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Binary classification is one of the central problems in machine-
learning research and, as such, investigations of its general statis-
tical properties are of interest. We studied the ranking statistics
of items in binary classification problems and observed that there
is a formal and surprising relationship between the probability of
a sample belonging to one of the two classes and the Fermi–Dirac
distribution determining the probability that a fermion occupies
a given single-particle quantum state in a physical system of
noninteracting fermions. Using this equivalence, it is possible to
compute a calibrated probabilistic output for binary classifiers.
We show that the area under the receiver operating character-
istics curve (AUC) in a classification problem is related to the
temperature of an equivalent physical system. In a similar man-
ner, the optimal decision threshold between the two classes is
associated with the chemical potential of an equivalent physi-
cal system. Using our framework, we also derive a closed-form
expression to calculate the variance for the AUC of a classifier.
Finally, we introduce FiDEL (Fermi–Dirac-based ensemble learn-
ing), an ensemble learning algorithm that uses the calibrated
nature of the classifier’s output probability to combine possibly
very different classifiers.

binary classification | ensemble learning | machine learning |
calibrated probability | Fermi–Dirac distribution

B inary classification is the task of predicting the binary cate-
gorical label of each item in a set of items that belong to one

of two categories (1). Typically, this prediction is made using a
function, known as a classifier, which learns from examples taken
from a training dataset containing items of both classes of inter-
est. This classifier is subsequently used to predict the labels of
previously unseen items contained in a new dataset.

Binary classification has a remarkably broad range of applica-
tions in fields such as biomedicine (2), economics (3), finance
(4), astronomy (5), advertisement (6), and manufacturing (7).
Problems addressed in these areas with greater or lesser
success include predicting antibacterial activity of molecules
(8), diagnosing breast cancer from mammography studies (9),
detecting skin cancer from dermoscopy images (10), predicting
Alzheimer’s disease onset from linguistic markers (11), classify-
ing hand gestures from wearable device signals (12), identifying
lunar craters from images (13), deciding whether a judge should
have defendants wait for trial under bail at home or in jail (14),
choosing whether to approve a loan to a client (15), predict-
ing corporate financial distress (16), and determining whether a
given semiconductor manufacturing process will lead to a faulty
product (17).

This great diversity of applications has spurred a consider-
able amount of work devoted to the development of classifica-
tion methods. Despite substantial theoretical progress that led
to increased predictive power, there is concern that methods
optimized under narrow theoretical contexts may not lead to per-
formance generalization (18) and that the emphasis of research
on prediction models should perhaps shift to other issues such as
model interpretation and independent validation (19). Accord-
ingly, in this paper we address four generic problems arising in

any classification task: 1) We develop a calibrated probabilistic
interpretation of the output of a classification pipeline, indepen-
dent of the classification method used; 2) we show how to use this
probabilistic interpretation to optimally choose a threshold that
separates predicted classes; 3) we introduce an analytical way to
compute the confidence interval of the most popular classifica-
tion performance metric (the area under the receiver operating
characteristics curve [AUC]), which uses only the available infor-
mation rather than ad hoc hypotheses about the classifier; and
4) we address the issue of performance generalization by devel-
oping an ensemble approach that, rather than relying on the
generalization ability of any individual method, leverages the
ability of many methods to compensate each other’s deficiencies
and get a performance that is often better than the best in the
ensemble. To achieve these objectives we advance an unexpected
equivalence between the probabilistic description of fermions in
quantum statistical mechanics and the probability of correct clas-
sification of items in typical classification problems. The validity
of the probabilistic aspects of fermionic systems under general
conditions renders the equivalent results in the world of clas-
sification to be quite robust and independent of any individual
classification method.

In a binary classification problem, the two classes to be pre-
dicted are usually denoted as the negative and the positive class.
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While this distinction is arbitrary, the positive class is usually cho-
sen as the class that is more costly to misclassify. For example, in
cancer screening, failing to detect patients with cancer is more
costly than failing to detect disease-free subjects, and therefore
cancer patients are usually assigned to be in the positive class.
We use this convention in this paper. A binary classifier typi-
cally assigns a score si to a given item i that can be a proxy to
the confidence assigned by the classifier that the item belongs
to the positive class y =1 or to the cost of misclassification of
that sample. In general, the probability density of these scores
will depend on the class y and is known as the class-conditioned
score density P(s|y), which is not known a priori and is different
for each classifier. Some authors have proposed to fit Gaus-
sian distributions to the scores resulting from specific classifiers
(20), but better results have resulted from allowing more flex-
ibility in fitting class-conditioned densities (21). The score out-
putted by different classifiers can be binarized using a decision
threshold in such a way that we can assign samples with scores
above/below that threshold to the positive/negative class. The
optimal decision threshold will depend on the class-conditioned
score density and is usually chosen empirically or learned
during training.

The class-conditioned density can be used to compute the pos-
terior probability P(y |s) of the class y given the score s assigned
to an item. Having a well-calibrated probability that a given
item belongs to the positive class can be very useful, for exam-
ple, when the result of a classifier must be merged with other
classifiers in an ensemble (22, 23) or when the probability of
the class assignment of a classifier needs to be combined with
other probabilistic elements into a complex decision. However,
most classifiers produce a score with unknown probability den-
sity from which a posterior class probability cannot be recovered.
Some authors have proposed to train the posterior probability
simultaneously with the classifier (24), and others have proposed
to train the parameters of a logistic function that depends on
the score of a previously trained classifier (25). In these meth-
ods, as the probability is trained in the training set, there is
some risk of overfitting to the probabilistic output. The alter-
native of keeping a holdout set and using cross-validation is
relatively successful (25). These strategies are feasible only if
there is a sufficient amount of labeled data for the problem at
hand. In cases where the amount of labeled data is not enough
to train the classifier and the posterior probability, other methods
are desirable.

One of the most popular metrics to measure the performance
of a binary classifier is the AUC (26). To calculate the AUC
of a classifier, it is necessary to rank the items using the scores
assigned to each item by the classifier. Thus, the AUC of a classi-
fier is invariant with respect to any monotonic transformation of
scores. It follows that what is important in calculating the AUC
is the relative ranking of an item to other items rather than the
actual score assigned to an item. When the number of items
in the test set increases, the AUC of a classifier asymptotically
approaches the probability that the classifier assigns a randomly
chosen positive sample a higher score than a randomly cho-
sen negative sample (27). The AUC is a threshold-independent
way of calculating the performance of a classifier. To predict
whether items are positive or negative we need to choose a deci-
sion threshold and assign items with scores above this threshold
to the positive class and items below it to the negative class.
In these cases the balanced accuracy, defined as the average
of the sensitivity and specificity, is a popular metric for model
evaluation.

Assuming that a classifier is better than random, ranking N
classified items in decreasing order from higher to lower scores
will lead to positive samples having predominantly low ranks
(1, 2, . . .) and negative samples having a tendency to have high
ranks (. . . , N − 2, N − 1, N). Therefore, we can ask, What is the

probability P(y =1|r) that the item ranked at rank r is in the
positive class (y =1)? In this paper, we show that this probabil-
ity can be mapped to the probability that a fermion (a quantum
particle of half-integer spin such as an electron) occupies a given
single-particle quantum state in a physical system of independent
fermions (28, 29). This probability is known as the Fermi–Dirac
(FD) distribution in quantum statistical physics and is used in
fields such as atomic physics (30), solid-state physics (31) (e.g.,
the transport properties of electrons in metals), and astrophysics
(32) (e.g., the physics of white dwarf stars).

