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Abstract: There is growing evidence that the remodeling of cerebral microvessels plays an important
role in plastic changes in the brain associated with development, experience, learning, and memory
consolidation. At the same time, abnormal neoangiogenesis, and deregulated regulation of microvas-
cular regression, or pruning, could contribute to the pathogenesis of neurodevelopmental diseases,
stroke, and neurodegeneration. Aberrant remodeling of microvesselsis associated with blood–brain
barrier breakdown, development of neuroinflammation, inadequate microcirculation in active brain
regions, and leads to the dysfunction of the neurovascular unit and progressive neurological deficits.
In this review, we summarize current data on the mechanisms of blood vessel regression and pruning
in brain plasticity and in Alzheimer’s-type neurodegeneration. We discuss some novel approaches
to modulating cerebral remodeling and preventing degeneration-coupled aberrant microvascular
activity in chronic neurodegeneration.
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1. Introduction

The last decade has been marked by agrowing interest in understanding the morphol-
ogy and functional activity of brain microvessels, and their development in the prenatal
period and throughout life [1]. There is growing evidence that the remodeling of cerebral
microvessels plays an important role in plastic changes in the brain associated with its
development, experience, learning, and memory consolidation. Neoangiogenesis is the
process of the formation of new vessels from existing vascular structures. In the organism,
it accompanies physiological (reparative processes and development) and pathological
(malignant tumors, atherosclerosis, arthritis, hyperproliferative conditions) events. The
brain microvascular tree also changes during ontogenesis, and cerebral neoangiogenesis is
not a prerogative of the developing brain. Even in the adult brain, it is associated with the
hippocampal activation in learning, the action of environmental enrichment or physical
activity, and the migration of newly-born neurons from neurogenic niches to the loci of
brain lesions [2].

Abnormal neoangiogenesis or deregulated regulation of microvascular regression
could contribute to the pathogenesis of neurodevelopmental diseases, stroke, and neurode-
generation. Aberrant remodeling of microvesselsis associated with blood–brain barrier
(BBB) breakdown, development of neuroinflammation, inadequate microcirculation in
active brain regions, and leads to the dysfunction of the neurovascular unit and progressive
neurological deficits [3].

There is a paradox that even though there is a huge number of studies aimed at describ-
ing cerebral (neo)angiogenesis, there is still a gap in the understanding of the regression of
brain microvessels. However, the deregulation of microvascular remodeling in the brain
tissue might be a significant contributor to the pathogenesis of Alzheimer’s disease [4],
vascular dementia [5], and secondary parkinsonism [6]. Activation of neoangiogenesis
and reduction in cerebral microvascular involution promotes angiogenesis in malignant
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neoplasms [7]. Since inhibition of microvascular involution and modulation of signaling
pathways of aberrant angiogenesis has become a promising therapeutic strategy, under-
standing the mechanisms of pathological regression of microvessels is an extremely relevant
topic. In addition, understanding the mechanisms of blood microvessels development
and involution is required for the development of up-to-date in vitro tissue models of BBB
and brain tissue. Particularly, cerebral organoids as promising brain in vitro models lack
microvessels and are in extreme need of “artificial” vascularization for their proper activity.

In this review, we summarize current data on the mechanisms of blood vessel regres-
sion in brain plasticity and, particularly, in Alzheimer-type neurodegeneration. We should
note here that there are some studies related to the regression of lymphatic microvessels that
might have some similarities with blood microvessels [8,9], including those in the central
nervous system [10]. Thus, some data in the current review will rely on common signaling
molecular pathways in the life cycle of cells present in these two types of microvessels. Fi-
nally, we discuss some novel approaches to modulating cerebral microvascular remodeling
and preventing the degeneration-coupled aberrant activity of brain capillaries in chronic
neurodegeneration.

2. General Mechanisms of Microvasculature Remodeling

The regression of blood vessels in various tissues is a multifactorial complex process
that is still less understood compared with angiogenesis. The regression is usually explained
in the context of trimming microvessels during their maturation. Vessel regression includes
a diverse set of molecular markers and pathways [3,11]. Korn and Augustin [3] described
several mechanisms of vascular regression, with a special focus on the role of vascular
endothelial growth factor (VEGF), Wnt/Notch-pathway, angiopoietin (Ang)/tyrosine
kinase with immunoglobulin-like and EGF-like domains (TIE)-signaling, Notch/delta-like
canonical Notch ligand 4 (Dll4), and other regulatory factors. They suggested that the
regression of vessel branches within the microvascular bed is controlled by blood flow, and
a blood vessel should be occluded until the blood flow is completely stopped. Endothelial
cells within regressing vascular segments may retract and undergo apoptosis or migrate to
other locations, thereby leaving behind empty basement membrane areas.

It is well known that in humans, the VEGF family consists of several members: VEGF-
A (different isoforms), VEGF-B, VEGF-C, VEGF-D, VEGF-E/viral VEGF, VEGF-F (a factor
from the venom of some snakes), PlGF (placental growth factor), and EG-VEGF (endothelial
growth factor of endocrine glands) [12]. VEGF binds to protein tyrosine kinase receptors
(VEGFR) of three types. VEGF-A protein binds to the VEGFR-1 (Flt-1) and VEGFR-2
(KDR/Flk-1) receptors. In addition, VEGFR-2 mediates almost all known cell responses
to VEGF (angiogenesis, macrophage/granulocyte chemotaxis, and vasodilation). The
functions of the VEGFR-1 receptor are not well-described yet. It is assumed that it modu-
lates VEGFR-2 signaling. VEGF-C and VEGF-D proteins are the ligands for the VEGFR-3
receptor known as a signaling molecule in lymphatic angiogenesis.

