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Abstract: Uniform error estimates with power-type asymptotic constants of the finite element method
for the unsteady Navier–Stokes equations are deduced in this paper. By introducing an iterative
scheme and studying its convergence, we firstly derive that the solution of the Navier–Stokes
equations is bounded by power-type constants, where we avoid applying the Gronwall lemma,
which generates exponential-type factors. Then, the technique is extended to the error estimate
of the long-time finite element approximation. The analyses show that, under some assumptions
on the given data, the asymptotic constants in the finite element error estimates for the unsteady
Navier–Stokes equations are uniformly power functions with respect to the initial data, the viscosity,
and the body force for all time t > 0. Finally, some numerical examples are shown to verify
the theoretical predictions.

Keywords: Navier–Stokes equations; power-type asymptotic constant; long-time stability; finite
element method; error estimate

1. Introduction

We study the long-time finite element error estimates for the time-dependent Navier–
Stokes equations (NSE)

ut − ν∆u + (u · ∇)u +∇p = f , div u = 0, ∀(x, t) ∈ Ω× (0,+∞), (1)

u(x, 0) = u0(x), ∀x ∈ Ω, u(x, t)|∂Ω = 0, ∀t ∈ [0,+∞), (2)

where u = u(x, t) = (u1(x1, x2, t), u2(x1, x2, t))T is the velocity; p = p(x) is the pressure;
ν > 0 is the viscosity; f = f (x) = ( f1(x1, x2, t), f2(x1, x2, t))T is the prescribed body force;
u(x) is the initial data satisfying div u0 = 0; and Ω is a bounded domain in R2, which
has a Lipschitz continuous boundary ∂Ω and satisfies the additional condition stated
in (A1) below.

Problems (1)–(2) form the famous incompressible Newtonian fluid model. Many effi-
cient numerical schemes have been developed to approximate this problem. As a classical
one, the finite element approximation for this problem has been widely investigated. In this
field, investigating the long-time stability and error of the finite element method is a very
popular topic, which has practical interests in engineering, weather prediction, and so on.
For the finite element semidiscrete scheme of the Navier–Stokes equations, Heywood and
Rannacher [1,2] analyzed uniform error estimates by assuming that the exact solution is
exponentially stable. Further investigation was conducted in [3] for the stabilized finite ele-
ment method, in which the authors avoided the assumption on the exact solution but used
an exponential-type factor ec̃t in the asymptotic coefficient (c̃ is a general positive constant
and t ∈ [0, T], with T being a finite time satisfying that if t is not in the neighborhood of +∞,
then t must be in [0, T]). Some related works continued the investigation in [4–7]. For the
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long-time stability of fully discrete schemes, Simo and Armero [8] proved that several time
integration schemes are unconditional stable for the long-time approximation. Further-
more, He and Li [9,10] and Tone and Wirosoetisno [11] studied the implicit Euler scheme,
Tone [12] deduced the Crank/Nicolson scheme, Breckling and Shields [13] investigated
the linearly extrapolated second-order scheme, and Ngondiep [14] analyzed a two-level
hybrid method for the time-dependent Navier–Stokes equations. Other researches on this
topic can be also found in [15–18]. On the other hand, other forms of the problem, including
the vorticity-stream form and the rotation form, have been studied. By rewriting (1) and (2)
to the vorticity-stream form, Gottlieb et al. [19] considered the implicit–explicit scheme,
and Cheng and Wang [20] investigated multistep high-order schemes. The accuracy of
the rotation form was studied by Layton et al. in [21]; a new EMA-conserving (EMAC)
formulation, which conserved energy, momentum, angular momentum, was presented
by Charnyi et al. in [22]; and a high-order pressure-robust method for the rotation form
was developed by Yang et al. in [23]. In all of these analysis, the Gronwall lemma was
used in deriving the stability in the energy norm for the schemes, which led to exponential-
type asymptotic constants with respect to the given data. Recently, via transforming
the primitive Equations (1) and (2) to the velocity–vorticity formulation, Heister et al. [24]
deduced the long-time stability with power-type constants for the backward Euler and
BDF2 schemes. However, to the best of our knowledge, there is no result on the error
estimate with power-type asymptotic constants in the literature.

