neural network to learn the
temporal sequence from the PPC and ACC signals, see Figure 1.

The experiment is similar to the previous two-choices
decision-making task, expect that the inputs follow now a tempo-
ral sequence within each map. When the inputs reach a particular
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point in the sequence–, a point to switch,– we proceed to a
random choice between one or the two trajectories. As in the
previous section, the learning phase for the PPC rapidly con-
verges to the specialization of the two maps thanks to the ACC
error-learning processing. Meanwhile, the PFC learns the tem-
poral organization of the PPC outputs based on their sequential
order, Figure 9A. We do not give to the PFC any information
about length, the number of patterns or the order of the sequence.
Besides, each firing neuron reinforces its links with the current
pre-synaptic neurons; see the raster plot in Figure 9B. After the
learning phase, each PFC neuron has learned to predict some por-
tion of the sequence based on the past and current PFC activity.
Their saliency to the current sequence is retranscribed in their
amplitude level. We plot the activity level of the neurons #10 and
#14 respectively in black and red in the second chart. This graph
shows that their activity level gradually increases for period inter-
vals of at least ten iterations till their firing. The points to switch
are also learned by the network and they are observable when the
variance of the neurons’ activity level becomes low, which is also
seen when the confidence level goes under 0.4; which corresponds
to the dashed black line in the first chart. For instance, we plot
the dynamics of the PPC neurons and of the PFC neurons during
such situation in Figure 10A at time t = 1653. The neural dynam-
ics of each map display different patterns and therefore, different
decisions. The PPC activates more the neurons of the first map
(the neurons with indices below thirteen in blue) whereas the PFC
activates more the neurons of the second map (the neurons with
indices above thirteen in dashed red). This shows that the PFC
is not a purely passive system driven by the current activity in
PPC/ACC. Besides, it learns also to predict the future events based
on its past activity. The PFC fuses the two systems in its dynam-
ics, and this is why it generates here a noisy output distribution
due to the conflicting signals. We plot in Figure 10B the influ-
ence of PPC on the PFC dynamics. In 60% of the cases, the two
systems agree to predict the current dynamics. This corresponds

to the case of an automatic response when familiar dynamics are
predicted. During conflicts, a prediction error is done by one of
the two systems and in more cases the PPC dynamics, modulated
by ACC, overwrite the values of the PFC units (blue bar). This sit-
uation occurs during a task switch for instance. At reverse, when
PFC elicites its own values with respect to PPC (red bar), this situ-
ation occurs more when there is ambiguous sensory information
that can be overpassed.

In order to understand better the decision-making process
within the PFC map, we display in Figures 11A,B the temporal
integration done dynamically at each iteration within the net-
work. Temporal integration means the process of summing the
weights in Equation 2 at each iteration with respect to the current
order. If the sequence order is well recognized, then the neu-
ron’s value goes high very rapidly, otherwise its value remains to
a low value. As we explained it in the previous paragraph, each
neuron is sensitive to certain patterns in the current sequence
based on the synaptic links within the recurrent network. This
is translated in the graph by the integration of bigger values. The
spatio-temporal sequences they correspond to are darkened pro-
portionally to their activation level. The higher is the activation
level integration during the integration period, the faster is the
anticipation of the sequence. We present the cases for a unam-
biguous pattern in Figure 11A and for an ambiguous sequence
activity in Figure 11B. The case for a salient sequence recogni-
tion in Figure 11A indicates that the current part of the sequence
is well estimated by at least one neuron, the winning neuron,
which predicts well the sequence over twenty steps in advance,
see the chart below. In comparison, the dynamics in Figure 11B
show a more uniform probability distribution. This situation
arises when a bifurcation point is near in the sequence, it indi-
cates that the system cannot predict correctly the next steps of the
sequence.

Considering the decision-making process per se, there is not
a strict competition between the neurons, however, each neuron

FIGURE 9 | Raster plot for PFC neurons. In (A), the PFC learns the
particular temporal sequence from PPC outputs and it is sensitive to the
temporal order of each unit in the sequence. In (B) on the top chart, the
confidence level on the incoming signals from the PPC is plotted. The chart

in the middle displays the neural activity for two neurons from the two
distinct clusters. The neuron #10 in black (resp. cluster #1) and the neuron
#14 in red (resp. cluster #2). The raster plot of the whole system is plotted
in the chart below.
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FIGURE 10 | PFC vs. PPC dynamics. (A) The snapshot of the PPC/PFC
dynamics at time t = 1653 show conflicting choices between the two maps,
which correspond to a bifurcation point. After temporal integration, the PFC is
processing the decision-making of a winner neuron different from the PPC
choice. (B) Three PPC/PFC interactions occur, when PPC overwrites the

values of PFC units, when PFC elicites its own values with respect to PPC
and when both agree on the current predict. The PPC-PFC system works
mostly in coherence from each other for 60% of the time (green bar) but in
situations of conflict, the PPC overwrites twice the dynamics of the PFC
network (blue bar) than the reverse (red bar).