According to Lobov et al. [13], modulation of VEGF-A levels and Dll4/Notch-signaling
induces distinct changes in blood vessel morphology and gene expression, thereby indicat-
ing that these pathways may be largely independent. However, in the Wnt/Ca2+/Nfat
signaling pathway, endothelial R-spondin-3 (RSPO3) activates Wnt signaling for further
up-regulation of VEGF gene expression needed for angiogenesis [14–16]. It was shown
that VEGF is an immediate early gene in angioblasts [17], and therefore, Wnt/VEGF sig-
naling could be the key regulatory mechanism of angiogenesis-associated endothelial cell
migration [18] and shear stress sensing [19]. Moreover, recent data reveal that in cerebral
endothelial cells, the permeability of the cell layer is under the control of VEGF-driven
changes in the expression of numerous genes [20]. Wnt signaling is required for the prolif-
eration of stalk cells in the developing vessel, whereas Dll4 expression in activated stalk
cells results in the up-regulation of Wnt signaling in adjacent tip cells [21]. Notch signaling
in sprouting endothelial cells suppresses cell migration, supports barriergenesis [22], and
keeps the balance of apoptosis and endothelial cell survival [23]. Dll4/Notch signaling,
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in general, limits the migration of tip cells attracted by high local levels of VEGF-A [24],
but VEGF itself is capable of inducing the expression of Dll4 and Notch in microvascular
endothelial cells [25]. In sum, the remodeling of microvessels is driven by the reciprocal
effects of VEGF, Notch, and Wnt on their expression in tip and stalk cells. VEGF plays a
key role in the stimulation of cell migration/proliferation followed by the suppression of
angiogenic events and establishment of barrier integrity.

Taking into consideration the well-described role of VEGF in the hypoxic response, it is
tempting to speculate that vascular remodeling might be simply controlled by tissue oxygen
availability. If so, a low oxygen supply promotes (neo)angiogenesis, while a high oxygen
supply stimulates vessel involution. Indeed, it is well-known that hypoxia-inducible
factor 1-alpha (HIF-1α) accumulates in cells under hypoxic conditions, which leads to the
transcription of pro-angiogenic genes, including VEGF-A and VEGF receptors [26]. Thus,
it is reasonable that an insufficient rise in local VEGF levels leads to the regression of the
microvascular bed. However, the mechanism might not be so simple since other factors
are no less important. For instance, the accumulation of protein C in the brain tissue in the
postischemic period stimulates endothelial proliferation, increases vascular density, and
activates pro-angiogenic integrins α5β1 and avβ3 [27]. In parallel, protein C suppresses
apoptosis of brain endothelial cells in ischemia [28], thereby preventing the reduction of
the capillary bed.

Moreover, the establishment of new vessels or their disappearance could be a deriva-
tive of a tissue response to hyperoxia. The murine oxygen-induced retinopathy model
is a tool that allows studying the regression of blood vessels under conditions of hyper-
oxia. Claxton and M. Fruttiger [29] used a model of induced hyperoxia in mice, in which
VEGF induction was suppressed, to demonstrate that fibroblast growth factor 2 (FGF2),
angiopoietin-2 (ANG2), platelet-derived growth factor (PDGF), and DLL4 are indepen-
dently involved in maintaining the stability of vascular growth and development. Zhong
et al. [30] developed an animal model for studying the process of growth and regression of
blood vessels using transgenic mice-Prox1-GFP/Flt1-DsRed (PGFD). This model allowed
direct visualizing of the development, branching, and regression of both vessel types (lym-
phatic and blood) in various organs by means of confocal and two-photon microscopy. They
found that deletion of VEGFR2 abolished VEGFA- and VEGF-C-induced corneal lymphan-
giogenesis. Thus, elevated local levels of VEGF may promote (neo)angiogenesis, whereas
lowered levels of VEGF support the regression of blood and lymphatic microvessels.

Expression of the VEGF gene is mainly under the control of HIF-1-driven transcription.
Since HIF-1-signaling controls inflammation caused by inadequate tissue oxygen supply,
it is not surprising that there is a close relationship between inflammation and angiogen-
esis. At least two proinflammatory molecules, interleukin-8 (IL-8) and cyclooxygenase-2
(COX-2), affect angiogenesis in inflamed tissue [31]. Microvessel remodeling is modulated
by anti-inflammatory agents: glucocorticoids as suggested by Logie et al. [32], or COX-2
inhibitors. There are data confirming that capillary regression is under the control of tissue
inhibitors of metalloproteinases TIMPs-2, 3, and 4 [33], which are well-known contributors
to the inflammation-driven remodeling of the microvascular basement membrane and
extracellular matrix.

A concept called anti-angiogenic switch leading to vessel regression has been proposed
as a negative feedback mechanism protecting endothelial cells from excessive angiogen-
esis and overstimulation by VEGF [34]. However, there is a gap in understanding the
entire mechanism of feedback control. On one hand, it might be mediated by Dll4/Notch
signaling suppressing cell migration, as discussed above. If the switch is initiated, even
high concentrations of exogenous VEGF, FGF, and PDGF do not prevent the regression
of blood vessels [35], whereas proteins of the Vasohibin and Sprouty families provide
anti-angiogenic effects [36–38]. Presumably, the basic mechanism of the involution of the
microvascular bed is endothelial apoptosis [39,40]. However, Franco et al. [41] studied
blood vessels in the cornea of mice and zebrafish under hyperoxic exposure and concluded
that apoptosis does not contribute significantly to vascular regression. In addition, they
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reported that the migration of endothelial cells into neighboring vessels might be important
for vascular regression. It is known that the regression of hyaloid vessels and pupillary
membranes under physiological conditions is coupled to the apoptosis progression and
modulation of the cell cycle [42–45]. In the context of apoptosis-mediated signaling in
vascular regression, activation of CXC chemokine receptor 3 (CXCR3) is an important
component [46]. Data obtained by the group of Richard J. Bodnar [47] showed that newly
formed vessels express CXCR3 receptors that trigger the µ-calpain-mediated cleavage of the
cytoplasmic tail of β3 integrins. Activation of CXCR3 by the ligand IP-10 (CXCL10) inhibits
the development of a new vasculature and causes regression of newly formed vessels [48].
Calpain-dependent cleavage of β3 integrin results in the suppression of cell adhesion and
promotes apoptosis of endothelial cells [49], whereas activation of β3 integrins is required
for angiogenesis [27]. Thus, apoptosis of endothelial cells, loss of their contacts with the
extracellular matrix, suppression of tipcell migration, and proliferation of stalkcells caused
by the decline in VEGF activity and deregulation of Dll4/Notch signaling may result in the
involution of microvessels.