We explore the application of the FD statistics in machine
learning in the context of binary classification problems. Using
the FD statistics, we show that the optimal rank threshold below
which items are more likely to be positive and above which items
are more likely to be negative is the same threshold at which
the balanced accuracy of the classifier is maximal and is related
to the chemical potential in the FD distribution. We also use
the FD distribution to derive a closed-form expression for the
variance of the AUC of a classifier, which is independent of
the distribution of scores assigned by the classifier. This vari-
ance is necessary to assign confidence intervals to the AUC and
to estimate sample size in power analysis. Finally, we introduce
FiDEL (Fermi–Dirac-based ensemble learning), an ensemble
learning algorithm based on the FD distribution that uses the
calibrated probability assigned to different base classifiers to
combine them into a new ensemble classifier. FiDEL only uses
the AUC of the base classifiers and the fraction of positive
examples in the problem, both of which can be estimated from
the training set.

The Fermi–Dirac Distribution in Binary Classification
The FD distribution describes the probability that a fermion
occupies a single-particle quantum state in a fermionic system,
e.g., the probability that an electron occupies a certain atomic
level in an atom. Fermions obey the Pauli exclusion principle.
This means that if ni represents the number of fermions in
quantum state i , then ni can be only 1 or 0. The probability
that quantum state i is occupied is then equal to the average
occupation number 〈ni〉. If the fermionic system is in thermody-
namic equilibrium with a thermal bath, then the probability that
the quantum state i , assumed to have an energy εi , is occupied
follows the FD distribution

〈ni〉=
1

1+ e(εi−µ)/kBT
,

where kB is the Boltzmann constant, T is the absolute temper-
ature of the thermal bath, and µ is a temperature-dependent
chemical potential. The FD distribution can be derived by maxi-
mizing the entropy of the system in the microcanonical ensemble
of statistical physics under the constraints that the number of
fermions NF and the total energy E of the system are known
(33):

NF =

NQ∑
i=1

〈ni〉, [1]

E =

NQ∑
i=1

〈ni〉εi , [2]

where NQ is the number of quantum states available to the
fermions. We assume that NQ is finite, which is a good approxi-
mation in many physical systems when the energy gap, εNQ+1−
εNQ ,� kBT . For the purpose of this paper quantum states refer
to single-fermion quantum states and the NF fermions in our
system are noninteracting.

We next present a conceptual parallel between certain sta-
tistical properties in binary classification problems and the FD
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statistics. Let us define the (N ,N1) ensemble of test sets to be
the set (ensemble) of datasets with N items of which exactly
N1 are in the positive class (for a more formal definition see
SI Appendix, section 1). Fig. 1A depicts test sets in the (N ,N1)
ensemble as Venn diagrams with N items each characterized by
a feature vector xk and its class yk . Let us consider a classifier
g that assigns a score s to each item k =1, . . . ,N in one of the
test sets Ti as shown in Fig. 1A. This score is typically a measure
of the confidence assigned by classifier g that the item belongs
to the positive class and can then be used to rank samples from
the most likely to belong to the positive class to the least likely
(SI Appendix, section 1). The class of the item at rank r can be
either yr =1 or yr =0. The binary nature of the classification
of each item suggests that the class of an item at a given rank
can be mapped to the binary occupation number of a quantum
state in the fermionic system. In this mapping the ranks in the
classification problem are the equivalent to the quantum states
in the FD problem; class 1 items act as fermions and obey an
exclusion principle in that only one item of class 1 can be ranked
at any given rank. Classifier g can place either a positive or a
negative class item at rank r (Fig. 1A). However, for each real-
ization of the test set in the (N ,N1) ensemble, the constraint
that N1 =

∑N
r=1 yr must hold. Let us call 〈yr 〉 the average class

of items that the classifier ranked at rank r over all possible test
sets in the (N ,N1) ensemble. Given that the previous constraint
holds true for each realization, it will also be true on average in
the (N ,N1) ensemble; that is,

N1 =

N∑
r=1

〈yr 〉. [3]

We next discuss the mapping to the classification problem of
the energy level εi of the ith quantum state. To do this we
note that in any given realization of a test set in the (N ,N1)
ensemble, the average rank of positive class samples r̂y=1 can
be expressed as r̂y=1 =

∑N
r=1 ryr/N1. Calling 〈r |1〉= 〈r̂y=1〉 the

average rank of class 1 items over all possible test sets in
the (N ,N1) ensemble, and using that 〈r |1〉=(N +1)/2+ (N −
N1)(1/2−〈AUC 〉) (SI Appendix, Theorem 1), where 〈AUC 〉 is
the average AUC of classifier g over the (N ,N1) ensemble,
we find that

N1
N +1

2
+N1(N −N1)

(
1

2
−〈AUC 〉

)
=

N∑
r=1

〈yr 〉r . [4]

Comparing Eq. 1 with Eq. 3 and Eq. 2 with Eq. 4 we can postulate
a formal mapping of the quantities from the fermionic system
to the classification problem: NQ→N , NF →N1, 〈nr 〉→ 〈yr 〉,
εr→ r , and E→N1(N +1)/2+N1(N −N1)(1/2−〈AUC 〉).
Given that yr takes only the values 0 and 1, its ensemble aver-
age 〈yr 〉 is equal to the probability P(y =1|r) that an item is in
the positive class given that it was ranked at rank r . Under these
conditions and from the fact that the FD distribution follows
from the second principle of thermodynamics along with Jaynes’
insight (34) that the maximum-entropy principle in statistical
mechanics is nothing but the maximization of the uncertainty
about our unknowns, we conclude the maximum-entropy rank-
conditioned class probability in the classification problem is
given by the FD distribution with the appropriately mapped
quantities:

P(y =1|r)= 1

1+ eβ(r−µ)
, [5]

where β and µ are chosen to fit Eqs. 3 and 4 from the known
N1 and 〈AUC 〉 of the classifier. Fig. 1B shows the result of
plotting 〈yr 〉 (dots) for an (N ,N1) ensemble with N =100 and
N1 =50 and an 〈AUC 〉 of 0.9 and the fitted FD distribution (red
dashed line), which follows the empirically simulated distribution
remarkably well (P value < 2.1× 10−124).

To recap, the FD distribution for a physical system fol-
lows from the second principle of thermodynamics (maximum
entropy) under the constraints that the energy and the number
of fermions of the system are known. Because of the map-
ping between the binary classification problem and the fermionic
system, we can think of the FD distribution as the maximum-
entropy estimate of the rank-conditioned class probability with
the appropriately mapped constraints. The rank-conditioned
class probability can also be derived directly from these con-
straints and the maximum-entropy principle without invoking a
mapping between the classification problem and the fermionic
system (SI Appendix). However, we believe that this mapping can
provide a fruitful analogy to interpret the parameters β and µ, as
we will see in the next section.

It should be clear from this discussion that we are not
claiming that the rank-conditioned class probability is the FD

BA
y1r yir yLr

Rank r

Fig. 1. (A) Test sets T1, . . . , TL are sampled from an (N, N1) ensemble. Each test set consists of N items xN
i=1 of which exactly N1 are in the positive class.

