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Abstract Chemotherapy and radiation therapy (RT) are
standard therapeutic modalities for patients with cancer,
including breast cancer. Historic studies examining tissue
and cellular responses to RT have predominantly focused on
damage caused to proliferating malignant cells leading to their
death. However, there is increasing evidence that RT also
leads to significant alterations in the tumor microenvironment,
particularly with respect to effects on immune cells infiltrating
tumors. This review focuses on tumor-associated immune cell
responses following RT and discusses how immune responses
may be modified to enhance durability and efficacy of RT.

Keywords Radiation therapy - Leukocytes - Inflammation -
Immune cell - Cancer
Introduction

A role for leukocytes in solid tumor development has long
been suspected [1]; however, only recently have immune-
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competent spontaneous models of human cancer develop-
ment enabled mechanistic evaluation of leukocytes to
determine if their presence in solid tumors is coincidental
or functional. With the advent of mouse models of multi-
stage neoplastic progression, it is now clear that lymphoid
and myeloid cells can either restrain or propel cancer
development, depending on their maturation state, as well
as the local microenvironment regulating their bioeffector
phenotype [2—4]. A role for immune cells as mediators of
therapeutic response in cancers has only recently been
explored [5, 6].

Chemotherapy (CTX) and radiation therapy (RT) remain
as part of the standard therapeutic armament for patients
with cancer, including breast cancer (BC) [7]. Both CTX
and RT impact growing cancers through their ability to
induce cell death by disrupting various parameters of cell
biology necessary for survival. However, recent data has
emerged demonstrating that the type of cell death induced
by cytotoxic therapy is significant with regards to the type
of immune response elicited within a tissue [8]. These
studies have revealed that effectiveness of CTX and RT
may in part depend on whether cell death (induced by
cytotoxic therapy) is “sensed” by leukocytes [5, 9, 10].
Leukocytes detect cell death through immune-based
receptors for molecules released by dying cells (often
termed “danger signals”), such as toll-like receptor
(TLR)-4 and its ligands including the high-mobility
group box protein (HMGB) 1 [11]. Detection of danger
signals in tissues by leukocytes activates an immune
response involving cells of the innate (myeloid and natural
killer cells) and adaptive (T and B cell) lineages. This
review will focus on immunologic consequences of RT
and discusses emerging data indicating that therapeutic
reprogramming of immune responses in tumors may
regulate efficacy and durability of RT.
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Immune Cells and Cancer Development

Cancer research has primarily focused on the role of
activating and/or inactivating mutations in genes regulating
aspects of cell proliferation or cell death. Much of that
research has been geared towards understanding how these
activating and/or inactivating mutations support the multi-
step model of tumorigenesis where progressive accumula-
tion of genetic changes in somatic cells act as drivers of
cancer development [12]. This neoplastic cell-intrinsic
perspective of multi-stage tumorigenesis overlooks progres-
sive alterations in the tumor microenvironment that also
regulate cancer development [13]. Solid tumors contain
neoplastic and non-neoplastic stromal cells embedded in a
dynamic extracellular matrix (ECM) microenvironment.
Cellular components of tumor stroma include hematog-
enous and lymphatic vascular cells, infiltrating and
resident leukocytes, various populations of fibroblasts
and mesenchymal support cells unique to each tissue
microenvironment. Clinical and experimental studies
have established that chronic infiltration of neoplastic
tissue by leukocytes, i.e., chronic inflammation, promotes
development and/or progression of solid tumors. However,
the organ-specific cellular and molecular programs that favor
pro-tumor, as opposed to anti-tumor immunity by leukocytes
remain incompletely understood.

Retrospective clinical studies have revealed an increased
presence of extra follicular B cells, T regulatory (T,) cells,
high ratios of CD4/CD8 or Ty2/Tyl T lymphocytes in
primary tumors or in draining lymph nodes that correlate
with tumor grade, stage and overall survival (OS) [14-22].
Lymphocyte density in pretreatment biopsies has also been
found to represent an independent predictor of complete
pathologic response following anthracycline and taxane-
based chemotherapy [23]. On the other hand, high densities
of macrophages in BC stroma, and some other solid tumors,
correlates with increased vascular density and worse
clinical outcome [24-29]. Infiltration of macrophages
inside tumor nests however, particularly when CD8"
cytotoxic lymphocytes (CTL) are also present, correlates
with increased overall survival (OS) [30]. These differences
might be explained in part by the realization that
macrophages exert either pro- or anti-tumor bioactivities
depending on the types of cytokines to which they are
exposed. Macrophages exposed to Tyl cytokines including
interferon (IFN)y, tumor necrosis factor (TNF)x, and
granulocyte monocyte-colony stimulating factor (GM-CSF)
exhibit enhanced cytotoxic activity, production of pro-
inflammatory cytokines and antigen presentation [31, 32].
On the other hand, macrophages exposed to T2 cytokines
such as interleukin (IL)-4 and -13, immune complexes or
immunosuppressive cytokines [31] instead block CTL
activity and promote angiogenesis and tissue remodeling
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[33, 34]. Thus, the presence of leukocytes can exert either a
positive or negative force depending on the functional
properties they possess.

Radiation Therapy and Activation of Stress Response
Pathways

Historically, RT was thought to induce an immunosuppres-
sive microenvironment largely based on experimental
studies with whole body irradiation revealing lower levels
of circulating lymphocytes resulting from increased
radiation sensitivity of bone marrow as compared to other
tissues [35]. Fas, a cell surface proapototic protein and
member of the tumor necrosis factor receptor (TNF-R)
family, contains an intracellular "death domain" that is
activated following ligand binding that subsequently
leads to apoptosis. Fas is expressed on many cell types
including lymphocytes and is upregulated in response to
cell damage. Activation of Fas-mediated cell death is a
mechanism by which immune cells eliminate damaged
cells, including those damaged by RT [36]. Thus, while
whole body radiation is “immunosuppressive” due to
triggering widespread apoptosis of immune cells via Fas,
focal radiation such as that used for treatment of many
types of solid tumors instead has limited immunosuppres-
sive side effects, and may actually promote changes in the
local tumor microenvironment that paradoxically enhance
infiltration and activation of multiple immune cell types
(Fig. 1) that may either foster, and/or suppress tumor
development [2].