The presence of the plexin–semaphorin–integrin domain in semaphorins that have
been implicated in the suppression of integrins activity and tube formation in endothelial
cells, suggests their involvement in the down-regulation of neoangiogenesis [50]. Indeed,
studying the role of semaphorins (Sema) expressed by endothelial cells in the remodel-
ing and regression of microvessels has received special attention [49–54]. Chen et al. [54]
demonstrated that HIF-2α directly regulates Sema3G transcription in endothelial cells
during hypoxia. Sema3G, in turn, coordinates the functional interactions between cell
adhesion molecules, β-catenin and VE-cadherin in the endothelium. Administration of
semaphorin 3G (Sema3G) stimulates the regression of dysfunctional vessels, thereby pro-
moting the formation of a healthy vasculature. Deletion of stress-induced transcription
factor NF-E2-related factor-2 (Nrf2) leads to the induction of semaphorin 6A (Sema6A)
expression in hypoxic/ischemic ganglion cells via HIF-1α-mediated mechanism and sup-
pression of endothelial cells migration through Notch signaling. By contrast, activation of
Nrf2 promotes reparative angiogenesis and reduces pathological neovascularization [49].
In cerebral arteriovenous malformations, the interplay of HIF-1/VEGF and Nrf2 signaling
cascades contributes to angiogenesis: loss of Nrf2 inhibits the effects of VEGF and results
in a lower migratory activity of endothelial cells [55]. In rats with the models of traumatic
brain injury, Nrf2 activation is required for the preservation of the structural integrity of the
BBB [56]. Thus, the common triggers of microvascular remodeling in various tissues are
hypoxia/ischemia or hyperoxia, inflammation, injury, and other stress factors that cause
apoptosis/detachment of endothelial cells and enhance the permeability of the endothelial
barrier. All these mechanisms are aimed at establishing a functionally competent microvas-
cular network (angiogenesis), and eliminating microvessels with aberrant integrity of the
endothelial cell layer (microvascular involution).

3. Functional Competence of Cerebral Endothelial Cells and Their Role in Brain
Vessel Remodeling

In the postnatal brain, the development of microvessels occurs mainly due to the
formation of new vessels from the pre-existing vasculature without the significant contribu-
tion of endothelial progenitor cells [57]. Endothelial cells lining the vascular network in the
brain differ from peripheral endothelial cells. Particularly, brain microvessel endothelial
cells (BMECs) are: (i) surrounded by pericytes and astrocytes that tightly control their para-
cellular permeability and adjust it to the activity of neurons within the neurovascular unit;
(ii) coupled via numerous tight and adherence contacts that limit paracellular permeability
within the blood–brain barrier; (iii) known to have fewer fenestrae than peripheral endothe-
lial cells and higher diversity of transmembrane transporters that control the transcellular
permeability of the barrier; (iv) enriched with mitochondria and demonstrate extensive
oxidative metabolism matching their functional activity [58]. Also, BMECs are differently
subjected to shear stress compared to peripheral vessels [59], which is needed for their



Int. J. Mol. Sci. 2022, 23, 12683 5 of 20

functional activity, metabolic plasticity, adhesion, and response to the action of numerous
regulatory molecules [60]. It has been shown that shear stress-regulated inward rectifier
potassium channels (Kir2.1) in retinal endothelial cells are indispensable in microvessel
maturation and pruning of excess vessels [61]. Moreover, shear stress controls the polarity
and alignment of endothelial cells (HUVEC) by acting at the mechanosensitive complex
VEGFR–CD31–VE-cadherin [62], but whether this mechanism is active in BMECs remains
to be assessed.

In embryos, BMECs originate from progenitor cells of the primary canal of the mid-
brain. They form a vasculature due to a combination of targeted migration and controlled
sprouting [63,64]. K.I. Boström and colleagues postulated that the tissue-specific vascular
endothelial cells (including BMECs) may have tissue-specific origin [65]. Using flow cy-
tometry, the authors found that a group of endothelial cells at the early stages of embryonic
brain development co-expresses SOX2 (a key regulator of neuronal differentiation and brain
development) and the endothelial marker VE-cadherin. Therefore, the common origin
of these two cell types may allow understanding of the development of cells within the
neurovascular unit [58]. Experimental data obtained on cerebral organoids established
from the induced pluripotent stem cells (iPSCs) that lack the ability for vascularization
argue against this proposal [66]. However, the development of the microvascular bed
and neuronal network in the embryonic brain seem to have many shared properties and
molecular regulators [67,68]. Recently, new data have been obtained on the contribution
of neurons to the regulation of local blood flow in active brain regions: stimulation of
transient receptor potential cation channels (TRPA1) in BMECs by neuronal activity results
in the dilation of ascending arterioles [69]. Presumably, these channels could serve as
sensors of neuronal activity that initiate vasodilation to redirect blood flow to the regions
of enhanced oxygen needs. There are data that TRPA1 is a critical factor for angiogenesis in
tumor-derived endothelial cells [70]. If a similar mechanism exists in BMECs, it might link
the neuronal activity with the (neo)angiogenesis in the brain.