When analyzing the stability and error estimate for a nonlinear problem, the Gron-
wall lemma is usually used and an exponential-type factor will appear in the asymptotic
constant, which is virtually meaningless when the given data (such as the time) are large.
Although the Gronwall lemma is avoided by using the velocity–vorticity method in the fully
discrete scheme (see [24]), it is still necessary for the finite element semidiscrete method
according to the procedure in the literature. The reason is that the fully discrete scheme
in the velocity–vorticity form can decouple the nonlinear term of the problem, but this is
not true when deducing the error estimate. In this paper, we firstly prove the stability with
power-type asymptotic constants of the finite element semidiscrete method for a linearized
auxiliary problem. Then, we construct an iterative scheme for the nonlinear Equations (1)
and (2) and extend the stability results for the linearized auxiliary problem to this iterative
scheme by applying the inductive method. Under some assumptions on the given data,
we confirm that the iterative sequences converge to the solution of the Navier–Stokes
Equations (1) and (2). Thus, the stability for the iterative scheme also holds for the unsteady
Navier–Stokes equations. Since the Gronwall lemma is avoided in our analysis, the gener-
ated asymptotic constants in these stabilities are uniformly power functions with respect
to the viscosity, the initial data, and the body force. Although this iterative approxima-
tion methodology is used to derive the viscosity explicit estimate in our recent work [25],
the analysis has focused on a finite time interval and contains an asymptotic constant
c̃tα(α > 0), which is also meaningless when the time attends to infinity. In this paper,
by utilizing a weighted L2−norm in the time, we derive the following results: if the given
data satisfies

Nκ2

ν
< 1,

it holds that

||u||2L∞(0,+∞;L2(Ω))
+ ν||u||2L2,ν(0,+∞;H1(Ω))

≤ e−νλ1t|u0|2 +
2C2

f
ν2λ1

:= κ2
1,

||u||2L∞(0,+∞;H1(Ω))
+ ν||u||2L2,ν(0,+∞;H2(Ω))

≤ e−νλ1t||u0||2 +
C2

f
ν2λ1

+ 5κ2
1 := κ2

2,

||ut||2L2,ν(0,+∞;L2(Ω))
+ ||p||2L2,ν(0,+∞;L2(Ω))

≤ 2(νκ2
2 +

C2
f

ν2λ1
+ νκ1κ2) := κ2

3,

||ut||2L∞(0,+∞;L2(Ω))
+ ν||ut||2L2,ν(0,+∞;H1(Ω))

≤ e−νλ1tC̃2
0 + (ν + νλ1 + 1)κ2

3 + νC̃2
f := κ2

4,

ν2||u||2L∞(0,+∞;H2(Ω))
+ ||p||2L∞(0,+∞;H1(Ω))

≤ ν2κ2
1 + 2κ2

4,
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where N is a constant depending on Ω that will be determined in Section 2;
κi > 0 (i = 1, · · · , 4) are uniformly bounded with respect to the time t; L2,ν(0,+∞, (Hi)d) ={

u|e−νλ1t ∫ t
0 eνλ1s||u||2i ds ≤ ∞

}
; λ1 is the minimal eigenvalue of the Laplace operator −∆;

and C f and C̃0 are polynomials of the given data, which will be determined in Section 3.
Moreover, according to the fixed-point theorem, we derive the long-time finite element
error estimates as follows:

||u− uh||2L∞(0,+∞;L2(Ω))
≤ κ̃h2,

τ(t)||u− uh||2L∞(0,+∞;H1(Ω))
≤ κ̃h2,

τ2(t)||p− ph||2L∞(0,+∞;L2(Ω))
≤ κ̃h2,

where τ(t) = min{1, t} and κ̃ is a power function with respect to u0, ν, and f , which may
take different values at different occurrences.

The remainder of this paper is organized as follows: We introduce some functional
settings for problems (1)–(2) in Section 2. Then, by investigating an auxiliary problem,
we prove the stability with power-type asymptotic constants for the Navier–Stokes equa-
tions in Section 3. In Section 4, we extend the analysis technique to the error estimate.
Some numerical examples are given to confirm the theoretical analysis in Section 5. Finally,
conclusions are provided in Section 6.

2. Functional Setting

Before proceeding the analysis, we introduce the following functional settings:

X = H1
0(Ω)2, Y = L2(Ω)2, M = L2

0(Ω) = {q ∈ L2(Ω);
∫

Ω
qdx = 0}.

Denote by (·, ·) and | · | the inner product and norm of L2(Ω) or (L2(Ω))2, the usual scalar
product ((u, v)) = (∇u,∇v) and norm ||u|| = ((u, u))1/2 of H1

0(Ω) or X, and by || · ||i the
norm of the Sobolev space Hi(Ω) or (Hi(Ω))2 for i = 0, 1, 2(|| · ||0 = | · |). Moreover, let H
and V be the closed subsets of Y and X, respectively, which are given by

H = {v ∈ Y; div v = 0, v · n|∂Ω = 0}, V = {v ∈ X; div v = 0}.

The Stokes operator is denoted by A = −P∆, where P is the L2−orthogonal projection of Y
onto H.