At the most simplistic level, a main mechanism by
which ionizing radiation mediates a biologic effect is via
generation of free radicals that lead to genotoxic (DNA)
damage, and subsequent activation of stress-response path-
ways through activation of the DNA damage pathway
ataxia telangiectasia mutated (ATM). Activation of the
ATM protein pathway following RT involves activation of
p53 and nuclear factor (NF)-kB transcription factors [37,
38]. NF-kB can also be activated independently of DNA
damage through radiation-induced activation of TNFR-
associated factors (TRAFs) [39, 40]. NF-kB directly
regulates expression of molecules that promote a “pro-
inflammatory” immune response, including TNF-« [41],
interleukin (IL)-1 [42], chemokines such as CCL5 [43];
adhesion molecules including intracellular adhesion mole-
cule (ICAM)-1 [44, 45], E-selectin [46] and vascular cell
adhesion molecule (VCAM)-1 [47], as well as major
histocompatability complex (MHC) molecules (Fig. 2)
[48], and expression of several anti-apoptotic genes
including Bax and Bcl-2 [49-52]. Signaling cascades
induced by radiation through ATM/NF-kB, in addition to
the direct cell death resulting from radiation damage,
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Figure 1 Leukocyte infiltration following RT. Representative tissue
sections of mammary carcinomas stained with hematoxylin and eosin (A)
following isolation from a murine mammary carcinoma 96 h after
receiving 5 Gy of localized gamma irradiation. CD45" staining (red) of

stimulates influx and activation of leukocytes leading to a
productive immune response.

Immune Responses to Radiation
RT and Cytokine Expression Cytokines are peptide-type

regulatory proteins, such as the interleukins and lympho-
kines, released by immune cells leading to generation of an

adjacent tissue sections (B) demonstrates extent of leukocyte infiltration
following RT. The percentage change in CD45" cell infiltration was
assessed by flow cytometry of whole tumor cell suspensions revealing a
significant increase in CD45" cells following RT.

immune response. Some cytokines act to inhibit immune
responses, e.g. IL-10 and transforming growth factor
(TGF)-f3, or instead stimulate immune responses, e.g.,
TNF-o« or IL-1 [53]. TNF-« and IL-1 are pro-
inflammatory cytokines that also mediate leukocyte recruit-
ment in tumors [53, 54]. In the 1980’s, Hallahan and
colleagues reported that TNF-oc mRNA and protein levels
were increased in human sarcoma cells following RT, an
effect that sensitized tumor cells to radiation-induced cell
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Figure 2 Schematic of the immune response to RT. Tumor cells
respond to ionizing RT by upregulating cytokines (TNFa, IL-1ot/f3
and IL-6), adhesion molecules (ICAM-1, VCAM-1, E-selectin) and
MHC Class 1. Death of tumor cells also generates release of
inflammatory molecules HMGB1 and ATP. This response recruits

death [55]. Macrophage-derived IL-1¢ and IL-1{3 have also
been found increased in response to RT in vivo following
sublethal total body irradiation [56-58], as also have IL- 6
[59] and TGF-3 [60]. Consequences resulting from the
release of these cytokines are recruitment and activation of
leukocytes from peripheral blood and extravasation into
tissue (tumor) parenchyma as is illustrated in Fig. 1.

Adhesion Molecules Regulated by RT Adhesion molecules
are proteins located on the cell surface that mediate
interaction with other cells or extracellular matrix. Cell
adhesion molecules such as ICAM-1, E-selectin and
VCAM-1 are upregulated on endothelial cells during
inflammation and are critical for leukocyte trafficking
across endothelial barriers [61]. Vascular endothelial cells
within tumor vessels respond to RT by upregulation of
ICAM-1 and E-selectin and thereby facilitate leukocyte
arrest and adhesion prior to transmigration [62]. Blockade
of CDI11b, the ligand for ICAM-1, in a transplantable
murine squamous carcinoma model significantly reduced
tumor-infiltration by CD11b" myeloid cells following RT
resulting in diminished tumor growth [63]. Similarly,
examination of tumor tissue removed from head and neck
cancer patients following RT revealed marked increase in
endothelial ICAM-1 expression, in concert with increased
(3, integrin-positive myeloid cell infiltration [64]. Other
adhesion molecules are also regulated by RT including
VCAM-1 in melanoma in an interferon (IFN)y-dependent
manner [65].

Chemokines and RT Chemokines are a family of small
chemotactic cytokines that regulate directional migration of
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Tumor-Specific
T Cell Response

Antigen presentation

macrophages and DCs to tumors where they then receive activation
signals resulting in their migration to draining lymph nodes where
APCs (macrophages and dendritic cells) present tumor-derived
antigens and stimulate T cell responses. Tumor-specific T cells then
re-infiltrate tumors and induce death of damaged malignant cells.

cells expressing a cognate chemokine receptor. While some
chemokines are important for homeostatic circulation of
leukocytes, others are induced following tissue damage.
Two important chemokines regulated by RT are CXCL16
and SDF-1. Using a murine model of mammary carcino-
genesis, Matsumura and colleagues reported that CXCL16,
which is upregulated in tumors following RT, induced
recruitment and activation of T cells expressing CXCRO6,
the ligand for CXCL16. Mice deficient for CXCR6
exhibited decreased CD8" T cell recruitment in tumors
and decreased RT responsiveness [66]. Murine melanoma,
fibrosarcoma and colon carcinoma cell lines in vitro
upregulate CXCL16 in response to RT indicating that
CXCL16 expression may be a common response across
many tumor types [67]. Thus, radiation-induced CXCL16 is
an important mechanism by which RT promotes CD8" T
cell infiltration leading to tumor suppression.

Stromal cell-derived factor (SDF)-1« is also upregulated
following RT in bone marrow-derived cells [68] and cell
lines derived from brain tumors [69]. Using an in vivo
model, Kozin and colleagues observed that lung and breast
xenograft tumors responded with increased CD11b'F4/80"
macrophage infiltration following RT that was dependent
on expression of SDF-l«. Inhibition of the SDF-1ax
pathway with a small molecule inhibitor blocking the
interaction of SDF-1x and CXCR4 prevented infiltration
of macrophages and significantly delayed tumor regrowth
following RT [70]. Studies such as these indicate that RT
upregulates expression of some chemokines (CXCL16 and
SDF-1«) that can in turn regulate presence of either tumor
suppressive lymphocytes (CD8" T cells), or tumor-
promoting cells such as macrophages.
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RT and Antigen Presentation Once leukocytes have
migrated into sites of tissue damage in response to
cytokines and chemokines, functional antigen-presenting
cells (APC) are required for a productive anti-tumor T cell
response to ensue. APCs capture antigens, and following
processing, present them on their cell surface via MHC. T
cells recognize antigens bound to MHC and respond by
proliferating and generating anti-tumor T cells responses.
Lugade and colleagues, utilizing a transplantable murine
model of melanoma, reported increased expression of MHC
class I on tumor cells following RT [71], a response also
observed on GL261 glioma tumor cells [72], indicating that
RT enhances tumor cell recognition by T cells through
upregulation of MHC class I on the surface of tumor cells,
as well as on the surface of APCs [73, 74]. Increased
presence of radiation-specific peptides has also been
identified as a mechanism whereby tumor-specific T cell
responses are elicited by RT [75], a mechanism that also
contributes to enhanced anti-tumor immunity.