Being stimulated by global or local hypoxia, BMECs initiate angiogenesis. As we have
mentioned before, the role of endothelial progenitor cells in brain neoangiogenesis is still
under debate [71]. Thus, BMECs are capable of completing the angiogenesis program. For
instance, mature endothelial tip cells undergo a metabolic switch to enhance glycolysis
and migrate along the gradient of pro-angiogenic molecules. Stalkcells accelerate oxidative
phosphorylation in mitochondria, proliferate extensively, and establish newly-formed
microvessels [72,73]. The expression profile of BMECs during angiogenesis is characterized
by a certain set of active genes [74], mainly linked to the extensive Wnt/β-catenin signaling
and oxidative metabolism [75]. The transcriptional profile of activated BMECs demonstrates
significant changes similar to their response to oxidative stress or the action of inflammatory
stimuli [76].

An important feature of endothelial cells that affects angiogenesis is their quickly
adjustable metabolism [77]. According to the current concept, glycolysis, which is the main
mechanism of energy supply in endothelial cells [78], is controlled by 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase-3. It generates energy to maintain the competitive
behavior of endothelial cells at the tip of the growing vascular process. Fatty acid oxidation
is controlled by carnitine palmitoyltransferase 1a. It regulates nucleotide synthesis and
endothelial stalkcell proliferation [77]. Recent data reveal [79] that the hCMEC/D3 en-
dothelial cell line (originated from human brain microvessels) demonstrates the prevalence
of glycolytic ATP generation even in the presence of abundant oxygen.

Another important distinguishing feature of BMECs is the coupling of angiogene-
sis and barriergenesis [80]. The restrictive architecture of the BBB reduces paracellular
diffusion while the activity of controlled transporters and endocytosis in BMECs limits
transcellular transport. Thus, the establishment of new microvessels in the brain tissue
requires concomitant maturation of BMECs with the fully expressed set of transporters
and junction proteins. One of the most studied regulators of tight junction machinery
is protein kinase C. Inhibition of protein kinase C activity using its dominant-negative
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mutants reduces the effect of monocyte chemoattractant protein-1 (MCP-1 or CCL2) on
the permeability of the brain endothelium [81]. Other mediators of intercellular signaling
in BMECs are protein kinase A, protein kinase G, Ras homolog gene family member A,
mitogen-activated protein kinase, JNK-kinase, phosphatidylinositol 3-kinase/Akt, and
Wnt/β-catenin pathways [82,83]. Thus, maturation and establishment of the barrier func-
tion in the BBB are driven by the phosphorylation of junction proteins, the establishment of
the perivascular cellular microenvironment (pericytes and astrocytes), and the acquisition
of the corresponding metabolic status of BMECs.

We have shown before that maturity of BMECs is partially under the control of HIF-1
expression in perivascular astrocytes [84]. The molecular mechanism of barriergenesis,
which has been reviewed elsewhere [85], includes the activity of numerous growth factors,
neuromediators, and cytokines released from the cells of the neurovascular unit: VEGF,
PDGF, Ang-1, cyclophilin, MMP, etc. As a result of their action, neoangiogenesis is initiated
at sites of higher metabolic needs (e.g., in constitutively active brain regions). Concomitant
microvessel pruning allows the elimination of the vessels with immature BBB (to prevent
neuroinflammation) or insufficient blood perfusion (to prevent ischemia). Indeed, pruned
segments of brain microvessels exhibited a low and variable blood flow, which further
decreased irreversibly prior to the onset of pruning [86]. When brain neoangiogenesis
is too fast and extensive, for instance, in post-stroke conditions or the initial phase of
neurodegeneration, microvessels might acquire non-completed barriergenesis. In BMECs,
this is associated with aberrant shear stress response, increased apoptosis, and elevated de-
tachment from the basement membrane. As a result, there is an enhanced BBB permeability
and a promotion of neuroinflammation [87]. Differentiation and maturation of cells always
require an action of signaling molecules promoting cell survival, whereas the elimination
of immature or damaged cells leads to the induction of apoptosis. Therefore, the involution
of microvessels could be predominantly controlled by BMEC apoptosis.

4. Brief Overview of BMEC Apoptosis and Microvessel Pruning

Apoptosis of BMECs usually occurs in capillaries with critically lowered perfusion.
There is a phenomenon of so-called “string vessels” [88] that are empty basement membrane
strands without BMECs and perfusion that are formed after the death of endothelial cells
in the brain tissue. Such vessels have defective coverage with astrocytes and pericytes,
and thus they cannot respond to the activity of neurons within the neurovascular unit [89].
String brain microvessels, probably, may act as tunneling nanotubes involved in vascular
remodeling and reparative angiogenesis [90]. String vessels are found in the central nervous
system more often than in other organs, and gradually disappear over the time-course of
months or years [91]. They are associated with the progression of Alzheimer’s disease,
ischemia, and radiation-induced brain injury, but may also be found in the normal human
brain at any stage of its development. It is likely that localization and the number of string
vessels in the brain tissue could predict the development of chronic neurodegeneration.

Apoptosis and relocation of BMECs play a role in the mechanism of physiological
regression of microvessels during remodeling [3]. In the larval zebrafish, apoptosis of
BMECs contributes to vessel pruning during development: in contrast to brain vessels
undergoing BMEC migration-associated pruning, apoptosis-mediated pruning results in
the appearance of much longer and highly permeable microvessels. It has been suggested
that long vessels limit the ability of BMECs to migrate into adjacent unpruned segments,
therefore BMECs undergo apoptosis at their initial location [92]. As a result, string vessels
might appear.