Additionally, we need some assumptions on the domain Ω as that provided in [26]:
(A1). Assume that Ω is smooth enough and g ∈ L2(Ω)2 so that the unique solution

(v, q) ∈ X×M of the steady Stokes problem

−∆v +∇q = g, div v = 0 in Ω, v|∂Ω = 0

exists and satisfies
||v||2 + ||q||1 ≤ c|g|.

Hereafter, c is a general positive constant independent of u0, ν, f , t but depending
on the domain Ω, which may take different values at different occurrences.

(A1) implies that

||v||2−1 ≤ λ−1
1 |v|

2, |v|2 ≤ λ−1
1 ||v||

2 ∀v ∈ X, (3)

||v||2 ≤ λ−1
1 |Av|2, ||v||22 ≤ c|Av|2 ∀v ∈ D(A) = (H2(Ω))2 ∩V, (4)

where λ1 is the minimal eigenvalue of the Laplace operator −∆. Moreover, some assump-
tions on the initial data and the body force for problems (1) and (2) are necessary.
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(A2). There exist C0 and C f such that the initial velocity u0(x) and the body force
f (x, t) satisfy

u0 ∈ D(A), with |Au0| ≤ C0, sup
t≥0

(|| f (t)||−1 + | f (t)|+ || f (t)||1 + | ft(t)|) ≤ C f .

As usual, we define the continuous bilinear forms a(·, ·) on X×X and d(·, ·) on X×M,
respectively, by

a(u, v) = ((u, v)) ∀u, v ∈ X, d(v, q) = (q, div v) ∀v ∈ X, q ∈ M,

and the trilinear form b(·, ·, ·) on X× X× X by

b(u, v, w) = ((u · ∇)v, w) + 1
2 ((∇ · u)v, w)

= 1
2 ((u · ∇)v, w)− 1

2 ((∇ · u)w, v) ∀u, v, w ∈ X.

It is well-known that the bilinear form a(·, ·) defined above is continuous and coercive
on X× X; further, for d(·, ·), there exists a positive constant β > 0 such that (see [1,26,27])

β|q| ≤ sup
v∈X,v 6=0

|d(u, p)|
||v|| ∀q ∈ M. (5)

For the trilinear form b(·, ·, ·), we have (see [26,27])

b(u, v, w) = −b(u, w, v) ∀u, v, w ∈ X, (6)

|b(u, v, w)| ≤ N|u|1/2||u||1/2||v|| |w|1/2||w||1/2 ∀u, v, w ∈ X, (7)

|b(u, v, w)| ≤ N||u|| ||v|| ||w|| ∀u, v, w ∈ X, (8)

|b(u, v, w)| ≤ N|u| ||v|| |Aw| ∀u, v ∈ X, w ∈ D(A), (9)

|b(u, v, w)| ≤ N|u|1/2|Au|1/2||v|| |w| ∀u ∈ D(A), v, w ∈ X, (10)

|b(u, v, w)| ≤ N|u|1/2||u||1/2||v||1/2|Av|1/2|w| ∀u, w ∈ X, v ∈ D(A), (11)

|b(u, v, w)| ≤ N||u|| ||v||1/2|Av|1/2|w| ∀u, w ∈ X, v ∈ D(A), (12)

|b(u, v, w)| ≤ N||u|| ||v|| |w|1/2||w||1/2 ∀u, v, w ∈ X. (13)

With the above notations, the variational formulation of the time-dependent Navier–
Stokes equations is as follows: search (u, p) ∈ X×M, such that

(ut, v) + νa(u, v)− d(v, p) + d(u, q) + b(u, u, v) = ( f , v), (14)

u(x, 0) = u0(x), (15)

for all (v, q) ∈ X×M.

3. Long-Time Stability Analysis

Next, we will deduce that the solution of Equations (14) and (15) can be bounded by
power-type constants with respect to the initial data, the viscosity, and the body force for
all t > 0.

3.1. Auxiliary Problem

To derive the stability of the unsteady Navier–Stokes equations, we firstly consider
a linearized problem as follows:

ût − ν∆û + (φ · ∇)û +∇ p̂ = f , div û = 0 ∀(x, t) ∈ Ω× (0,+∞), (16)
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û(x, 0) = u0(x), ∀x ∈ Ω, û(x, t)|∂Ω = 0, ∀t ∈ [0,+∞), (17)

where φ(x, t) is a given function that can be chosen as required in the following. Obviously,
the variational formulation of (16) and (17) is as follows: search (û, p̂) ∈ X × M, for t > 0,
such that

(ût, v) + νa(û, v)− d(v, p̂) + d(û, q) + b(φ, û, v) = ( f , v), (18)

û(x, 0) = u0(x). (19)

for all (v, q) ∈ X×M.