FIGURE 11 | PFC neuron’s integration at time t = 604 and t = 2400.

(A) Depending on the current situation, a neuron will be more
selective to one part of the sequence or to another. The earlier a

sequence is detected, the farther the prediction of the trajectory. (B)

At bifurcation points, the trajectories are fuzzier and several patterns
are elicited.

promotes one spatio-temporal sequence and one probability
distribution. Therefore, we have within the system 25 spatio-
temporal trajectories embedded. Based on the current situation,
some neurons will detect better one portion of the sequence than
others and the probability distribution will be updated in conse-
quence to chain the actions sequentially, whereas other portions
will collapse. The decision-making looks therefore similar to a
self-organization process.

At this point, no inhibitory system has been implemented
directly in PFC that would avoid a conflict in the sequence
order. Instead, the PFC integrates the PPC signals with the ACC
error signals. The temporal sequences done in the PPC to avoid
the errors at the next moves are learned little by little by reinforce-
ment in the PFC. These sequences become strategies for error
avoidance and explorative search. Over time, they learn the pre-
diction of reward and the prediction of errors (Schultz et al., 1997;
Schultz and Dickinson, 2000).

We perform some functional analysis on the PFC network
in Figure 12. The connectivity circle in Figure 12A can permit
to visualize the functional organization of the network at the
neurons’ level. We subdivide the PFC network into two sub-
maps corresponding to the task dynamics in blue and red. We
draw the strong intra-map connections between the neurons in
the same color to their corresponding sub-maps as well as the
strong inter-map connections between neurons of each map.
Each neuron has a different connectivity in the network and
the more it has connection the more it is central in the net-
work. These neurons propagate information within and between
the sub-maps, see Figure 12B. In complex systems terms, they
are hub-like neurons from which different trajectories can be
elicited. In decision-making, they are critical points for changing
task. The density probability distribution plotted in Figure 12C
shows that the maximum number of connections per neuron with
strong synaptic weights reaches the number of four connections.
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FIGURE 12 | PFC network analysis. (A) Connectivity circle for the neurons
of the PFC map. In blue are displayed the neurons belonging to cluster 1 and
in red are displayed the neurons belonging to cluster 2. The number of links
within each cluster (intra-map connectivity) is higher than the number of links
between them (inter-map connectivity). Moreover, the number of highly
connected neurons is also weak. these charateristic replicate the ones of
complex systems and of small-world networks in particular. (B) Task switch is

done through these hub-like neurons which can direct the trajectory from one
or the other task. (C) The connectivity level per neurons within the network
follows a logarithmic curve typical of complex networks, where the mostly
connected neurons are also the fewer and the most critical with 4 distant
connections. (D) The PFC network contributes to enhance the
decision-making process in comparison to the PPC-ACC system due to the
learning of the temporal sequence and to its better organization.

Their number drastically diminishes with respect to the num-
ber of connections and their trend follows a logarithmic curve.
These characteristics correspond the properties of small-world
and scale-free networks.

In Figure 12D, we analyze the performance of the overall sys-
tem when the PFC is added. The decision-making done in the
PFC permits to decrease the error by a factor two: ten percents
error in comparison to experiment 2. The prediction done in the
recurrent map shows that the PFC is well organized to anticipate
rewards and also task switch.

3.4. EXPERIMENT 4—ROBOTIC EXPERIMENT ON SENSORIMOTOR
MAPPING AND ACTION SELECTION

We want to perform now a robotic experiment on action selection
and decision making in the motor domain with a robotic arm of
6 degrees of freedom from the company Kinova; see Figure 13.
We inspire ourself on the one hand from Wolpert’s experiments
on structural learning and representation of uncertainty in motor
learning (Wolpert and Flanagan, 2010; Orban and Wolpert, 2011)
and on the other hand from Iriki’s experiments on the spatial
adaptation following active tool-use (Iriki et al., 1996; Maravita

and Iriki, 2004). Here, we attempt to learn different relations
between states and motor commands when the robot controls its
own arm alone and when it handles a tool. The question arises
whether the robot will learn the structural affordances of the tool
as a distinct representation or, instead, as part of its limb’s rep-
resentation (Cothros et al., 2006; Kluzik et al., 2008). Iriki et al.
(1996) reported that bimodal-cell visual receptive fields (vRFs)
show spatial adaptation following active tool-use, but not passive
holding. The spatial estimation of its own body limits—that is, its
body image,—is different depending on the attention to the tool.
The goal is therefore to estimate properly the current situation on
which the robot is, which means handling a stick or not, actively
or passively.