RT-Induced Immunogenic Cell Death Radiation of tumor
cells generally produces two responses: proliferative arrest
(which in the case of senescence is indefinite) or cell death.
Tumor cell death can occur by several mechanisms
including apoptosis, necrosis, autophagy or mitotic catas-
trophe. Apoptosis is a stereotyped pattern of morphological
changes involving chromatin condensation (pyknosis),
nuclear fragmentation (karyorhexis), shrinkage of cytoplasm,
blebbing of plasma membranes, and final disintegration of
cells into membrane-surrounded apoptotic bodies [76, 77].
While often observed in vitro, apoptosis is rarely seen in vivo
since dying cells are efficiently recognized, engulfed and
eradicated by neighboring cells before they enter the late
stages of the apoptotic process [78]. Necrosis is charac-
terized by cell swelling followed by rupture of plasma
membranes and subsequent spillage of cellular contents
into intercellular spaces. Autophagy is marked by seques-
tration of large parts of the cytoplasm in autophagic
vacuoles typically before cells undergo apoptosis. Finally,
mitotic catastrophe is described by prolonged mitotic
arrest with associated micro- and/or multinucleation prior
to undergoing death. Radiation-mediated cell death is
generally thought to occur primarily through either
apoptosis or mitotic catastrophe.

The notion that immunogenic-mediated cell death is also
an important aspect of RT response has been demonstrated
by several groups. Apetoh and colleagues immunized mice
with tumor cells previously exposed to either chemotherapy
or RT, and then re-challenged them with the tumor cells and
monitored for tumor growth [11]. Immunization with tumor
cells treated with either chemotherapy or RT prevented
regrowth of tumors in ~30% of mice as compared to mice
immunized with untreated tumor cells. When cells were

harvested from draining lymph nodes in immunized mice,
and rechallenged ex vivo, only lymph node cells from mice
immunized with tumor cells treated with RT produced
IFN-y in response to re-challenge. Protective immunization in
this scenario was dependent on the presence of TLR-4 on
dendritic cells (DCs) and its ligand HMGB, both released by
tumor cells following RT [11]. Two other factors, calreticulin
and ATP, also significantly contribute to immunogenic cell
death, in a manner similar to HMGBI1, where cell death
triggers rapid translocation of calreticulin to the surface of
cells thereby promoting antigen presentation by dying cells
and DCs [79, 80]. Mice previously vaccinated with
irradiated tumor cells engineered to express an siRNA
against calreticulin exhibit a greatly reduced immune
response to challenge as compared to irradiated cells alone
[81].

Cytotoxic therapies (chemotherapy and RT) induce rapid
release of ATP from cells. ATP acts on the P2X(7)
purinergic receptor expressed by DCs, leading to activation
of the NOD-like receptor family, pyrin domain containing-3
protein (NLRP3)-dependent caspase-1 activation complex
(also known as the inflammasome). Inflammasome activa-
tion leads to release of pro-inflammatory cytokines such as
IL-13, which are important for priming T cells. When
components of this pathway (NLRP3, caspase-1 or IL-1R)
are absent, reduced T cell responses towards cells killed by
chemotherapy or RT are observed [82], thus indicating that
release of ATP from dying cells is a critical aspect of
immunogenic cell death and anti-tumor immunity.

Further support for the importance of immunogenic cell
death mediated by HMGBI1 and TLR-4 bearing DCs has
been provided by retrospective evaluation of a cohort of
breast cancer patients treated with adjuvant anthracyclines
following resection. Women harboring an Asp299Gly
TLR-4 polymorphism exhibited reduced response to
HMGBI, and a significantly higher rate of metastatic
disease [11]. Interestingly, similar to HMGBI, breast
cancer patients treated with anthracycline who harbored a
loss-of-function allele in P2RX7 (Glu496Ala) exhibited
significantly worse metastasis-free survival as compared to
patients with wildtype alleles [82].

RT and Activation of Innate Immune Programs Cells of the
innate and adaptive lineages work in concert to provide
rapid and effective responses to a wide variety of
pathogens. While cells of the innate lineage provide an
immediate and pre-programmed response, response by cells
of the adaptive lineage are delayed but instead are antigen-
specific and lead to prolonged memory [83]. Innate
leukocytes, including DCs, macrophages, natural killer
(NK) cells and mast cells, are referred to as “first
responders” to inflammatory mediators, largely based on
the fact that they are often prestationed in tissues.
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Naive DCs continually sample antigens and migrate to
draining lymph nodes for antigen presentation to T cells
following their activation by “inflammatory mediators”. RT
induces opposing responses in tumors with regards to DCs:
directly-irradiated DCs are less effective APCs, however,
the tumor microenvironment generated by RT enhances
APC capabilities of DCs. In vitro examination of human
DCs has revealed that RT induced a “tolerogenic” phenotype
by decreasing the amount of IL-12 produced by mature DCs,
leading to decreased naive CDS8" T cell priming [84].
However, when DCs are adoptively transferred into tumors
in combination with RT and chemotherapy in vivo, complete
regression of tumors is enhanced [85]. Thus, while
intratumoral DCs present at the time of chemotherapy or
RT yield reduced immune responsiveness, the environment
created by the RT fosters enhanced DC activation and
enhanced anti-tumor immunity.

Tumor-infiltrating macrophages, derived from circulating
monocytes, make up a substantial component of the leukocyte
infiltrate in solid tumors [86]. Macrophages exhibit either
anti- or pro- tumoral bioactivities dependent on the
cytokines, chemokines and soluble mediators they are
exposed to [87, 88]. Given this duality, it is not surprising
that the effect of radiation on macrophages is complex
with evidence that radiation can support either their anti-
or pro-tumor properties. Using human macrophage-
derived cell lines, Lambert and colleagues observed that
RT enhanced macrophage cytolytic activity [89]. Other
groups have reported that low dose whole-body RT
increased expression of TLR4/MD2 and CD14 expression
on murine peritoneal macrophages, leading to increased
secretion of anti-tumor cytokines including IL-12 and IL-18,
thus indicating that RT increases anti-tumor potential of
macrophages [90]. Despite the evidence that RT can
stimulate cytolytic activity and anti-tumor cytokine produc-
tion in macrophages, there also exists extensive literature
indicating that macrophages also promote resistance to RT.
In orthotopically-transplanted sarcoma and carcinomas,
presence of macrophages was inversely correlated with
tumor regression following RT [91]. In melanoma, local
RT of implanted tumors increased the number of APCs in
draining lymph nodes and increased the number of CD11b"
cells in tumors [71]. CD11b" myeloid cells (a portion of
which are macrophages) contribute growth factors such as
vascular endothelial growth factor (VEGF) and matrix
metalloproteinase-9 (MMP-9) that supports angiogenic pro-
grams in growing tumors [92]. Preventing influx of CD11b"
myeloid cells following RT results in enhanced RT effects
[63, 93] likely due to their increased expression of T cell
suppressive molecules iNOS and arginase I [94, 95]. Thus,
while radiation can stimulate macrophage cytolytic activity
and anti-tumor cytokine production, this may be insufficient
to inhibit tumor growth if there is simultaneous recruitment
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or activation of macrophages harboring dominant pro-tumor
properties.