It is believed that the physiological turnover of brain microvessels is very low in the
postnatal/adult brain, but it is accelerated in aging [93]. However, in the adult or aging
brain, the death of BMECs under pathological conditions occurs via apoptosis or, less
frequently, via autophagy, lysosomal degradation, or necroptosis [94]. Several factors can
induce BMEC apoptosis in pathology: prooxidants, pro-inflammatory cytokines, chroni-
cally elevated glucose, bacteria and viruses, toxic xenobiotics, hormones, ionizing radiation,
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aberrantly folded proteins, etc. [95–97]. For instance, Anasooya et al. [98] demonstrated that
different concentrations of hydrogen peroxide play an important physiological role, but un-
der pathological conditions, higher levels of hydrogen peroxide induce massive apoptosis
of BMECs. Being applied at concentrations of less than 1 µM, hydrogen peroxide increases
tube formation, but acting at concentrations of 10 mM and above, it reduces cell viability
and induces apoptosis of BMECs in vitro. The findings of Shao and Bayraktutan [99] re-
vealed that hyperglycemia promotes apoptosis of BMECs by means of induction of protein
kinase CßI (PKC) and the reactive oxygen species-generating enzyme NADPH oxidase.
Apoptosis of BMECs can be significantly affected by the activation of enolase-phosphatase 1
(ENOPH1) which increases the formation of reactive oxygen species, activation of pro-
apoptotic proteins, and DNA repair-modulating proteins (caspase-3, PARP, BAX) as well as
endoplasmic reticulum stress proteins (IRE1, GRP78, PERK, and calnexin) in endothelial
cells upon glucose–oxygen deprivation [100]. Inhibition of PKC prevents BBB breakdown
in the conditions of oxygen–glucose deprivation due to the suppression of cytoskeletal
rearrangements and apoptosis in BMECs [101].

Activation of caspase cascade in BMECs depends on multiprotein complexes that
include various factors, such as apoptotic protease activating factor 1 (APAF1) and cy-
tochrome C (CytC) released into the cytosol (Figure 1). One of the key proteins that transmit
apoptotic signals is Fas-associated protein with death domain (FADD) which is activated
by: (i) binding to FAS/procaspase-8 and formation of a death-inducing signaling complex
(DISC) with subsequent activation of caspases 3, 6, and 7; (ii) recruitment of procaspase-10
and caspase-8/-10 regulator cFLIP [102]. After induction of apoptosis, caspase-3 cleaves
the DFF45/ICAD complex and releases DFF40/CAD. It leads to DNA fragmentation and
nuclear condensation [103]. An elevated ratio of the proapoptotic protein BAX and anti-
apoptotic protein BCL-2 levels [104], nuclear translocation of apoptosis-inducing factor
(AIF), overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) leading to NAD+ de-
pletion and metabolic stress also contribute to BMEC apoptosis [105]. BMECs might be
particularly sensitive to NAD+ depletion because of their high energetic demands [71].
That is why replenishment of intracellular NAD+ levels is beneficial in preventing cerebral
vascular aging [105], or in protecting BMECs from hydrogen peroxide-induced apoptosis
in vitro [106].

Microglia and macrophages induce the death of BMECs via the release of apoptosis-
or necroptosis-inducing factors. This phenomenon is implicated in vascular remodel-
ing [107,108], or recognition of apoptotic bodies derived from damaged BMECs [92]. Recent
experimental data reveal that capillary-associated microglia engulf apoptotic bodies and
greatly affect brain microvasculature: elimination of this type of microglia results in a ~15%
increase in capillary size, a ~20% increase in cerebrovascular perfusion, and a ~50% reduc-
tion in vascular reactivity [109]. It is interesting that like in the case of microglia-mediated
synaptic pruning mediated by C3 complement and its receptor C3R [110], vessel pruning
performed by microglia depends on the activity of the C3/C3R-system [111]. Thus, vascular
density in the brain is tightly coupled not only to the neuronal activity in the particular
brain regions, but also corresponds to the activity of capillary-associated microglia and the
intensity of the local immune reactions.

It should be emphasized that modulation of endothelial cell apoptosis is of great
therapeutic importance. Therefore, there have been numerous attempts to utilize this
phenomenon for the development of reparative strategies in brain pathology. One example
is the use of FTY720, a sphingosine-1-phosphate receptor 1 (S1PR1) modulator [112], which
restores the structure of the neurovascular unit after experimental traumatic brain injury by
reducing BMEC apoptosis and attenuating the activation of glial cells. Another promising
approach for inhibiting BMEC apoptosis is interleukin-10, whose anti-apoptotic effects are
associated with the suppression of BAX and caspase-1 and 3, as well as with an increase in
BCL-2 levels in endothelial cells in neuroinflammation [113].
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5. Regulation and Outcomes of Vascular Regression and Pruning in the Brain

The process of regression of the microvascular network has been studied in detail in
corneal vessels [114,115] as well as in embryonic tissue, endometrium, and in the models of
wound healing [3,116–118]. It is commonly accepted that vessel regression is determined
by genetic and epigenetic factors, pro- and anti-angiogenic environment, oxygen supply,
and local blood flow. However, there are limited data demonstrating how brain blood
vessel regression is changed with age, and how it affects neuronal activity [119–121].

Presumably, blockage and recanalization of capillaries in the cerebral cortex is a contin-
uous process that could be changed with age through a VEGF-mediated mechanism [122].
As we mentioned above, regression of cerebral microvessels occurs both due to the mi-
gration of endothelial cells and activation of apoptosis [3]. According to Hughes and
Chang-Ling [123], the physiological regression of brain blood vessels is predominantly
mediated by the migration of BMECs further contributing to new vessels. When regression
leads to impaired blood circulation but the relocation of BMECs is impossible, they undergo
apoptosis.