Applying the classifier g to set Ti endows each item xi with score si . The items are then ranked in decreasing order of scores. If item xi has class y ∈{0, 1}
and was ranked at rank r, then we assign label y to rank r and we keep a tally of the number of times rank r was assigned label y in the L test sets. The
rank-conditioned positive class probability P(1|r) is the frequency with which items in the positive class y = 1 were ranked at rank r in the L test sets. (B)
Comparison between the Fermi–Dirac distribution and the rank-conditioned positive class probability for simulated data. An (N = 100, N1 = 50) ensemble
with L = 1, 000 test sets was simulated. The class-conditioned score density of the classifier was simulated with a Gaussian density function with mean
µ− =−0.906 and σ− = 1 for the negative class and µ+ = 0.906 and σ+ = 1 for the positive class. This corresponds to a classifier with an AUC of 0.9. Each
test set had 50 items from the positive class and 50 items from the negative class (ρ= 1/2). For each of the 1, 000 test sets, the items were processed
according to A. The resulting frequency of positive labels for each rank is plotted and compared with the FD distribution from Eq. 5, with fitted parameters
(β = 0.0759, µ = 50). The Pearson correlation between the FD distribution and the rank-conditioned positive class probability is 0.99 (P value< 2.1× 10−124).
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distribution. Rather, we claim that the FD distribution is the
distribution that makes the least number of assumptions by max-
imizing our uncertainty about the information we do not have
but taking into account the information encoded in the afore-
mentioned constraints. If more information were available, for
example, if we knew the class-conditioned score density of the
classifier, then a more precise distribution could be derived.
However, the FD distribution provides an excellent approxi-
mation for the posterior probability of binary classifiers as is
shown in the following sections where we introduce multiple
applications of this approach.

The Temperature and Chemical Potential in Binary
Classification
Next, we discuss the interpretation of the temperature and the
chemical potential in the context of binary classification. In a
fermionic system, as the temperature approaches 0, all fermions
will occupy the quantum states with the lowest possible energies
allowed by the exclusion principle up to the chemical poten-
tial at T =0, a quantity known as the Fermi energy εF . On the
other temperature extreme, when T→∞, all quantum states are
equally probable and the average occupation number is NF/NQ .
In the classification problem, the parameter β is mapped to the
inverse temperature in the physical system. As β→∞ the FD
distribution is a step function and is equal to 1 for ranks less than
or equal to N1 and 0 otherwise. This corresponds to a perfect
classifier with an 〈AUC 〉 of 1. Note that, in this case, the chemical
potential µ is equal to N1. When β decreases (i.e., the tempera-
ture increases), the probability P(y =1|r) that an item is of class
1 at rank r becomes a smooth logistic function, which reflects
an imperfect classification with an 〈AUC 〉 between 0.5 and 1.
For β→ 0 (i.e., T→∞), P(y =1|r)→N1/N independently of
r , which corresponds to a random classifier. The above discus-
sion suggests that the temperature in a fermionic system maps
to classification errors. At finite temperature there is no clear-
cut energy threshold below which energy states are occupied
by fermions and above which the states are unoccupied. In the
classification problem, that means that we do not have a clear-
cut threshold rank below which we will find only class 1 items
and above which we will find only class 0 items. We show later
that at finite temperature the optimal threshold in the classifica-
tion problem is related to the chemical potential in the physical
system.

The parameters β and µ should be computed from the con-
straints Eqs. 3 and 4 and in general will depend on N , N1, and
〈AUC 〉. However, for sufficiently large N , these parameters can
be rescaled such that βN and µ/N can be computed numerically
from the knowledge of ρ and 〈AUC 〉 only (SI Appendix, section
5), where ρ=N1/N is the fraction of class 1 items, often called
prevalence. Fig. 2 shows the dependence of βN (Fig. 2A) and
µ/N (Fig. 2B) as a function of the 〈AUC 〉 and ρ. While a gen-
eral analytical expression to express βN and µ/N in terms of ρ
and 〈AUC 〉 does not exist, it is possible to express µ as a function
of β, N , and N1:

µ

N
=

1

2
− 1

βN
ln

[
sinh (βN (1− ρ)/2)

sinh (βN ρ/2)

]
. [6]

It is also possible to find explicit expressions for special cases.
For weak classifiers, i.e., when (〈AUC 〉→ 0.5), we show in
SI Appendix that

βN =12 (〈AUC 〉− 0.5),

µ

N
=

1

2
− 1

12(〈AUC 〉− 0.5)
ln

(
1− ρ
ρ

)
.

Another approximate expression can be found in the limit of
perfect classifiers (〈AUC 〉→ 1−) (SI Appendix),

βN =

√
2

3

1√
ρ(1− ρ)(1−〈AUC 〉)

,

µ

N
= ρ.

Finally, if ρ=1/2, then µ=N /2 for all 〈AUC 〉 (SI Appendix).
Beyond the special cases discussed above, there are symmetries
in the dependence of βN and µ/N as a function of 〈AUC 〉 and ρ
that must hold for all 0≤〈AUC 〉≤ 1 and 0≤ ρ≤ 1, as discussed
in SI Appendix.

Choosing Thresholds in Binary Classification
To assign class labels to each sample in a test set we must choose
a decision threshold. In practical applications, this threshold is
typically learned from a training set. But, if we know the rank-
conditioned class probability, it is possible to relate the rank-
threshold r∗ below/above which the classes are assigned to be
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Fig. 2. The rescaled coefficients of the Fermi–Dirac distribution are determined from the values of ρ and 〈AUC〉. (A) Dependence of βN on 〈AUC〉 and the
prevalence, ρ. (B) Dependence of µ/N on 〈AUC〉 and the prevalence ρ. Here, β and µ were calculated as discussed in SI Appendix with N = 1, 000.

4 of 11 | PNAS
https://doi.org/10.1073/pnas.2100761118

Kim et al.
The Fermi–Dirac distribution provides a calibrated probabilistic output for binary classifiers

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100761118


EN
G

IN
EE

RI
N

G

positive/negative to the parameters β and µ of the corresponding
FD distribution.

This threshold can be chosen to be the rank at which the class-
conditioned rank probability that an item is at rank r is the same
for the positive and negative classes. We define the log-likelihood
ratio as

L(r)= ln

(
P(r |1)
P(r |0)

)
= ln

(
P(1|r)
P(0|r)

1− ρ
ρ

)
, [7]

where in the second equality we applied Bayes’ theorem
to express the class-conditioned rank probability in terms
of the posterior rank-conditioned class probability P(r |y)=
P(y |r)P(r)/P(y) and used that P(y =1)= ρ. Using Eq. 5 as
the rank-conditioned class probability we can find that

L(r)= ln
1− ρ
ρ
−β(r −µ). [8]

Hence, the optimal rank threshold can be computed as the rank
that makes L(r∗)= 0:

r∗

N
=
µ

N
+

1

βN
ln

1− ρ
ρ

[9]

=
1

2
+

1

βN
ln

[
1− ρ
ρ

sinh (βN ρ/2)

sinh (βN (1− ρ)/2)

]
, [10]

where we used Eq. 6 to go from Eq. 9 to Eq. 10. Eq. 10 shows the
dependence of the optimal threshold on β. From the previous
section, this means that the only information needed to deter-
mine the optimal threshold is the 〈AUC 〉 and the prevalence ρ,
which can be learned from the training set.