NK cells are lymphoid cells that, unlike B and T cells, do
not possess specific antigen receptors, and thus are
considered innate lineage cells. NK cells play an important
role in tumors by targeting malignant cells by direct
cytolysis and secretion of potent immune mediators
including several cytokines and chemokines [96]. Exam-
ination of tumor cells exposed to ionizing radiation in vitro
indicates that RT induces expression of NKG2D ligands, an
activating receptor for NK cells [97, 98]. Other pro-
inflammatory stress molecules released by dying cells
include heat shock protein 70 (Hsp70), a stress response
protein with a role in binding defective proteins and
presenting them on the surface of cells [99]. When exposed
to RT, pancreatic and colon carcinoma cell release Hsp70,
thereby targeting them for lysis by NK cells [100]. That
NKG2D ligands and Hsp 70 render cells more susceptible to
NK-cell mediated cytolysis indicates that RT-stimulated NK
activity may be an important component of RT-induced
immune responsiveness.

Mast cells are pre-stationed in many tissues where they
act as important sentinel cells capable of mounting rapid
responses to tissue damage. Mast cells also accumulate in
tissues undergoing angiogenesis, wound healing and tissue
repair. During these processes, they secrete angiogenic
factors, such as vascular endothelial growth factor (VEGF),
and other inflammatory mediators such as histamine,
heparin cytokines, chemokines, proteases and lipid
mediators [101]. Heissig and colleagues reported that
low-dose irradiation fostered mast cell-dependent vascular
regeneration in a limb ischemia model where RT promoted
VEGEF production by mast cells in a matrix metalloproteinase-
9 (MMP-9)-dependent manner [102]. RT, through MMP-9
up-regulated by VEGF in stromal and endothelial cells,
induced release of Kit-ligand (KitL) and promoted migration
of mast cells from bone marrow to the ischemic site [102]
similar to RT effects in the thoracic cavity where mast cell
density increased in bronchoalveolar lavage fluid [103].
Influx of mast cells following RT is blocked by treatment
with imatinib [104], a small molecule tyrosine kinase
inhibitor with activity against Kit, platelet derived growth
factor receptor (PDGFR) and Abelson Murine Leukemia
Viral Oncogene Homolog (Abl) [105]. Imatinib treatment
inhibited proliferation and induced apoptosis of mast cells
[106] and increased efficacy of RT in several murine tumor
models [107]. Given that low-dose RT fosters mast cell-
dependent vascular regeneration during limb ischemia
model, it seems reasonable to conclude that increased
recruitment and activation of mast cells following RT and
subsequent alterations in ischemic microenvironments and
activation of angiogenic programs may paradoxically foster
tumor growth.
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RT and Adaptive Immunity In experimental rodent models
of cancer development, e.g. brain, sarcoma, lung and
breast, RT alone or in combination with DC or
immunostimulatory therapies enhanced generation of
anti-tumor responses mediated by cytotoxic T cells [66,
72, 108]. RT alone can also stimulate anti-tumor T cell-
based immunity when given at high-doses by increasing
the number of activated CD8" T cells [109-111]. In 4 T1
mammary tumors, recruitment of cytotoxic T cells is
dependent on CXCR6, a receptor for CXCL16. RT in
combination with anti-CTLA-4 mAB increases recruit-
ment of CXCR6" CD8" T cells [66]. Given that patients
undergoing RT for prostate cancer exhibited detectable
anti-tumor CD4" and CD8" T cells responses following
RT that were undetectable prior to therapy [112], it stands
to reason that in addition to genotoxic damage, induction
of anti-tumor immunity via T cell activation represents an
important mechanisms mediating the efficacy of RT-based
therapy.

Radiation and Immunotherapy

Preclinical Models Since one consequence of RT in tissues is
induction of various immune -mediated programs, several
groups have explored the potential of augmenting RT
responsiveness with immunotherapeutics (immunostimula-
tory cytokines, DC-based therapy and antibodies targeting T
cell costimulatory pathways) engineered to bolster anti-tumor
immunity.

Immunostimulatory cytokines including IL-2, IL-12
and TNF-« [54] have been used in combination with RT
to stimulate anti-tumor T cell responses. Addition of these
pro-inflammatory cytokines enhances RT efficacy by
bolstering cytotoxic T cell responses [113—117]. Interestingly,
IL-3, a cytokine that activates monocytes and mast cells
[118], delays tumor growth in response to RT [119]. The
enhanced tumor inhibition observed by combining cytokines
with RT provides evidence that effectiveness of RT depends
on immune-mediated mechanisms that can be targeted
effectively to enhance overall RT response. Based on this
postulate, several groups have attempted to increase the
presence of antigen-presenting DCs in tumors. Intratumoral
injection of CpG oligodeoxynucleotides that activate TLR9
on macrophages and DCs resulted in increased RT response
and resistance to a second challenge with the same tumor,
thus indicating development of a durable immune response
[120].

Antigen-presentation on the surface of DCs to T cells
requires both MHC and costimulatory molecules, B7
molecules and OX40 [121, 122]. Strategies to enhance
costimulatory molecules in combination with RT have been

employed in a transgenic model of colon carcinogenesis.
Carcinoma cells were engineered to express a human
antigen (CEA) — when RT was given in combination with
a viral vaccine expressing CEA and T cell co-stimulatory
molecules, complete tumor regression was observed ac-
companied by anti-tumor CD4" and CD8" T cell infiltration
[123]. Inhibition of tumor growth and enhanced overall
survival was also observed in a murine sarcoma model
when RT was given in combination with an agonistic
antibody for OX40, a costimulatory molecule found on
activated T cells that stimulates T cell proliferation and
differentiation [122]. Inhibition of CTLA-4 costimulation
also enhanced effectiveness of RT in 4 T1 mammary
carcinomas carcinoma resulting in diminished metastasis
and increased survival [124, 125]; however, RT dose and
timing were critical with regards to anti-CTLA-4 therapy
[126]. Despite these numerous successful preclinical trials
demonstrating efficacy of immune-modulation therapy in
combination with RT, only a few clinical studies have been
initiated to date.