There is a Wnt/β-catenin signaling pathway specific to angiogenesis in the CNS [60,124].
Defects in this pathway reduce the number of vessels, lead to the loss of tiny capillaries, and
the formation of hemorrhagic vascular malformations that remain adherent to the meninges.
The recent review by Gupta et al. [60] emphasizes that in the mechanism of cerebral
microvessel remodeling, canonical signaling along the Wnt/β-catenin pathway in BMECs
functions in a cell-autonomous manner and promotes the formation and maintenance
of the BBB through specific protein–protein interactions. In addition, signaling via the
Wnt/β-catenin pathway regulates the expression of the BBB-specific glucose transporter
GLUT1 which is needed for better adjustment of BMECs to the elevated needs in ATP for
vascular remodeling and barriergenesis [124].

The data obtained by Gao et al. [125] on in vivo longitudinal imaging showed that
regressing vessels in the brain are widespread in mice, monkeys, and humans. The re-
gression of these vessels proceeds through successive stages of blood flow occlusion, the
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collapse of endothelial cells, displacement or loss of pericytes, and retraction of glial
ends. The authors found that short-term occlusion of the middle cerebral artery and
lipopolysaccharide-mediated neuroinflammation induce an increase in vascular regression
followed by metabolic impairments and reduction of neuronal activity.

It is well known that astrocytes play a key role in many aspects of vascular develop-
ment and functioning. During brain development, the growth of blood vessels follows
the establishment of the astroglial syncytium, which is formed due to the expression of
intercellular channels—connexons. Deletion of the ORC3 gene in glial progenitors dramati-
cally reduces the number of astrocytes in the early postnatal cerebral cortex, and this, in
turn, leads to a serious decrease in both the density and branching frequency of cortical
blood vessels [126]. However, this process is not accompanied by vascular regression, and
the morphology of blood vessels in the mutant cortex is restored at later stages, after the
occurrence of astrogliosis. Thus, these data indicate that astrocytes have pro-angiogenic
properties without directly affecting the brain microvessel regression.

Astrocytes, pericytes, and capillary-associated microglia secrete a huge number of
molecules with pro- or anti-angiogenic properties. In some cases, the pro- or anti-angiogenic
potential of the same molecule changes in various conditions. For instance, locally released
pro-angiogenic molecules (products of COX-2 activity, or angiopoietin-2) support angio-
genesis [127]. However, experimental data suggest that angiopoietin-2 depending on the
presence of VEGF can affect both angiogenesis and vascular regression in the brain. More-
over, the TWEAK protein (TNF-like weak inducer of apoptosis) which is elevated in the
brain tissue upon restoration of normoxia, does the same [128]. Semaphorins (Sema6A,
Sema3A, Sema3E, Sema3C, and Sema4G) expressed in the brain tissue also affect both
neoangiogenesis and regression of macro- and microvasculature due to their effects on
proliferation, apoptosis, and migration of BMECs and pericytes [129,130].

What is the key role of microvessel regression in the brain tissue? The establishment of
new highly-branched microvessels seems to be usually associated with incomplete matura-
tion of BMECs, and local BBB breakdown. Later, when brain metabolic requirements return
to the pre-stimulated levels, the density of capillaries should also be reduced in order to
prevent inadequate blood supply and risk of oxidative stress induction. Thus, the pruning
of microvessels should be completed by means of BMEC migration or apoptosis [131,132].
Like cerebral angiogenesis in the postnatal brain, microvascular regression is associated
with plasticity mechanisms. Indeed, the intensive formation of new microvessels under
physiological conditions, for instance, during physical activity or extensive training, is
induced by the action of VEGF and lactate. Lactate is glycolytically produced and released
from astrocytes or pericytes, and likely acts at lactate receptors GPR81 widely expressed in
BMECs [133].

Neoangiogenesis, in addition to neurogenesis, is critically important for effective learn-
ing and memory consolidation [134]. It is most probably determined by high metabolic
demands in the active neurogenic niches and other brain regions [135]. Obviously, the
cessation of such a request should lead to a gradual regression of the microvascular density.
Indeed, elegant experimental data confirm that remote memory formation is associated,
upon encoding, with a hypoxic signal that triggers angiogenesis in specific cortical regions.
They support memory storage and further regression of recently-formed (or pre-existing)
microvessels [136]. Moreover, permanent tuning of local blood flow in the brain is neces-
sary either when adapting to oxygen or nutrient deficiency, and when neuronal activity
is intensified in neuronal networks with spatial and temporal heterogeneity [137]. In ad-
dition to the rapid physiological responses of blood flow to reduced oxygen/substrate
availability and increased brain energy demand, mechanisms of vascular plasticity should
be of high importance. As we mentioned earlier, a key regulatory factor might belong
to the HIF family of transcription factors. HIF-1α increases the production of VEGF and
glycolytic flux resulting in the higher density of the microvascular network, whereas HIF-2
provides a compensatory response of cells to hypoxia. Both factors are involved in the
regulation of brain development, synaptogenesis, neuritogenesis, and neurogenesis, being
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highly expressed in the embryonic and postnatal brain [138]. In endothelial cells, HIF-2
expression is necessary for the correct angiogenesis and cell adhesion controlling limited
vascular permeability [139]. Like in the case of HIF-1, HIF-2 expression deficiency is
also associated with cognitive impairments and aberrant metabolism in Alzheimer’s-type
neurodegeneration [138,140].

6. Aberrant Microvessel Remodeling in Alzheimer’s-Type Neurodegeneration

Impaired microvascular remodeling, particularly aberrant microvessel regression, is
recognized now as an important mechanism implicated in the pathogenesis of many brain
disorders [141]. Reparative angiogenesis in the peri-stroke area is insufficient if it is not
accompanied by reduced regression of formed vessels in the peri-infarction loci [142,143].
Chronic hypoxia, which induces vascular remodeling in the brain tissue, is accompa-
nied by the accumulation of fibrinogen and activation of inflammatory response in non-
angiogenic vessels [144]. This phenomenon could probably contribute to the progression
of neuroinflammation, activation of microglia, and extensive microvascular pruning, as
discussed above.