It is also possible to find a threshold that strikes a compromise
between the sensitivity and the specificity of a classifier. For a
ranked list, a popular way to do this is to find the rank r that
maximizes the balanced accuracy bac(r), defined as the aver-
age of the true positive rate TPR(r) and the specificity or 1 −
FPR(r) (where FPR denotes the false positive rate) of a binary
classifier. For a given instance of the test set, these metrics can
be expressed as

TPR(r)=
1

N1

r∑
i=1

yi , [11]

1−FPR(r)=
1

N −N 1

N∑
i=r+1

(1− yi), [12]

bac(r)=
1

2
(TPR(r)+ 1−FPR(r)). [13]

Taking the average of the previous equations in the (N ,N1)
ensemble we can express the average balanced accuracy in terms
of the posterior class distribution as

〈bac(r)〉= 1

N1

r∑
i=1

P(1|i)+ 1

N −N 1

N∑
i=r+1

P(0|i). [14]

The next step in finding the optimal threshold is to choose the
argument r that maximizes 〈bac(r)〉. We approximate this step
by assuming r to be a continuous variable and finding the value
of r that makes the derivative of 〈bac(r)〉 zero; that is,

d 〈bac(r)〉
dr

∣∣∣∣
r=r∗

=0. [15]

Assuming N � 1 so that that the discrete sums in Eqs. 11 and 12
can be approximated by integrals, we find that Eq. 15 yields

P(1|r∗)
P(0|r∗) =

ρ

1− ρ . [16]

To ascertain that the r∗ resulting from Eq. 15 is a maximum, we
need to verify that the second derivative of the 〈bac(r)〉 is nega-
tive at r∗. Using the FD expression for the distribution of P(y |r)
we find that d2〈bac(r)〉

dr2
|r=r∗ =−β, which is always negative when

the classifier is better than random; i.e., 〈AUC 〉> 1/2, as β is
positive in those cases (Fig. 2). Interestingly, Eq. 16 yields the
same result as the earlier calculation requiring that the log-odds
ratio L(r∗)= 0. In other words, the threshold r∗ that makes the
log ratio of class-conditioned rank distributions zero is also the
one that maximizes the balanced accuracy.

To exemplify and verify the calculations described in this
section we use simulation experiments based on classifiers
with Gaussian class-conditioned score densities. The simula-
tions consist of 45 realizations of test sets with N =50, 000,
0.55≤〈AUC 〉≤ 0.95, and 0.1≤ ρ≤ 0.9. Fig. 3A, in which each
point represents a different combination of ρ and 〈AUC 〉,
shows that the threshold rFD calculated using Eq. 9 based on
the requirement that L(r∗)= 0 is an excellent approximation
of the threshold rbac [computed by finding the r that maximizes
the 〈bac(r)〉 from scanning through all possible thresholds for
each realization of the test set in the simulations]. The actual r
that maximizes the balanced accuracy and the estimate using the
FD expression have a correlation coefficient R=0.98. The prob-
ability that such a high correlation (or larger) between the two
quantities is due to chance is negligible (P value < 2× 10−16).

The Variance of AUC Estimates
The AUC is perhaps the most popular metric to evaluate the
performance of binary classifiers. While it would be desirable to
know the distribution of the AUC of a given classifier over all
possible test sets with similar characteristics [such as the (N ,N1)
ensemble of test sets we discussed earlier], what we usually
compute in most applications is an estimator of its mean value
〈AUC 〉 in a specific dataset. This estimate of the AUC carries
an error that results from inevitable sample-to-sample variation
and finite sample sizes. Therefore, any complete reporting of the
AUC should also provide a confidence interval that contains the
true but unknown 〈AUC 〉 with some probability, typically 95%.
To compute this confidence interval it is necessary to estimate
the variance σ2

AUC of the AUC distribution. As discussed in refs.
27 and 35, the mean and variance of the AUC distribution for a
classifier are given by

〈AUC 〉=Prob(si > sj |yi =1; yj =0), [17]

σ2
AUC =

1

N1N0
[〈AUC 〉(1−〈AUC 〉)

+ (N1− 1)(P110−〈AUC 〉2)
+(N0− 1)(P100−〈AUC 〉2)

]
, [18]

where N0 =N −N1, P110 =Prob(min(si , sj )> sk |yi = yj =1;
yk =0) is the probability that the classifier assigns higher scores
to two randomly and independently sampled positive items than
to a randomly sampled negative item, and P100 =Prob(si >
max(sj , sk )> sk |yi =1, yj = yk =0) is the probability that the
classifier assigns lower scores to two randomly and independently
sampled negative items than to a randomly sampled positive
item. We also denote by P10 the probability Prob(si > sj |yi =
1; yj =0) that the classifier assigns a higher score to a randomly
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Fig. 3. (A) Correlation between two different methods for determining the optimal thresholds for segregating positive and negative classes. rbac is the
traditional method of scanning over all possible rank thresholds to empirically determine the rank that maximizes the balance accuracy and rFD is the
proposed closed-form method, Eq. 9, based on the FD distribution. Here, nine different ρ values ranging from 0.1 to 0.9 and five different 〈AUC〉 values
ranging from 0.55 to 0.95 were tested with total sample size N = 50, 000. The correlation coefficient is R = 0.98 (P value < 2× 10−16). (B) Correlation
between two different methods for determining the SD of the AUC. σAUC (DeLong) represents the DeLong method, and σAUC (FD) represents the FD-based
method. The same conditions as in A were used. The correlation coefficient is R = 0.99 (P value < 2× 10−16).

sampled positive item than to a randomly sampled negative
item.

We derive Eqs. 17 and 18 in SI Appendix, but for complete-
ness we provide some intuition for these formulas here. The
AUC of a classifier measures the area under the receiver oper-
ating characteristic (ROC) curve traced by the points (FPR(s),
TPR(s)) for a given test set, where the parameter s is the clas-
sification threshold discussed in the previous section and ranges
from the maximum to the minimum possible scores outputted
by the classifier. When s is the classification threshold, all the
items with scores larger than s are considered positives, so the
TPR(s) is the fraction of the N1 positive items with scores larger
than s and the FPR(s) is the fraction of the N0 negative items
with scores larger than s . When we compute the area under the
ROC curve using a rectangular integration rule, each time the
parameter s crosses the score of a positive example, the TPR
gains 1/N1 units whereas the FPR does not change. This cor-
responds to a vertical change in the ROC curve and therefore
there is no gain in AUC. When the score s crosses the value sk
of a negative item k (k =1, . . . ,N0), the ROC curve goes from
point (FPR(sk−1), TPR(sk )) to point (FPR(sk ), TPR(sk )), with
FPR(sk ) = FPR(sk−1)+ 1/N0. The AUC results from adding
the areas of N0 rectangles (one per negative item k with score sk )
whose height is equal to the fraction of positive examples TPR
(sk ) with score larger than sk and whose base is equal to 1/N0,
which is the x -axis change in the ROC curve that takes place
when the parameter s goes from one negative item to the next.
Interestingly, the calculation sketched above is the exact same
calculation that we would perform to estimate the frequency with
which we find positive items with score larger than that of a neg-
ative example in the same test set: Given a negative item k for
which the classifier assigned a score sk , the frequency of posi-
tive examples with scores greater than sk coincides with the TPR
(sk ); the probability of a positive to have a score greater than a
negative is the sum of these frequencies weighted by the proba-
bility of choosing that negative sample, which in a given test set
is 1/N0. We have just justified that in a given test set and for a
given classifier, the AUC can be computed as