Clinical Studies Clinical evaluation of RT in combination
with immunotherapeutic strategies are currently being
conducted for prostate, melanoma and liver carcinomas.
RT has been evaluated in conjunction with drugs that
inhibit androgen production resulting in enhanced auto-
antibody responses in 15-30% of prostate cancer patients
[127] and correlating with previous studies indicating that
anti-androgen therapy also increases T cell activity due to
thymic regrowth [128, 129]. Vaccination of prostate
cancer patients with recombinant viral-based vaccines
expressing prostate-specific antigen (PSA), in combina-
tion with the costimulatory molecule B7-1 and standard
RT to the prostate (70 Gy of RT in 1.8 to 2.0 Gy
fractions), resulted in a three-fold increase in PSA-
specific T cells and evidence of generating T cells
against other prostate-specific antigens in 76% of patients
[130]. Immunogenicity of irradiated tumor cells in
patients with melanoma was examined in which autolo-
gous irradiated melanoma cells engineered to express
GM-CSF, a white blood cell growth factor, were injected
into patients resulting in a significant anti-tumor immune
response leading to tumor regression in 50% of patients
[131]. The synergy between RT and DCs has been further
evaluated in a small study of patients with hepatoma
where DCs were injected intratumorally following a
single-dose of RT leading to development of tumor-
specific immune responses in 30% of patients [132].
Though these clinical studies involve small numbers of
non-randomized patients, they present compelling find-
ings indicating that the durability of RT may be enhanced
by combinatorial therapy with selective immune-based
therapeutics.
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Conclusions

Though many cancer patients will receive RT, it is clear that
clinician-scientists are only just beginning to understand the
full spectrum of biologic responses resultant from RT. RT
clearly influences multiple immune-based programs in
tissues, some of which lead to durable tumor regression,
whereas others propel tumor development. It seems
reasonable to conclude that identifying pathways mediating
activation of myeloid-based protumor immunity induced by
RT, will encourage development of novel therapeutics that
suppress those activities to effectively bolster RT responses.
Moreover, blockade of these protumor immune-based
pathways may also present the opportunity to then combine
RT with anti-tumor immunotherapeutics to yield effective
and durable suppression of tumors, resulting in improved
outcomes for patients with cancer.

Acknowledgements The authors acknowledge support from the
American Board of Radiology to SLS, and grants from the NIH/NCI
and Department of Defense (W81XWH-06-1-0416, PR080717) to
LMC.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Balkwill F, Mantovani A. Inflammation and cancer: back to
Virchow? Lancet. 2001;357(9255):539-45.

2. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the
immune system during cancer development. Nat Rev Cancer.
2006;6:24-37.

3. BuiJD, Schreiber RD. Cancer immunosurveillance, immunoediting
and inflammation: independent or interdependent processes? Curr
Opin Immunol. 2007;19(2):203-8.

4. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related
inflammation. Nature. 2008;454(7203):436—44.

5. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunolog-
ical aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8
(1):59-73.

6. Formenti SC, Demaria S. Systemic effects of local radiotherapy.
Lancet Oncol. 2009;10(7):718-26.

7. Harris J, Part G. Breast cancer. Overview. In: Gunderson L,
Tepper J, editors. Clinical radiation oncology. 2nd ed. Phila-
delphia: Elsevier Churchill Livingstone; 2007.

8. Locher C, Conforti R, Aymeric L, et al. Desirable cell death during
anticancer chemotherapy. Ann NY Acad Sci. 2010;1209(1):99-108.

9. Tesniere A, Apetoh L, Ghiringhelli F, et al. Immunogenic cancer
cell death: a key-lock paradigm. Curr Opin Immunol. 2008;20
(5):504-11.

10. Haynes NM, van der Most RG, Lake RA, Smyth MJ.
Immunogenic anti-cancer chemotherapy as an emerging concept.
Curr Opin Immunol. 2008;20(5):545-57.

11. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-
dependent contribution of the immune system to anticancer
chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050-9.

@ Springer

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell.
2000;100(1):57-70.

Laconi E, Doratiotto S, Vineis P. The microenvironments of
multistage carcinogenesis. Semin Cancer Biol. 2008;18(5):322-9.
Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S,
Junghans RP. Evidence for an antigen-driven humoral immune
response in medullary ductal breast cancer. Cancer Res. 2001;61
(21):7889-99.

Punt CJ, Barbuto JA, Zhang H, Grimes WJ, Hatch KD, Hersh
EM. Anti-tumor antibody produced by human tumor-infiltrating
and peripheral blood B lymphocytes. Cancer Immunol Immun-
other. 1994;38(4):225-32.

Coronella-Wood JA, Hersh EM. Naturally occurring B-cell
responses to breast cancer. Cancer Immunol Immunother.
2003;52(12):715-38.

Shimokawara I, Imamura M, Yamanaka N, Ishii Y, Kikuchi
K. Identification of lymphocyte subpopulations in human
breast cancer tissue and its significance: an immunoperoxidase
study with anti-human T- and B-cell sera. Cancer. 1982;49
(7):1456-64.

Fernandez Madrid F. Autoantibodies in breast cancer sera:
candidate biomarkers and reporters of tumorigenesis. Cancer
Lett. 2005;230(2):187-98.

Lee YT, Sheikh KM, Quismorio Jr FP, Friou GJ. Circulating anti-
tumor and autoantibodies in breast carcinoma: relationship to stage
and prognosis. Breast Cancer Res Treat. 1985;6(1):57-65.

Chin Y, Janseens J, Vandepitte J, Vandenbrande J, Opdebeek
L, Raus J. Phenotypic analysis of tumor-infiltrating lympho-
cytes from human breast cancer. Anticancer Res. 1992;12
(5):1463-6.

Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP.
Profile of immune cells in axillary lymph nodes predicts disease-
free survival in breast cancer. PLoS Med. 2005;2(9):e284.
Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T
cells enables the identification of high-risk breast cancer patients
and those at risk of late relapse. J Clin Oncol. 2006;24(34):5373—
80.

Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes
as an independent predictor of response to neoadjuvant chemother-
apy in breast cancer. J Clin Oncol. 2010;28(1):105-13.

Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S.
Macrophage infiltration and its prognostic implications in breast
cancer: the relationship with VEGF expression and microvessel
density. Oncol Rep. 2005;14(2):425-31.

Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages
and survival in classic Hodgkin’s lymphoma. N Engl J Med.
2010;362(10):875-85.

Bolat F, Kayaselcuk F, Nursal TZ, Yagmurdur MC, Bal N,
Demirhan B. Microvessel density, VEGF expression, and tumor-
associated macrophages in breast tumors: correlations with
prognostic parameters. J Exp Clin Cancer Res. 2006;25
(3):365-72.

Chen JJ, Lin YC, Yao PL, et al. Tumor-associated macrophages:
the double-edged sword in cancer progression. J Clin Oncol.
2005;23(5):953-64.

Zhang J, Patel L, Pienta KJ. CC chemokine ligand 2 (CCL2)
promotes prostate cancer tumorigenesis and metastasis. Cytokine
Growth Factor Rev. 2010;21(1):41-8.

Campbell MJ, Tonlaar NY, Garwood ER, et al. Proliferating
macrophages associated with high grade, hormone receptor
negative breast cancer and poor clinical outcome. Breast Cancer
Res Treat. Sep 15 2010.

Kawai O, Ishii G, Kubota K, et al. Predominant infiltration of
macrophages and CD8(+) T Cells in cancer nests is a significant
predictor of survival in stage IV nonsmall cell lung cancer.
Cancer. 2008;113(6):1387-95.