In our framework, we expect that the errors of spatial esti-
mation on the end-point can be gradually learned and that
sensorimotor mapping will change with respect to the tasks the
robot has to perform (Wolpert and Flanagan, 2010; Orban and
Wolpert, 2011). Figures 13A,B display the arm robot when it
holds a salient toy and when it handles a stick with the toy at
its end-point. In this experiment, a fixed camera is mapping the
x-y coordinates of the salient points (i.e., the toy) while the robot
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moves its arm around its elbow; we make the note that we cir-
cumscribe the problem to two modalities only in order to control
just one articulation with respect to the Y axis in the camera.

In the previous experiments, we did not exploit specifically the
properties of the gain-field neurons for mapping sensorimotor

FIGURE 13 | Robot arm Kinova for task-set selection. The two task-sets
correspond to (A) the situation when it is moving its hand alone with the
red target on its hand and (B) the situation when it is moving the stick on its
hand with the red target on the tip of the tool.

transformation. Here instead, we use the gain-field mechanism
to combine the visuomotor information into the PPC system for
the two contexts. With respect to the task, the PPC output maps
will learn the specific amplitude of the gain-field neurons corre-
sponding to the specific visuomotor relationships (Holmes et al.,
2007).

For instance, we plot in Figures 14A–D the activity level of
four different gain-field neurons relative to the motor angle θ0

of the robot arm. The blue dots represent the situation when it
weaves the hand in front of the camera and the red dots repre-
sent the situation when it is handling the tool. As the gain-field
neurons learn the specific relationship between certain values
of the XY coordinates of the end-point effector and the motor
angle θ0, this value is modulated when the robot arm uses the
stick; see resp. Figures 14A–D. The visuo-motor translation in
the XY plane when the robot is handling the tool produces a gain
modulation that decreases or increases the neurons’ activity level.

Hence, the visuomotor coordination changes instantaneously
the GF neurons’ activity level relative to the current task set
and the PPC is dynamically driven by the input activity (not
displayed). The neural activity in the PFC map, instead, can
evolve autonomously and independently with respect to the input
activity, even if the PPC dynamics are presented for a short expo-
sure; this behavior is displayed in the raster plot in Figure 15A.

FIGURE 14 | Dynamics of the gain-field neurons relative to the task. (A–D) In blue, the robot moves its hand freely. In red, the robot is handling the tool.
Depending on what the GF neurons have learned, their peak level will diminish or increase when changing the task (i.e., using a tool).

FIGURE 15 | PFC Attention decision during contextual change, hand-free

or tool-use. (A) we expose to the PFC dynamics some incomplete patterns
for a short period of time of 20 iterations, every 500 iterations. The PFC is

capable to switch to the reconstruct back the missing part of the
spatio-temporal sequence; in blue for hand-free and in red for tol-use.
(B) Neural activity for one neuron when one of the two contexts is set.
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When we expose the PFC neurons to the PPC dynamics for a
small period of time—20 iterations every 500 iterations (the seg-
ments on the top chart),—the network is able to reconstruct
dynamically the rest of the ongoing sequence; see Figure 15B. For
instance, the neuron #8 is selective to the particular context of
hand-free (blue lines). The contextual information is maintainted
as a stable pattern of the neural activity in the working memory
and the contexts are accessible and available for influencing the
ongoing processing. As a recurrent network, the PFC behaves sim-
ilarly to a working memory. It embeds the two different strategies
depending on the context, even in presence of incomplete inputs
and can select to attend or not to the tool.

4. DISCUSSION
The ability to learn the structure of actions and to select on
the fly the proper one given the current task is one great leap
in infants cognition. During development, infants learn to dif-
ferentiate their motor behaviors relative to various contexts by
exploring and identifying the correct structures of causes and
effects that they can perform by trial and errors. This behav-
ior corresponds to an intrinsic motivation, a mechanism that is
argued to drive cognitive development. Besides, Karen Adolph
emphasizes the idea of “learning-to-learn” in motor develop-
ment, an expression akin to Harlow that appears in line with
the one of intrinsic motivation. She proposes that two learn-
ing mechanisms embody this concept during the development
of the motor system—, respectively an associative memory and
a category-based memory,– and that the combination of these
two learning systems is involved in this capacity of learning-to-
learn. Braun et al. (2010) foster a similar concept and suggest
that motor categorization requires 1) a critic for learning the
structure, i.e., an error-based system, and 2) a learning system
that will learn the conditional relationships between the incom-
ing variables; which means, the parameters of the task. They
argue that once these parameters are found, it is easier to trans-
fer knowledge from one initial task to many others. All-in-all, we
believe that these different concepts on structural learning are
important to scaffold motor development and to have intrinsic
motivation in one system. Thus the question arises what are the
neural mechanisms involved in structural learning and in flexible
behaviors?