AUC =
1

N0

N0∑
k=1

1

N1

N1∑
i=1

H(sP,i − sN ,k ), [19]

where sP,i and sN ,k are the scores assigned by the classifier
to the i th positive examples and the k th negative examples,

respectively, and H(s) is the Heaviside function that takes the
value of 1 for positive arguments and 0 for negative argu-
ments. Eq. 19 expresses a known relation between the AUC
of a classifier in a given test set and the Mann–Whitney statis-
tics U =

∑N0
k=1

∑N1
i=1H(sP,i − sN ,k ) (36). Taking the expected

value in both sides of the equality in Eq. 19 we get 〈AUC 〉=
〈H(sP − sN )〉. Note that the expected value of H(sP − sN )
for randomly and independently sampled positive and nega-
tive examples with scores sP and sN , respectively, is equal
to the probability that a positive example has a score larger
than a negative example; that is, 〈H(sP − sN )〉=Prob(si >
sj |yi =1; yj =0). Therefore, 〈AUC 〉=Prob(si > sj |yi =1; yj =
0), which proves Eq. 17. (For an alternative derivation see
SI Appendix.)

Next, we sketch the derivation of Eq. 18, which will allow us
to elucidate the origin of the parameters P110 and P100. (See
SI Appendix for the full derivation.) To compute the variance of
the AUC we use the fact that σ2

AUC = 〈AUC 2〉− 〈AUC 〉2, which
requires squaring Eq. 19 and taking its expected value in the
(N ,N1) ensemble. This operation leads to four nested sums (two
over the positive examples and two over the negative examples)
of the average of H(sP,i − sN ,k )H(sP,j − sN ,m). To deal with
repeated indexes in these nested sums we consider the following
four cases: 1) Case i 6=j and k 6=m leads to N0(N0− 1)N1(N1−
1) terms of the form 〈H(sP,i − sN ,k )H(sP,j − sN ,m)〉, all of
which are equal to 〈AUC 〉2, given that H(sP,i − sN ,k ) and
H(sP,j − sN ,m) are independent (because sP,i , sN ,k , sP,j , and
sN ,m are), and 〈H(sP,i − sN ,k )〉= 〈H(sP,j − sN ,m)〉= 〈AUC 〉.
2) Case i = j and k 6=m leads to N0(N0− 1)N1 terms of the
form 〈H(sP,i − sN ,k )H(sP,i − sN ,m)〉, which is equal to the prob-
ability earlier denoted by P100 that the score of a randomly
sampled positive item (sP,i) is larger than the scores of two
independently and randomly sampled negative items (sN ,k and
sN ,m). 3) Case i 6=j and k =m leads to N0N1(N1− 1) terms of
the form 〈H(sP,i − sN ,k )H(sP,j − sN ,k )〉, which is equal to the
probability earlier denoted by P110 that both the scores of two
independently and randomly sampled positive items (sP,i and
sP,j ) are larger than the scores of randomly sampled negative
items (sN ,k ). 4) Case i = j and k =m leads to N0N1 terms of the
form 〈H(sP,i − sN ,k )

2〉, which, given thatH(s)2 =H(s), is equal
to the probability that the score of a randomly sampled posi-
tive item is larger than the score of a randomly sampled negative
item, which was shown before to be equal to 〈AUC 〉. Assembling
all these cases to compute σ2

AUC, we recover Eq. 18.
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Using Eq. 18 requires knowledge of the quantities P110 and
P100 that depend on the generally unknown class-conditioned
score densities P(s|y). One could proceed by assuming some
functional form for these densities. For example, if P(s|y) is
assumed to be exponential, it can be shown (27) that P110 =
AUC/(2−AUC ) and P100 =2AUC 2/(1+AUC ). However,
assuming a distribution just because it yields analytical expres-
sions may lead to inaccurate results, e.g., producing too loose
confidence intervals. In practical applications the variance of
the AUC is often computed using a method first proposed by
DeLong et al. (37), which consists of rearranging the terms in
Eq. 19 into an estimator of the AUC variance,

σ2
AUC(DeLong)=

1

N1(N1− 1)

N1∑
i=1

[
1

N0

N0∑
j=1

H(sP,i − sN ,j )−AUC

]2
+

1

N0(N0− 1)

N0∑
j=1

[
1

N1

N1∑
i=1

H(sP,i − sN ,j )−AUC

]2
. [20]

Eq. 20 has proved to be a reliable option for the computation of
σ2

AUC (38, 39).
Note that P10, P110, and P100 depend only on the relative

order of positive and negative samples. As such, they could be
written in terms of the class-conditioned rank probabilities that
in turn can be expressed using the FD distribution for the rank-
conditioned class probabilities. Indeed, in cases where we do not
know the true class-conditioned score or rank distribution, Eq.
18 requires that we use only N0, N1, and 〈AUC 〉 and assume
the most parsimonious (maximum-entropy) distribution for the
rank-conditioned class probability. As was shown earlier, this
leads to the FD distribution Eq. 5.

Let us first express P10 (i.e., the right-hand side of Eq. 17) in
terms of ranks. The probability that the score of a negative item
is smaller than the score of a positive item translates into the
probability that the negative item has a higher rank than that
of a positive item. If a positive item is at rank r , the probability
that a negative item has a rank higher than r is

∑N
i=r+1 P(i |0).

As the positive item can be at any rank r , to compute P10 we
need to add the previous sum over all the possible ranks where
the positive item is, weighted by the probability P(r |1) that there
is a positive item at rank r . Using that P(r |1)=P(1|r)/N1 and
P(r |0)=P(0|r)/N0, Eq. 17 can be expressed as

〈AUC 〉= 1

N1N0

N∑
r=1

N∑
i=r+1

P(1|r)P(0|i)

=
1

N1N0

N∑
r=1

N∑
i=r+1

1

1+ eβ(r−µ)
eβ(i−µ)

1+ eβ(i−µ)
, [21]

where we expressed P(1|r) in terms of the FD distribution.
Recall that β and µ were selected using constraints based on
the number of positive samples (Eq. 3) and the 〈AUC 〉 (Eq. 4).
These constraints are different from Eq. 21, and therefore Eq. 21
may appear to overdetermine the parameters. Interestingly this
is not the case. We show in SI Appendix that Eq. 21 holds for any
rank-conditioned class probability P(y |r) that verifies those two
constraints, and therefore they are valid for the FD distribution
whose parameters were fitted using those very same conditions.

Following similar arguments to the ones used to deduce Eq.
21, we can find expressions for P110 and P100:

P110 =
1

N 2
1 N0

N∑
i=1

N∑
j=16=i

N∑
r=max(i,j)+1

P(1|i)P(1|j )P(0|r) [22]

P100 =
1

N1N 2
0

N∑
i=1

N∑
j=16=i

min(i,j)−1∑
r=1

P(1|r)P(0|i)P(0|j ), [23]

where P(1|r)= 1

1+eβ(r−µ) and P(0|r)= eβ(r−µ)

1+eβ(r−µ) .
We compare the SD σAUC estimated using Eq. 20 [DeLong et

al.’s (37) method] and using Eq. 18 (with P110 and P100 com-
puted using the FD-based method of Eqs. 22 and 23) in Fig. 3B
for the same simulations as those used in Fig. 3A. The two ways
of computing the SD yield almost identical values, with a cor-
relation coefficient R=0.99 (P value < 2× 10−16). The minor
deviations between the two ways of computing σAUC observed
in Fig. 3 correspond to cases where the prevalence ρ takes val-
ues close to 0 or 1. In these situations, the FD distribution fit
to the constraints is not as good compared to cases where the
prevalence is of intermediate value.