J Mammary Gland Biol Neoplasia (2010) 15:411-421

419

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Mantovani A, Sica A, Locati M. New vistas on macrophage
differentiation and activation. Eur J Immunol. 2007;37(1):14—6.
Mosser DM, Edwards JP. Exploring the full spectrum of
macrophage activation. Nat Rev Immunol. 2008;8(12):958—69.
Mantovani A, Allavena P, Sica A. Tumour-associated macro-
phages as a prototypic type II polarised phagocyte population:
role in tumour progression. Eur J Cancer. 2004;40(11):1660-7.
Ruffell B, Denardo DG, Affara NI, Coussens LM. Lymphocytes
in cancer development: Polarization towards pro-tumor immuni-
ty. Cytokine Growth Factor Rev. 2010;21:3-10.

Appelbaum FR. The influence of total dose, fractionation, dose
rate, and distribution of total body irradiation on bone marrow
transplantation. Semin Oncol. 1993;20(4 Suppl 4):3-10. quiz 11.
Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor
signaling in the immune system. Immunity. 2009;30(2):180-92.
Lavin MF. Ataxia-telangiectasia: from a rare disorder to a
paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol.
2008;9(10):759-69.

Wu ZH, Miyamoto S. Many faces of NF-kappaB signaling
induced by genotoxic stress. ] Mol Med. 2007;85(11):1187-202.
Rashi-Elkeles S, Elkon R, Weizman N, et al. Parallel induction
of ATM-dependent pro- and antiapoptotic signals in response to
ionizing radiation in murine lymphoid tissue. Oncogene. 2006;25
(10):1584-92.

Li N, Karin M. Ionizing radiation and short wavelength UV
activate NF-kappaB through two distinct mechanisms. Proc Natl
Acad Sci USA. 1998;95(22):13012-7.

Shakhov AN, Collart MA, Vassalli P, Nedospasov SA, Jongeneel
CV. Kappa B-type enhancers are involved in lipopolysaccharide-
mediated transcriptional activation of the tumor necrosis factor
alpha gene in primary macrophages. J Exp Med. 1990;171
(1):35-47.

Mori N, Prager D. Transactivation of the interleukin-lalpha
promoter by human T-cell leukemia virus type I and type Il Tax
proteins. Blood. 1996;87(8):3410-7.

Wickremasinghe MI, Thomas LH, O’Kane CM, Uddin J,
Friedland JS. Transcriptional mechanisms regulating alveolar
epithelial cell-specific CCL5 secretion in pulmonary tuberculo-
sis. J Biol Chem. 2004;279(26):27199-210.

Caldenhoven E, Coffer P, Yuan J, et al. Stimulation of the human
intercellular adhesion molecule-1 promoter by interleukin-6 and
interferon-gamma involves binding of distinct factors to a
palindromic response element. J Biol Chem. 1994;269
(33):21146-54.

van de Stolpe A, Caldenhoven E, Stade BG, et al. 12-O-
tetradecanoylphorbol-13-acetate- and tumor necrosis factor
alpha-mediated induction of intercellular adhesion molecule-1
is inhibited by dexamethasone. Functional analysis of the human
intercellular adhesion molecular-1 promoter. J Biol Chem.
1994;269(8):6185-92.

Schindler U, Baichwal VR. Three NF-kappa B binding sites in the
human E-selectin gene required for maximal tumor necrosis factor
alpha-induced expression. Mol Cell Biol. 1994;14(9):5820-31.
lademarco MF, McQuillan JJ, Rosen GD, Dean DC. Character-
ization of the promoter for vascular cell adhesion molecule-1
(VCAM-1). J Biol Chem. 1992;267(23):16323-9.

Johnson DR, Pober JS. HLA class I heavy-chain gene promoter
elements mediating synergy between tumor necrosis factor and
interferons. Mol Cell Biol. 1994;14(2):1322-32.

Lawrence T. The nuclear factor NF-kappaB pathway in
inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):
a001651.

Brach MA, Hass R, Sherman ML, Gunji H, Weichselbaum R,
Kufe D. lonizing radiation induces expression and binding
activity of the nuclear factor kappa B. J Clin Invest. 1991;88
(2):691-5.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA.
Transcription factors activated in mammalian cells after clinically
relevant doses of ionizing radiation. Oncogene. 2003;22(37):5813—
27.

Lee SJ, Dimtchev A, Lavin MF, Dritschilo A, Jung M. A novel
ionizing radiation-induced signaling pathway that activates the
transcription factor NF-kappaB. Oncogene. 1998;17(14):1821-6.
Germano G, Allavena P, Mantovani A. Cytokines as a key
component of cancer-related inflammation. Cytokine. 2008;43
(3):374-9.

Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer.
2009;9(5):361-71.

Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichsel-
baum RR. Increased tumor necrosis factor alpha mRNA after
cellular exposure to ionizing radiation. Proc Natl Acad Sci USA.
1989;86(24):10104-7.

Baker WH, Limanni A, Chang CM, Jackson WE, Seemann R,
Patchen ML. Comparison of interleukin-1 alpha gene expression
and protein levels in the murine spleen after lethal and sublethal
total-body irradiation. Radiat Res. 1995;143(3):320-6.
O’Brien-Ladner A, Nelson ME, Kimler BF, Wesselius LJ.
Release of interleukin-1 by human alveolar macrophages after
in vitro irradiation. Radiat Res. 1993;136(1):37-41.

Hong JH, Chiang CS, Tsao CY, Lin PY, McBride WH, Wu CJ.
Rapid induction of cytokine gene expression in the lung after
single and fractionated doses of radiation. Int J Radiat Biol.
1999;75(11):1421-7.

Okunieff P, Chen Y, Maguire DJ, Huser AK. Molecular markers
of radiation-related normal tissue toxicity. Cancer Metastasis
Rev. 2008;27(3):363-74.

Calveley VL, Khan MA, Yeung IW, Vandyk J, Hill RP. Partial
volume rat lung irradiation: temporal fluctuations of in-field and
out-of-field DNA damage and inflammatory cytokines following
irradiation. Int J Radiat Biol. 2005;81(12):887-99.

Pober JS, Sessa WC. Evolving functions of endothelial cells in
inflammation. Nat Rev Immunol. 2007;7(10):803—15.

Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules
mediate radiation-induced leukocyte adhesion to the vascular
endothelium. Cancer Res. 1996;56(22):5150-5.

Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown
JM. Inhibition of Mac-1 (CDI11b/CD18) enhances tumor
response to radiation by reducing myeloid cell recruitment. Proc
Natl Acad Sci USA. 2010;107(18):8363-8.

Handschel J, Prott FJ, Sunderkotter C, Metze D, Meyer U, Joos
U. Irradiation induces increase of adhesion molecules and
accumulation of beta2-integrin-expressing cells in humans. Int
J Radiat Oncol Biol Phys. 1999;45(2):475-81.

Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG,
Lord EM. Radiation-induced IFN-gamma production within the
tumor microenvironment influences antitumor immunity. J
Immunol. 2008;180(5):3132-9.

Matsumura S, Wang B, Kawashima N, et al. Radiation-induced
CXCLI16 release by breast cancer cells attracts effector T cells. J
Immunol. 2008;181(5):3099-107.