Neurovascular dysfunction is a hallmark of the neurodegenerative process associated
with cerebral amyloid angiopathy caused by the accumulation of β-amyloid peptide in
the brain tissue and walls of cerebral vessels [145,146]. Vascular changes occur even at
the preclinical phase of Alzheimer’s disease before the development of cognitive impair-
ments, and accumulation of beta-amyloid and hyperphosphorylated tau protein. They are
always associated with the altered structural and functional integrity of the BBB [147]. In
recent decades, special attention has been paid to the mechanisms of BBB dysfunction and
breakdown, reduced cerebral blood flow, and impaired vascular clearance of beta-amyloid
from the brain to meningeal lymphatic vessels [4,148–150]. Numerous data confirm that
aberrant angiogenesis and aging of the cerebrovascular system can initiate neurovascular
events leading to Alzheimer’s-type neurodegeneration [151–153].

Both, the density of cerebral vessels and the number of neurons decrease significantly
during physiological aging (by 10–30%) and in patients with Alzheimer’s disease (by
40–60%) [5,154–156]. In turn, a decrease in the density of the microvascular bed serves as
a prognostic marker in progressive Alzheimer’s-type neurodegeneration [157–159]. The
pathology of the brain microvasculature in Alzheimer’s disease corresponds to the excessive
deposition of beta-amyloid and tau protein [160–162]. However, a genetic predisposition
to Alzheimer’s disease due to the abnormal APOE-ε4 genotype or family history is not
associated with the presence of microvascular pathology in middle age [163]. At the same
time, the data provided by Moore et al. [164] show an interplay of aberrant APOE-ε4 and
VEGFR co-receptor neuropilin-1 (NRP1)/VEGF-A expression and impairment of cognitive
functions: NRP1 reduces the risk of negative cognitive performance in carriers of the
APOE-ε4 allele that might have a direct relation to its pro-angiogenic activity.

There is an altered balance of angiogenesis and vessel regression in Alzheimer’s dis-
ease. In the experimental models of Alzheimer’s disease, BMEC damage and apoptosis
lead to deregulated angiogenesis [151]. BMECs in Alzheimer’s type neurodegeneration ex-
press extremely low levels of the mesenchymal homebox 2 (MEOX2) gene which regulates
differentiation and remodeling of vascular cells and is restricted to the vascular system in
the adult brain. Low levels of MEOX2 expression mediate abnormal angiogenic responses
of BMECs to VEGF and other pro-angiogenic factors [165]. Reduced MEOX2 expression
leads to accelerated vascular involution, inadequate blood supply, and BBB breakdown.
In addition, low levels of MEOX-2 expression promote proteasomal degradation of the
apolipoprotein E receptor (LRP1), further leading to a reduced ability to transport the
excess beta-amyloid from the brain tissue to the peripheral blood [166]. Accumulation
of beta-amyloid on the outer membrane of blood vessels, in turn, is an anti-angiogenic
factor itself. It may contribute to a decreased density of the microvascular bed seen in
Alzheimer’s disease [167,168]. Plasma concentrations of high molecular weight fibronectin,
which binds integrins and has an angiogenic effect on BMECs, correlate with the risk of
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developing Alzheimer’s disease [169]. Aberrant remodeling of brain microvasculature
results in defective clearance and excessive accumulation of beta-amyloid in the brain,
cerebral blood flow decrease, and secondary metabolic alterations supporting neuronal
dysfunction, cell death, and inflammation [170]. Excessive hypervascularization seen in
Alzheimer’s disease is induced by the action of beta-amyloid on BMECs and leads to
abnormally enhanced permeability of the BBB in newly formed vessels [87]. Thus, one
may assume in the time course of Alzheimer’s neurodegeneration, the initial increase in
cerebral angiogenesis later associates with accelerated vascular aging, altered microvas-
cular regression, and preservation of immature microvessels with uncontrolled high BBB
permeability. If so, the aberrant balance of angiogenesis and microvessel involution as well
as impaired barriergenesis should be considered as promising targets for the prevention
and compensation of neurological deficits in Alzheimer’s-type neurodegeneration.

7. Some Perspectives of Targeting Abnormal Microvascular Remodeling in
Brain Diseases

Understanding key mechanisms of normal and aberrant cerebral microvessel remod-
eling enables further progress in the development of novel approaches to the diagnostics
and treatment of brain disorders. For instance, elevated plasma levels of angiogenin and
tissue inhibitors of matrix metalloproteinase-4 as well as VEGF have been identified as risk
factors for the development of Alzheimer’s disease [153,171]. Application of exogenous
activators of protein C, whose deficiency in the postischemic period leads to the inhibition
of endothelial integrins α5β1 and avβ3, is considered to be a promising method of stroke
therapy [27]. M. Ali and O. Bracko [172] recently found that upregulation of VEGF-A sig-
naling contributes to a decrease in cerebral capillary blood flow in an experimental model
of Alzheimer’s disease. Injection of anti-VEGF-A antibodies results in the improvement of
BBB integrity, a decrease in the number of non-functioning capillaries, and restoration of
cerebral blood flow. Durrant et al. [173] provided new data on beta-secretase as a potential
therapeutic target for reducing aberrant angiogenesis in Alzheimer’s disease: in mice
expressing human amyloid precursor protein gene, inhibition of beta-secretase normalizes
excessive formation of endothelial filopodia and restores Notch signaling. Inhibition of
excessive angiogenesis with the application of cytostatic drugs reduces the neurological
manifestations of experimental Alzheimer’s disease [174]. Control of inflammation and
insulin resistance achieved by the suppression of inflammasome formation is a way to
prevent vascular cognitive impairments [175]. Other approaches to suppressing aberrant
angiogenesis and microvessel regression in brain diseases are based on the application of
pharmacological inhibitors of hypoxia-driven events, BMEC apoptosis, extracellular traps
of neutrophils, canonical/non-canonical Wnt/β-catenin signaling pathways, and mecha-
nisms contributing to vascular pathology in brain diseases [176–179] (Figure 2). However,
it should always be taken into consideration that physiological signaling pathways might
be completely deregulated in the brain pathology, thereby leading to unexpected outcomes
of the proposed treatments.