Using the FD Distribution for Ensemble Classification
Ensemble learning for classification is the endeavor of com-
bining multiple base classifiers in an effort to construct an
ensemble classifier that generalizes better than any of its con-
stituents. In this section, we present FiDEL, an ensemble learn-
ing method based on using the FD distribution to model the
rank-conditioned class probabilities for different base classifiers.

We assume that we have M classifiers in the ensemble,
denoted by gM

i=1. Let rik denote the rank assigned to item k by
classifier i . Let P(r1k , r2k , . . . , rMk |y) denote the joint probabil-
ity of rank assignment by classifiers gM

i=1 given the class y ∈{0, 1}
of item k . Following refs. 22 and 23, we assume that the base
classifiers’ rank assignments for a given item are conditionally
independent given the class. This strong assumption means that
different classifiers rank the same item independently of each
other whether the item is in the positive or the negative class.
Under this assumption, the joint class-conditional distribution of
rank predictions can be written as

P(r1k , r2k , . . . , rMk |y)=P(r1k |y) . . .P(rMk |y). [24]

We use the log-likelihood ratio

LFiDEL(k)= ln

(
P(r1k , r2k , . . . , rMk |1)
P(r1k , r2k , . . . , rMk |0)

)
,

to estimate the degree to which the evidence given by the ranks
assigned by classifiers to item k supports the conclusion that item
k is in the positive versus the negative class. Using the assump-
tion of conditional independence, the log-likelihood ratio can be
rewritten as

LFiDEL(k)= ln

(
P1(r1k |1)
P1(r1k |0)

)
+ · · ·+ ln

(
PM (rMk |1)
PM (rMk |0)

)
, [25]

where Pi is the probability of rank given class for classifier gi .
Replacing Pi(r |y) by the FD distribution, the sum in the right-

hand side of Eq. 25 can be expressed as

LFiDEL(k)=

M∑
i=1

βi(r
∗
i − rik ), [26]

where
r∗i =µi +

1

βi
ln

1− ρ
ρ

.
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LFiDEL(k) can be used as the score provided by the FiDEL
ensemble classifier to rank items to compute the AUC. Items
that get larger and positive LFiDEL scores will be more likely to
belong to the positive class. Conversely, more negative scores will
be more likely to belong to the negative class. The log-likelihood
ratio suggests that 0 is the natural threshold that separates items
in the positive and negative classes, and therefore the predicted
label for the FiDEL ensemble is

yFiDEL
k =H{LFiDEL(k)},

whereH is the Heaviside step function.
Note that the contribution to LFiDEL of classifier i is the differ-

ence between the optimal threshold r∗i and the rank r of the item
being classified, weighted by the parameter βi . As previously dis-
cussed, β can be interpreted as the inverse of the temperature of
an equivalent physical system; a higher temperature corresponds
to more classification errors and thus lower accuracy. (See Fig.
2A where it can be seen that for any ρ, β increases monotoni-
cally with the 〈AUC 〉 of a classifier.) Therefore, weighting each
classifier’s contribution to LFiDEL by β can be easily interpreted:
Methods with higher error map to higher temperatures that lead
to lower βs, which results in a lower weight in the final score. The
predicted score of the ensemble classifier, LFiDEL, is also depen-
dent on the rank rik assigned by the classifier i relative to the
threshold r∗i . Items ranked lower and farther from the threshold
r∗i given by classifier i will contribute to a larger LFiDEL.

The derivation of the FiDEL ensemble is based on the strong
assumption that base classifier predictions are class-conditionally
independent. To determine the extent to which class-conditional
dependence influences the performance of the FiDEL ensemble
we developed a model (SI Appendix) that simulates the situation
in which all pairs of classifiers in the ensemble have a conditional
rank correlation given both the positive and the negative class
equal to a parameter r̂ , which we varied between 0 (uncorrelated
case) and 0.6. In practice, however, there are different degrees
of correlation between different pairs of classifiers, as we will see
below. For different values of the class-conditioned rank corre-
lation r̂ we compared the performance of FiDEL with that of
the best classifier in the ensemble and with a baseline ensem-
ble model that we call the wisdom of crowds (WoC) ensemble
(40). The WoC ensemble is a classifier whose score for a given
item can be computed as the average of the ranks assigned by
the base classifiers to that item. The results of these simulations,
summarized in SI Appendix, Figs. S1 and S2, show that the perfor-
mance of FiDEL is robust to mild violations in the assumption of
class-conditional independence and that FiDEL’s performance
is greater than that of the best individual classifiers up to a class-
conditioned correlation of r̂ . 0.4. Furthermore, FiDEL is better
than the WoC ensemble for all values of r̂ tested. To exem-
plify its use and assess its performance in practical classification
tasks, we applied FiDEL to two problems proposed in the Kaggle
crowd-sourcing platform: the West Nile Virus (WNV) Prediction
challenge (41) and the Springleaf Marketing Response (SMR)
challenge (42) (Materials and Methods and SI Appendix, Table
S1). We chose these challenges because they are binary classi-
fication problems with vastly different positive-class prevalence
(ρ=0.08 and 0.24 for the WNV and SMR challenges, respec-
tively) and large datasets (N =10, 506 and 22, 000 points for the
WNV and SMR challenges, respectively) and the data are easily
accessible though the Kaggle website. We used 23 general pur-
pose and widely used methods as base classifiers, of which 21
were used in the WNV data and 20 were used in the SMR chal-
lenge (we intended to also use 21 classifiers in the SMR data,
but one of the chosen classifiers failed to run; SI Appendix, Table
S2). In both problems, the data were randomly partitioned into
22 equal-size subgroups, each of which maintained the class pro-
portions of the overall dataset. Of these 22 groups, 21 were used

for training and validation and the remaining one was used as the
test set.

As discussed above, a high degree of class-conditioned correla-
tion can considerably degrade FiDEL’s performance. We studied
the class-conditioned correlation under two different training
strategies. In the “disjoint partition” strategy, we trained each
of the classifiers in its own partition, in such a way that no clas-
sifier was trained using the same data. In the “same partition”
strategy, all classifiers were trained using the same partition. The
class-conditioned correlation averaged over the two classes for
each pair of classifiers for the prediction in the test set in both
the WNV and the SMR datasets is shown in SI Appendix, Fig. S3.
The average class-conditioned correlations r̂ over all the pairs of
classifiers in the WNV data for the same partition and the dis-
joint partition strategies were 0.66 and 0.54. For the SMR data
the correlations r̂ for the same partition and the disjoint par-
tition were 0.44 and 0.32. These results suggest that the best
strategy to use FiDEL from the perspective of minimizing the
class-conditioned correlation is the disjoint partition strategy,
which we use next.