Matsumura S, Demaria S. Up-regulation of the pro-inflammatory
chemokine CXCL16 is a common response of tumor cells to
ionizing radiation. Radiat Res. 2010;173(4):418-25.

Zong ZW, Cheng TM, Su YP, et al. Recruitment of transplanted
dermal multipotent stem cells to sites of injury in rats with
combined radiation and wound injury by interaction of SDF-1
and CXCR4. Radiat Res. 2008;170(4):444-50.

Tabatabai G, Frank B, Mohle R, Weller M, Wick W.
Irradiation and hypoxia promote homing of haematopoietic
progenitor cells towards gliomas by TGF-beta-dependent HIF-
lalpha-mediated induction of CXCL12. Brain. 2006;129
(Pt 9):2426-35.

@ Springer



420

J Mammary Gland Biol Neoplasia (2010) 15:411-421

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda
DG. Recruitment of myeloid but not endothelial precursor cells
facilitates tumor regrowth after local irradiation. Cancer Res.
2010;70(14):5679-85.

Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord
EM. Local radiation therapy of B16 melanoma tumors increases
the generation of tumor antigen-specific effector cells that traffic
to the tumor. J Immunol. 2005;174(12):7516-23.

Newcomb EW, Demaria S, Lukyanov Y, et al. The combination
of ionizing radiation and peripheral vaccination produces long-
term survival of mice bearing established invasive GL261
gliomas. Clin Cancer Res. 2006;12(15):4730-7.

Liao YP, Wang CC, Butterfield LH, et al. Ionizing radiation
affects human MART-1 melanoma antigen processing and
presentation by dendritic cells. J Immunol. 2004;173(4):2462-9.
Cao ZA, Daniel D, Hanahan D. Sub-lethal radiation enhances
anti-tumor immunotherapy in a transgenic mouse model of
pancreatic cancer. BMC Cancer. 2002;2:11.

Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates
the peptide repertoire, enhances MHC class 1 expression, and
induces successful antitumor immunotherapy. J Exp Med.
2006;203(5):1259-71.

Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities:
classification and pathophysiological implications. Cell Death
Differ. 2007;14(7):1237-43.

Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of
cell death: recommendations of the Nomenclature Committee on
Cell Death 2009. Cell Death Differ. 2009;16(1):3—11.

Savill J, Dransfield I, Gregory C, Haslett C. A blast from the
past: clearance of apoptotic cells regulates immune responses.
Nat Rev Immunol. 2002;2(12):965-75.

Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure
dictates the immunogenicity of cancer cell death. Nat Med.
2007;13(1):54-61.

Perez CA, Fu A, Onishko H, Hallahan DE, Geng L. Radiation
induces an antitumour immune response to mouse melanoma. Int
J Radiat Biol. 2009;85(12):1126-36.

Obeid M, Panaretakis T, Joza N, et al. Calreticulin exposure is
required for the immunogenicity of gamma-irradiation and UVC
light-induced apoptosis. Cell Death Differ. 2007;14(10):1848-50.
Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the
NLRP3 inflammasome in dendritic cells induces IL-1beta-
dependent adaptive immunity against tumors. Nat Med.
2009;15(10):1170-8.

Iwasaki A, Medzhitov R. Regulation of adaptive immunity by
the innate immune system. Science. 2010;327(5963):291-5.
Merrick A, Errington F, Milward K, et al. Immunosuppressive
effects of radiation on human dendritic cells: reduced IL-12
production on activation and impairment of naive T-cell priming.
Br J Cancer. 2005;92(8):1450-8.

Moyer JS, LiJ, Wei S, Teitz-Tennenbaum S, Chang AE. Intratumoral
dendritic cells and chemoradiation for the treatment of murine
squamous cell carcinoma. J Immunother. 2008;31(9):885-95.
Mantovani A, Sica A. Macrophages, innate immunity and
cancer: balance, tolerance, and diversity. Curr Opin Immunol.
2010;22(2):231-7.

Coussens LM, Werb Z. Inflammation and cancer. Nature.
2002;420(6917):860-7.

Qian BZ, Pollard JW. Macrophage diversity enhances tumor
progression and metastasis. Cell. 2010;141(1):39-51.

Lambert LE, Paulnock DM. Modulation of macrophage function
by gamma-irradiation. Acquisition of the primed cell intermediate
stage of the macrophage tumoricidal activation pathway. J
Immunol. 1987;139(8):2834-41.

Shan YX, Jin SZ, Liu XD, Liu Y, Liu SZ. lonizing radiation
stimulates secretion of pro-inflammatory cytokines: dose-

@ Springer

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

response relationship, mechanisms and implications. Radiat
Environ Biophys. 2007;46(1):21-9.

Milas L, Wike J, Hunter N, Volpe J, Basic I. Macrophage content
of murine sarcomas and carcinomas: associations with tumor
growth parameters and tumor radiocurability. Cancer Res.
1987;47(4):1069-75.

Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for
tumor vasculogenesis but not for angiogenesis: role of bone marrow-
derived myelomonocytic cells. Cancer Cell. 2008;13(3):193-205.
Meng Y, Beckett MA, Liang H, et al. Blockade of tumor necrosis
factor alpha signaling in tumor-associated macrophages as a
radiosensitizing strategy. Cancer Res. 2010;70(4):1534-43.

Tsai CS, Chen FH, Wang CC, et al. Macrophages from irradiated
tumors express higher levels of iNOS, arginase-I and COX-2,
and promote tumor growth. Int J Radiat Oncol Biol Phys.
2007;68(2):499-507.

Doedens AL, Stockmann C, Rubinstein MP, et al. Macrophage
expression of HIF-1« suppresses T cell function and promotes
tumor progression. Cancer Res. 2010;70:7465-75.

Orr MT, Lanier LL. Natural killer cell education and tolerance.
Cell. 2010;142(6):847-56.

Kim JY, Son YO, Park SW, et al. Increase of NKG2D ligands
and sensitivity to NK cell-mediated cytotoxicity of tumor cells
by heat shock and ionizing radiation. Exp Mol Med. 2006;38
(5):474-84.

Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage
pathway regulates innate immune system ligands of the NKG2D
receptor. Nature. 2005;436(7054):1186-90.

Sherman M, Multhoff G. Heat shock proteins in cancer. Ann NY
Acad Sci. 2007;1113:192-201.

Gehrmann M, Marienhagen J, Eichholtz-Wirth H, et al. Dual
function of membrane-bound heat shock protein 70 (Hsp70), Bag-
4, and Hsp40: protection against radiation-induced effects and target
structure for natural killer cells. Cell Death Differ. 2005;12(1):38-51.
Porta C, Larghi P, Rimoldi M, et al. Cellular and molecular
pathways linking inflammation and cancer. Immunobiology.
2009;214(9-10):761-77.

Heissig B, Rafii S, Akiyama H, et al. Low-dose irradiation
promotes tissue revascularization through VEGF release from
mast cells and MMP-9-mediated progenitor cell mobilization. J
Exp Med. 2005;202(6):739-50.