In sum, cellular and molecular mechanisms of remodeling brain microvessels in
(patho)physiological conditions are not clear yet. We believe that deciphering the events
associated with the regression of brain microvessels induced by plastic changes in a healthy
brain or chronic neurodegeneration and aging would open up new approaches to the
effective restoration of cognitive deficits. In addition, it is of particular interest for the
development of functionally competent brain tissue in vitro models, including those based
on iPSCs-derived cerebral organoids, or functional BBB models suitable for testing new
drug candidates.



Int. J. Mol. Sci. 2022, 23, 12683 12 of 20

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 21 
 

 

rant angiogenesis in Alzheimer’s disease: in mice expressing human amyloid precursor 
protein gene, inhibition of beta-secretase normalizes excessive formation of endothelial 
filopodia and restores Notch signaling. Inhibition of excessive angiogenesis with the ap-
plication of cytostatic drugs reduces the neurological manifestations of experimental 
Alzheimer’s disease [174]. Control of inflammation and insulin resistance achieved by the 
suppression of inflammasome formation is a way to prevent vascular cognitive impair-
ments [175]. Other approaches to suppressing aberrant angiogenesis and microvessel 
regression in brain diseases are based on the application of pharmacological inhibitors of 
hypoxia-driven events, BMEC apoptosis, extracellular traps of neutrophils, canoni-
cal/non-canonical Wnt/β-catenin signaling pathways, and mechanisms contributing to 
vascular pathology in brain diseases [176–179] (Figure 2). However, it should always be 
taken into consideration that physiological signaling pathways might be completely de-
regulated in the brain pathology, thereby leading to unexpected outcomes of the pro-
posed treatments. 

 
Figure 2. Scheme illustrating some pharmacological targets used for normalizing brain vascular 
remodeling. 

In sum, cellular and molecular mechanisms of remodeling brain microvessels in 
(patho)physiological conditions are not clear yet. We believe that deciphering the events 
associated with the regression of brain microvessels induced by plastic changes in a 
healthy brain or chronic neurodegeneration and aging would open up new approaches to 
the effective restoration of cognitive deficits. In addition, it is of particular interest for the 
development of functionally competent brain tissue in vitro models, including those 
based on iPSCs-derived cerebral organoids, or functional BBB models suitable for testing 
new drug candidates. 

Figure 2. Scheme illustrating some pharmacological targets used for normalizing brain vascular remodeling.

Author Contributions: Original Draft Preparation, P.P.T.; Conceptualization, A.B.S.; Project Adminis-
tration, Review, and Editing, P.P.T., A.S.A., T.I.B., M.V.R. and A.B.S. All authors have read and agreed
to the published version of the manuscript.

Funding: The study was supported by a grant from the Russian Science Foundation (Project No.
22-15-00126, https://rscf.ru/project/22-15-00126 (accessed date 17 September 2022).

Institutional Review Board Statement: Protocol of the Local Ethical Committee of the Research
Center of Neurology (Moscow), protocol # 5-3/22 dated 1 June 2022.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AIF apoptosis inducing factor
Ang angiopoietin
Ang2 angiopoietin-2
APAF1 apoptotic protease activating factor 1
APOE apolipoprotein E
ATP adenosinetrisphosphate
BAX bcl2-associated x protein
BBB blood-brain barrier
BCL-2 b-cell lymphoma 2
BMECs brain microvessel endothelial cells
cFLIP cellular FADD-like IL-1β-converting enzyme)-inhibitory protein
CNS central nervous system
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ColIV collagen V
COX-2 cyclooxygenase-2
CXCR3 activation of CXC chemokine receptor 3
CytC cytochrome c
DISC death-inducing signaling complex
DLL4 delta like canonical notch ligand 4
ENOPH1 enolase-phosphatase 1
FADD FAS-associated protein with death domain
FGF2 fibroblast growth factor 2
GLUT1 glucose transporter 1
HBMEC human brain microvascular endothelial cells
HIF-1α hypoxia-inducible factor 1-alpha
IL-8iPSCs interleukin-8induced pluripotent stem cells
JAG1 jagged1
JNKs c-jun n-terminal kinases
LRP1 low density lipoprotein receptor-related protein 1
MAP kinase mitogen-activated protein kinase
MCP1 monocyte chemotactic protein 1
MEOX2 mesenchyme homeobox 2
NAD+ nicotinamide adenine dinucleotide
Notch 3 neurogenic locus notch homolog protein 3
NRF2 NF-e2-related factor 2
NRP1 neuropilin-1
PARP-1 poly [ADP-ribose] polymerase 1
PDGF platelet-derived growth factor
PGFD prox1-gfp/flt1-dsred
RSPO3 R-spondin 3
S1PR1 sphingosine-1-phosphate receptor 1
Sema semaphorin
TIMPs tissue inhibitors of metalloproteinases
TRPA1 transient receptor potential cation channel A1
TWEAK TNF-like weak inducer of apoptosis
VE-cadherin vascular endothelial cadherin
VEGF vascular endothelial growth factor
VEGF-A vascular endothelial growth factor A
VEGFR vascular endothelial growth factor receptor
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