After training in their respective training set, the AUCi of
each classifier i and the prevalence ρi were computed in the
remaining training partitions (that is, excluding partition i and
the test set). AUCi and ρi were then used to fit the parameters
βi and µi of the FD distribution for each classifier. SI Appendix,
Fig. S4 shows that the resulting FD distribution with the fitted β
and µ is an excellent approximation to the empirically computed
rank-conditioned class probability. We then applied the learned
FiDEL ensemble method to the test data (Fig. 4). We compared
the performance of FiDEL to that of the WoC ensemble method
and the best individual classifier. We randomly chose M classi-
fiers among the 21 (WNV) or 20 (SMR) classifiers used in the
respective datasets to compute FiDEL scores LFiDEL. Fig. 4 A
and B shows the results of running FiDEL for the WNV data
whereas Fig. 4 C and D shows the results for the SMR data. Fig.
4 A and C shows results for 200 randomly chosen sets of M =3,
5, and 7 classifiers. For each point in one such combination of
classifiers, the x coordinate is the AUC of the best classifier and
the y coordinate is the FiDEL AUC for that combination. In
the vast majority of cases the points are above the identity line
(dashed line), indicating that the FiDEL method outperforms
the best among the M base classifiers in the vast majority of clas-
sifier choices for the ensemble, even when M =3 and more so
for M =7. Fig. 4 B and D shows the average, over 200 combina-
tions of M =3, . . . , 10 randomly chosen classifiers, of the AUCs
of the best individual classifier in the ensemble (gray dashed
line), the WoC ensemble (black dashed line), and the FiDEL
method (solid blue line). Error bars represent the SEM over
the 200 combinations. FiDEL clearly and robustly outperforms
both the WoC ensemble and the best individual classifier of the
ensemble.

Other Uses of the Class-Conditioned Rank Probability
In the previous sections, we argued that the FD distribution
provides an explicit expression for the rank-conditioned class
probability and its counterpart, the class-conditioned rank
probability. In this section, we provide a few simple results that
follow from expressing some performance metrics directly in
terms of the class-conditioned rank probability. For example,
in a previous section we demonstrated that the threshold for
segregating the positive and the negative classes that zeroes
the log-likelihood ratio is also the threshold that maximizes
the balance accuracy, and we did so by expressing the balance
accuracy in terms of the class-conditioned rank probabilities
of the classifier. Using the same notation that we used earlier,
let us denote by yr the true class of an item that a classifier
placed at rank r . Given that yr can take only the values 1
and 0, its mean value 〈yr 〉 in the (N ,N1) ensemble is equal

8 of 11 | PNAS
https://doi.org/10.1073/pnas.2100761118

Kim et al.
The Fermi–Dirac distribution provides a calibrated probabilistic output for binary classifiers

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100761118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100761118


EN
G

IN
EE

RI
N

G

3 5 7

0.70 0.75 0.70 0.75 0.70 0.75

0.70

0.75

Best AUC from random sampled methods

F
iD

E
L 

A
U

C

A

0.74

0.75

0.76

4 6 8 10
Number of methods (M)

P
er

fo
rm

an
ce

 (
A

U
C

)

Method

FiDEL

Best_Indv

WoC

B

3 5 7

0.65 0.70 0.65 0.70 0.65 0.70

0.65

0.70

Best AUC from random sampled methods

F
iD

E
L 

A
U

C

C

0.67

0.68

0.69

0.70

0.71

4 6 8 10
Number of methods (M)

P
er

fo
rm

an
ce

 (
A

U
C

)

Method

FiDEL

Best_Indv

WoC

D

Fig. 4. Performance of FiDEL on two Kaggle binary classification challenges: the WNV Prediction challenge (A and B) and the SMR challenge (C and D).
The dataset in the WNV Prediction challenge has a prevalence ρ= 0.08 and 10, 506 data points. The dataset in the SMR challenge has a prevalence ρ= 0.24
and 22, 000 data points. (A and C) Comparison between the AUCs using FiDEL by combining M algorithms randomly chosen among 21 (WNV) or 20 (SMR)
possible algorithms (y axis) and the AUC of the best among the M algorithms used in the combination (x axis) with M = 3, 5, and 7. Each point corresponds to
one of 200 combinations of randomly chosen classifiers. (B and D) The average and SEM of the AUCs over 200 combinations of M algorithms (M = 3, . . . , 10)
chosen randomly among 21 (WNV) or 20 (SMR) methods for FiDEL (blue solid line), WoC (black dashed line), and the best individual algorithm among the M
combined (gray dashed line) for the WNV Prediction (B) and SMR (D) challenges. FiDEL was trained using the AUC and ρ values of the base classifiers using
a validation set carved from the training set. The AUCs reported here correspond to evaluations of base classifiers, FiDEL, and WoC in the test set, which is
a partition independent of the training set. Different partition choices and base classifier combinations may produce slightly different results.

to P(y =1|r). The false positive rate (FPR), the true positive
rate (TPR) (also known as recall), the precision (Prec), and
the balanced accuracy (bac), at a given rank k used as the
threshold between positive and negative predicted classes,
can all be computed as follows: TPR(k)= 1/N1

∑k
r=1 yr ,

FPR(k)= 1/N0

∑k
r=1(1− yr ), Prec(k)= 1/k

∑k
r=1 yr , and

bac(k)= (TPR(k)+ 1−FPR(k))/2. Therefore, their averages
in the (N ,N1) ensemble are

〈TPR(k)〉= 1

N1

k∑
r=1

P(1|r); 〈r |1〉=
N∑

r=1

rP(r |1) [27]

〈FPR(k)〉= 1

N0

k∑
r=1

P(0|r); 〈r |0〉=
N∑

r=1

rP(r |0) [28]

〈Prec(k)〉= 1

k

k∑
r=1

P(1|r) [29]

〈bac(k)〉= 1

2
(〈TPR(k)〉+1−〈FPR(k)〉). [30]

Using these expressions, there are a number of interesting rela-
tions that can be derived (SI Appendix). To start with, we can
derive an expression for the AUC:

〈AUC 〉= 〈r |0〉− 〈r |1〉
N

+
1

2
. [31]

This relation is not new, as it can be obtained from the AUC
relation to the Wilcoxon–Mann–Whitney U statistics, but in

SI Appendix we derive it using the rank-conditioned class prob-
ability. Eq. 31 is interesting as it clearly shows that the AUC
depends only on class-conditioned average ranks and not on
other subtleties of the distribution of ranks.

A second interesting expression is

〈AUC 〉=2〈bac〉− 1

2
, [32]

where the overbar is the average over all thresholds: 〈bac〉=
1
N

∑N
k=1〈bac(k)〉. Eq. 32 relates the AUC and the average bal-

ance accuracy over all thresholds. As the maximum 〈AUC 〉=1,
Eq. 32 implies that the maximum 〈bac〉=3/4.

A final interesting relation pertains the area under the
precision recall curve (AUPRC):

〈AUPRC 〉= ρ

2

(
1+
〈Prec(k)〉〈Prec(k +1)〉

ρ2

)
[33]

≈ ρ

2

(
1+
〈Prec〉2
ρ2

)
, [34]

where the approximation in Eq. 34 holds for N � 1. It is inter-
esting that the AUPRC is related to the average square of the
precision over all thresholds.