Majori M, Poletti V, Curti A, Corradi M, Falcone F, Pesci A.
Bronchoalveolar lavage in bronchiolitis obliterans organizing
pneumonia primed by radiation therapy to the breast. J Allergy
Clin Immunol. 2000;105(2 Pt 1):239-44.

Thomas DM, Fox J, Haston CK. Imatinib therapy reduces
radiation-induced pulmonary mast cell influx and delays lung
disease in the mouse. Int J Radiat Biol. 2010;86(6):436—44.
Sherbenou DW, Druker BJ. Applying the discovery of the
Philadelphia chromosome. J Clin Invest. 2007;117(8):2067—74.
Gleixner KV, Rebuzzi L, Mayerhofer M, et al. Synergistic
antiproliferative effects of KIT tyrosine kinase inhibitors on
neoplastic canine mast cells. Exp Hematol. 2007;35(10):1510-21.
Oertel S, Krempien R, Lindel K, et al. Human glioblastoma and
carcinoma xenograft tumors treated by combined radiation and
imatinib (Gleevec). Strahlenther Onkol. 2006;182(7):400-7.
Demaria S, Ng B, Devitt ML, et al. lonizing radiation inhibition
of distant untreated tumors (abscopal effect) is immune mediated.
Int J Radiat Oncol Biol Phys. 2004;58(3):862—70.

Gough MJ, Crittenden MR, Sarff M, et al. Adjuvant therapy with
agonistic antibodies to CD134 (OX40) increases local control
after surgical or radiation therapy of cancer in mice. J
Immunother. 2010;33(8):798-809.

Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative
radiation on local tumor require CD8+ T cells: changing
strategies for cancer treatment. Blood. 2009;114(3):589-95.



J Mammary Gland Biol Neoplasia (2010) 15:411-421

421

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

Takeshima T, Chamoto K, Wakita D, et al. Local radiation
therapy inhibits tumor growth through the generation of tumor-
specific CTL: its potentiation by combination with Thl cell
therapy. Cancer Res. 2010;70(7):2697-706.

Tabi Z, Spary LK, Coleman S, Clayton A, Mason MD, Staffurth
J. Resistance of CD45RA- T cells to apoptosis and functional
impairment, and activation of tumor-antigen specific T cells
during radiation therapy of prostate cancer. J Immunol. 2010;185
(2):1330-9.

Rochman Y, Spolski R, Leonard WJ. New insights into the
regulation of T cells by gamma(c) family cytokines. Nat Rev
Immunol. 2009;9(7):480-90.

Lee J, Moran JP, Fenton BM, et al. Alteration of tumour response
to radiation by interleukin-2 gene transfer. Br J Cancer. 2000;82
(4):937-44.

Yamini B, Yu X, Pytel P, et al. Adenovirally delivered tumor
necrosis factor-alpha improves the antiglioma efficacy of
concomitant radiation and temozolomide therapy. Clin Cancer
Res. 2007;13(20):6217-23.

Lohr F, Hu K, Haroon Z, et al. Combination treatment of murine
tumors by adenovirus-mediated local B7/IL12 immunotherapy
and radiotherapy. Mol Ther. 2000;2(3):195-203.

Seetharam S, Staba MJ, Schumm LP, et al. Enhanced eradication
of local and distant tumors by genetically produced interleukin-
12 and radiation. Int J Oncol. 1999;15(4):769-73.

Aldinucci D, Olivo K, Lorenzon D, et al. The role of interleukin-3 in
classical Hodgkin's disease. Leuk Lymphoma. 2005;46(3):303—11.
Oh YT, Chen DW, Dougherty GJ, McBride WH. Adenoviral
interleukin-3 gene-radiation therapy for prostate cancer in mouse
model. Int J Radiat Oncol Biol Phys. 2004;59(2):579-83.
Mason KA, Ariga H, Neal R, et al. Targeting toll-like receptor 9
with CpG oligodeoxynucleotides enhances tumor response to
fractionated radiotherapy. Clin Cancer Res. 2005;11(1):361-9.
Driessens G, Kline J, Gajewski TF. Costimulatory and
coinhibitory receptors in anti-tumor immunity. Immunol Rev.
2009;229(1):126-44.

Redmond WL, Ruby CE, Weinberg AD. The role of OX40-
mediated co-stimulation in T-cell activation and survival. Crit
Rev Immunol. 2009;29(3):187-201.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

Chakraborty M, Abrams SI, Coleman CN, Camphausen K,
Schlom J, Hodge JW. External beam radiation of tumors alters
phenotype of tumor cells to render them susceptible to vaccine-
mediated T-cell killing. Cancer Res. 2004;64(12):4328-37.
Demaria S, Kawashima N, Yang AM, et al. Immune-mediated
inhibition of metastases after treatment with local radiation and
CTLA-4 blockade in a mouse model of breast cancer. Clin
Cancer Res. 2005;11(2 Pt 1):728-34.

Pilones KA, Kawashima N, Yang AM, Babb JS, Formenti SC,
Demaria S. Invariant natural killer T cells regulate breast cancer
response to radiation and CTLA-4 blockade. Clin Cancer Res.
2009;15(2):597-606.

Dewan MZ, Galloway AE, Kawashima N, et al. Fractionated but
not single-dose radiotherapy induces an immune-mediated
abscopal effect when combined with anti-CTLA-4 antibody.
Clin Cancer Res. 2009;15(17):5379-88.

Nesslinger NJ, Sahota RA, Stone B, et al. Standard treatments
induce antigen-specific immune responses in prostate cancer.
Clin Cancer Res. 2007;13(5):1493-502.

Roden AC, Moser MT, Tri SD, et al. Augmentation of T cell
levels and responses induced by androgen deprivation. J
Immunol. 2004;173(10):6098-108.

Johnke RM, Edwards JM, Kovacs CJ, et al. Response of T
lymphocyte populations in prostate cancer patients undergoing
radiotherapy: influence of neoajuvant total androgen suppres-
sion. Anticancer Res. 2005;25(4):3159-66.

Gulley JL, Arlen PM, Bastian A, et al. Combining a recombinant
cancer vaccine with standard definitive radiotherapy in patients
with localized prostate cancer. Clin Cancer Res. 2005;11
(9):3353-62.

Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated
autologous melanoma cells engineered to secrete human
granulocyte-macrophage colony-stimulating factor generates
potent antitumor immunity in patients with metastatic melanoma.
Proc Natl Acad Sci USA. 1998;95(22):13141-6.

Chi KH, Liu SJ, Li CP, et al. Combination of conformal
radiotherapy and intratumoral injection of adoptive dendritic cell
immunotherapy in refractory hepatoma. J Immunother. 2005;28
(2):129-35.

@ Springer



	The Tumor-Immune Microenvironment and Response to Radiation Therapy
	Abstract
	Introduction
	Immune Cells and Cancer Development
	Radiation Therapy and Activation of Stress Response Pathways
	Immune Responses to Radiation
	Radiation and Immunotherapy
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