To investigate this question, we have modeled an architec-
ture that attempts to replicate the functional organization of the
fronto-parietal structures, namely, a sensorimotor mapping sys-
tem, an error-processing system and a reward predictor (Platt
and Glimcher, 1999; Westendorff et al., 2010). The fronto-parietal
cortices are involved in activities related to observations of alter-
natives and to action planning, and the anterior cyngulate cortex
is a part of this decision-making network. Each of these neural
systems contribute to one functional part of it. The ACC system is
processing the error-negativity reward to the PPC maps for spe-
cialization and to the PFC network for reward prediction. The
PPC network organizes the sensorimotor mapping for different
tasks whereas the PFC learns the spatio-temporal patterns during
the act.

In particular, the PPC is organized around the mechanism
of gain-modulation where the gain-fields neurons combine the

sensory inputs from each other. We suggest that the mechanism of
gain-modulation can implement the idea of structural learning in
motor tasks proposed by Braun and Wolpert (Braun et al., 2009,
2010). In their framework, the gain-field neurons can be seen as
basis functions and as the parameters of the learning problem. It
is interesting to note that Braun and al. make a parallel with the
bayesian framework, which has been also proposed to describe the
gain-field mechanism. For instance, Deneve explains the compu-
tational capabilities of gain-fields in the context of the bayesian
framework to efficiently represent the joint distribution of a set of
random variables (Denève and Pouget, 2004).

Parallely, we used three specific intrinsic mechanisms for
enhancing structural learning: the rank-order coding algorithm,
the cortical plasticity and an error-based reward. For instance, the
rank-order coding algorithm was used to emulate efficiently
the so-called spike timing-dependent plasticity to learn spatio-
temporal sequences in a recurrent network (Bi and Poo, 1998;
Abbott and Nelson, 2000). The PFC system exploits their prop-
erties for self-organizing itself by learning the sequences of each
task as well as the switch points. PFC neurons learn specific tra-
jectories and at each iteration, a competition process is at work to
promote the new steps of the ongoing sequence. Besides, cortical
plasticity was modeled in PPC maps with an activity-dependent
learning mechanism that promotes the rapid learning of novel
(experienced-based) tasks and the stabilization of the old ones.
An advantageous side-effect of this mechanism is that PPC neu-
rons become context-dependent, which is a behavior observed
also in the reaching neurons of the parieto-motor system, the
so-called mirror neurons (Gallese et al., 1996; Brozovic et al.,
2007). The results found on cortical plasticity are in line with
observations on the rapid adaptation of the body image and
of the motor control. Wolpert observed that the motor system
incorporates a slow learning mechanism along a fast one for
the rapid formation of task sets (Wolpert and Flanagan, 2010).
The cortical plasticity is also influenced by an error-based sys-
tem in ACC that reshape the PPC dynamics with respect to the
task. The negative reward permits to inhibit the wrong dynam-
ics but not to elicite the correct ones. Those ones are gradu-
ally found by trial and errors, which replicate an exploration
process.

We believe that these different mechanisms are important for
incremental learning and intrinsic motivation. However, many
gaps remain. For instance, a truly adaptive system should show
more flexibility during familiar situations than during unfamiliar
ones. Retranscribed from Adolph and Joh (2005), a key to flexibil-
ity is (1) to refrain from forming automatic responses and (2) to
identify the critical features that allow online problem solving to
occur. This ability is still missing in current robots. In the context
of problem solving in tool-use, Fagard and O’Regan emphasizes
the similar difficulty for infants to use a stick for reaching a toy.
They also observe that below a certain age, attention is limited
to one object only as they just cannot “hold in mind” the main
goal in order to perform one subgoal (Fagard et al., 2012; Rat-
Fischer et al., 2012). Above this period, however, Fagard and
O’Regan observe an abrupt transition in their behaviors when
they became capable to relate two actions at a time, to plan con-
secutive actions and to use recursion. They hypothesize that after
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16 months, infants are able to enlarge their focus of atten-
tion to two objects simultaneously and to “bufferize” the main
goal. We make a parallel with the works of Koechlin and col-
leagues Koechlin et al. (2003); Collins and Koechlin (2012)
who attribute a monitoring role to the frontal cortex for
maintaining the working memory relative to the current tasks
and for prospecting the different action sequences or episodic

memories (Koechlin and Summerfield, 2007), which will be our
next steps.
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