Conclusion
The problem of binary classification is a fundamental task in
machine learning. It has spurred the development of a wealth
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of ingenious algorithms including k-nearest neighbors, support
vector machines, random forests, and deep learning to name
but a few. Each of these algorithms outputs scores whose value
depends on the intricacies of the algorithm and can be properly
interpreted only in the narrow context in which the algorithm was
used. However, when we try to combine algorithms with other
elements of evidence to decide the class of an item, it would
be desirable that the output of the algorithm be the probabil-
ity that the item belongs to each class. Most algorithms do not
have a way to compute well-calibrated class-conditioned score
densities. Some methods, however, explicitly model the poste-
rior probability of their classification, for example using logistic
regression or Platt scaling methods (43), performing a logistic
transformation of chosen features in the former or of a classi-
fier score in the latter, into an output probability. While such
transformations make intuitive sense and work well for some
applications, they are heuristic methodologies. Our approach is
different from the abovementioned methods on two counts: On
the one hand, our logistic transformation transforms the ranks
(not features or scores) assigned by a classifier to items in a test
set into a probability; on the other hand, the logistic transfor-
mation is not postulated as an ad hoc transformation but results
from the maximum-entropy principle and as such is the least-
biased distribution given the information at hand. In other words,
ours is the most parsimonious calibrated class distribution, and,
in the absence of additional information, should be preferred to
other methods.

In this paper, we address the problem of endowing any binary
classifier with a probabilistic output using statistical physics con-
siderations. We map the problem of estimating the probability
that a classifier places a positive-class item at a given rank to
the problem of computing the occupation number of a fermion
in a given quantum state in a fermionic physical system with a
finite number of single-fermion quantum states. This mapping
leads to the identification of the rank-conditioned class probabil-
ity of a classifier as the FD distribution describing an ensemble of
fermionic systems. The FD distribution depends on two param-
eters of the physical system: the temperature and the chemical
potential. We showed that the interpretation of these parame-
ters in a fermionic system can be useful in understanding the
role of these same parameters in the classification problem: In
physics the temperature is a manifestation of how disordered a
system can be whereas in a classification problem the tempera-
ture measures how far a classifier is from the perfect classifier. A
temperature of 0 implies a perfect classifier and a temperature
of infinity results in a random classifier. The chemical poten-
tial measures the energy at which the occupation number of
fermions is 50/50, and therefore in the classification system it
is related to the rank threshold that separates predicted posi-
tive and negative classes. Having a precise functional form for
the rank-conditioned class probability allowed us to calculate the
optimal threshold to separate predicted positive and negative
classes. It also permitted the calculation of the SD of the AUC
necessary to estimate confidence intervals and perform power
analyses. By way of estimating the class probabilities in rank
space, our formalism provides a calibrated class probability that
can be used to combine classifiers. This allowed us to propose
the ensemble learning algorithm that we call FiDEL. We also
showed that expressing performance metrics in terms of rank-
conditioned class probabilities is a useful tool for formal deriva-
tions: for example, the derivation that the threshold that best
separates predicted classes using the likelihood-ratio method is
also the threshold that maximizes the balanced accuracy of a
classification.

Many of the ideas presented in this paper are of a theoretical
nature. However, we can envision practical applications of our
theory that can be implemented relatively easily. As an exam-

ple, suppose that we have dataset such as the one used in ref.
9, consisting of a collection of screening mammograms from
women whose breast cancer status after the screening examina-
tion is known to be positive or negative. Assume that we divide
this set into two partitions: a training set with, e.g., 50% of the
data and a validation set with the remaining 50%. After train-
ing our classifier in the training set, we compute the AUC and
the prevalence ρ in the validation set, from which we derive
the FD parameters β and µ. When a woman goes to the radi-
ologist for her next breast cancer screening examination, our
classifier processes the mammogram yielding a score, from which
we find its rank in the context of the other scores in the val-
idation set. In this way we find the rank order r of the new
mammogram in the validation set. We then use the FD distri-
bution with the parameters obtained from the validation set to
compute the probability that this woman has cancer according
to the classifier. This calibrated probability that a woman has
cancer given her mammogram and the score outputted by the
given classifier in the context of a validation set can be used
by radiologists as a decision aid to decide whether a woman
must be recalled or not for further studies after screening. Given
that the FD distribution is the maximum-entropy distribution,
this probability is the most unbiased estimate given the data at
hand. Similar strategies can be envisioned in other application
domains where a validation set and a preferred classifier are
available.

It is important to highlight limitations of our approach. To
start with, we need to be clear that the FD distribution is not,
in general, the exact rank-conditioned class probability of a clas-
sifier in a test set. It is, however, the probability distribution
that is maximally noncommittal about the aspects of the prob-
lem we have no information on, but does include the information
that we have about our problem, namely the classifier AUC, the
fraction of positive examples, and the total number of elements
in the test set. If we had more information about the distribu-
tion of scores, or if we had the area under the precision-recall
curve, for example, then we could improve the rank-conditioned
class probability beyond the FD distribution. A second consider-
ation is that the FD distribution represents the probability that
items at a given rank are in the positive class in an ensemble
of specific characteristics (the (N ,N1) ensemble of test sets).
However, in typical applications we have just one test set and
we find the FD parameters from one instance of the ensemble.
This means that we have a single AUC estimate from one test
set and use that point estimate as an estimator for the average
AUC. Furthermore, in typical applications, we do not know the
labels in the test set, and therefore we cannot compute the AUC
in the test set. In these cases, we need to use the AUC as well
as the fraction of positive examples ρ from a validation set as
we did in the WNV and SMR classification problems presented
in this paper. Finally, the ensemble learning algorithm we pro-
posed was derived under the assumption that the base classifiers
are class-conditionally independent, which is a strong assump-
tion that holds only approximately. However, we showed that the
FiDEL ensemble overperforms the best of the base classifiers
even if there is moderate class-conditioned correlation among
the base classifiers up to an average correlation of 0.4 to 0.5. We
also showed that training base classifiers in disjoint partitions of
a dataset, or in completely different datasets, such as in feder-
ated learning, would reduce the dependence between classifiers.
We are exploring possible modifications to FiDEL that take into
account the correlation between base classifiers in an ensemble.

Despite some of these limitations, we believe that the FD dis-
tribution is a useful tool to model the rank-conditioned class
probability of a classifier. By transforming scores into ranks, the
FD distribution provides a calibrated probabilistic output for
binary classifiers.
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Materials and Methods
Datasets. We used datasets for binary classification problems from two Kag-
gle competitions: The WNV Prediction challenge and the SMR challenge. The
WNV competition, which took place in 2015, challenged participants to pre-
dict the presence or absence of West Nile virus across the city of Chicago
based on tests performed on mosquitoes caught in traps. The data pro-
vided to make those predictions included record identification (id), date,
address, mosquito species, trap id, and number of mosquitoes. Participants
were also given weather data concurrent with the mosquito testing period
(2007 to 2014) and the date and location of chemical spraying conducted by
the city during 2011 and 2013. The SMR competition ran in 2015 and chal-
lenged participants to predict whether or not customers will respond to a
marketing mail offer sent to them. Each row corresponds to one customer
with 1,934 anonymized features composed of a mix of continuous and cat-
egorical variables. More detail can be found in SI Appendix, Table S1 and
section 9.

Classifiers. The classifiers used in each of the competitions are described
in SI Appendix, Table S2. A total of 23 classifiers were used of which 21
classifiers were used in the WNV dataset and 20 classifiers in the SMR
dataset.

Statistical Analysis and Visualization. Statistical analysis and visualization
were performed using R (http://www.R-project.org). Source code can be
found at https://github.com/sungcheolkim78/FiDEL.

Data Availability. All study data are included in this article, and/or
SI Appendix, and/or in GitHub, https://github.com/sungcheolkim78/FiDEL/
tree/master/kaggle/data (41, 42).
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