Lemma 1. Assume that (A1) and (A2) hold, and (û, p̂) is the solution of problems (18)–(19).
For t > 0,

(I). It is valid

|û|2 + ν

2
e−νλ1t

∫ t

0
eνλ1s||û||2ds ≤ e−νλ1t|u0|2 + C̃2

f := κ2
1, (20)

where C̃2
f =

2C2
f

ν2λ1
.

(II). If

σ1 :=
Nκ2

ν
< 1, (21)

and we choose a function φ(x, t) that satisfies ∇ · φ = 0 and ||φ|| ≤ κ2, then it holds that

||û||2 + 1
2

νe−νλ1t
∫ t

0
eνλ1s|Aû|2ds ≤ e−νλ1t||u0||2 + C̃2

f + 5κ2
1 := κ2

2, (22)

e−νλ1t
∫ t

0
eνλ1s(|ûs|2 + || p̂||21)ds ≤ 2(νκ2

2 + C̃2
f + νκ1κ2) := κ2

3. (23)

(III). Under the assumptions of (II) and choosing a function φ(x, t) satisfying
|φt|2 + νe−νλ1t ∫ t

0 eνλ1s||φs||2ds ≤ κ, it holds that

|ût|2 + νe−νλ1t
∫ t

0
eνλ1s||ûs||2ds ≤ κ, (24)

ν2|Aû|2 + || p̂||21 ≤ κ. (25)

Hereafter, κ is a general power-type positive constant that may take different values at different
occurrences.

Proof. Setting (v, q) = eνλ1t(û, p̂) in (18) and using (3) and (6), we have

1
2

d
dt

eνλ1t|û|2 + ν

2
eνλ1t||û||2 ≤ eνλ1t( f , û). (26)

Integrating (26) from 0 to t, using |( f , û)| ≤ ν
4 ||û||2 +

1
ν || f ||2−1, and multiplying by

e−νλ1t, we obtain

|û|2 + ν

2
e−νλ1t

∫ t

0
eνλ1s||û||2ds ≤ e−νλ1t|u0|2 +

2C2
f (1− e−νλ1t)

ν2λ1
≤ e−νλ1t|u0|2 +

2C2
f

ν2λ1
.

On the other hand, applying P to (16), then taking the inner product with v = eνλ1t Aû
and using (4), we obtain

1
2

d
dt

eνλ1t||û||2 + ν

2
eνλ1t|Aû|2 + b(φ, û, eνλ1t Aû) = ( f , eνλ1t Aû). (27)
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Thanks to
|( f , Aû)| ≤ ν

4 ||û||2 +
1
ν || f ||21,

|b(φ, û, Aû)| ≤ N||φ|| ||û||1/2|Aû|3/2

≤ ν
4 |Aû|2 + N4

ν3 ||φ||4||û||2,

it is valid that

||û||2 + ν

2
e−νλ1t

∫ t

0
eνλ1s|Aû|2ds ≤ κ2

2,

by noting the assumption (21).
To derive (23), applying P to (16), we arrive at

|ût|2 ≤ ν2|Aû|2 + | f |2 + N2||φ||2||û|| |Aû|,

which, together with (21) and (22), implies

e−νλ1t
∫ t

0
eνλ1s|ûs|2ds ≤ νκ2

2 + C̃2
f + νκ1κ2. (28)

At the same time, (16) follows by

|| p̂||21 ≤ |ût|2 + ν2|Aû|2 + | f |2 + N2||φ||2||û|| |Aû|,

which, combining with (28), yields (23).
Differentiating (18) with respect to t yields

(ûtt, v) + νa(ût, v)− d(v, p̂t) + d(ût, q) + b(φt, û, v) + b(φ, ût, v) = ( ft, v). (29)

Setting (v, q) = eνλ1t(ût, p̂t) in (29) and using (6), we have

1
2

d
dt

eνλ1t|ût|2 + νeνλ1t||ût||2 + b(φt, û, eνλ1tût) = ( ft, eνλ1tût) +
1
2

νλ1eνλ1t|ût|2. (30)

It is valid, by using (7), that

|( ft, ût)| ≤ ν
4 ||ût||2 + 1

ν || ft||2−1,

|b(φt, û, ût)| = |b(φt, ût, û)|

≤ ν
4 ||ût||2 + N2

ν |φt| ||φt|| ||û||2.

We have, after using (21)–(23), that

|ût|2 + νe−νλ1t
∫ t

0
eνλ1s||ût||2ds ≤ e−νλ1t|ût(0)|2 +

2C2
f

ν2λ1
+ νλ1κ2

3 +
√

νκ.

By (18), it holds that

|ût(0)|2 ≤ ν2|Au0|2 + | f (0)|2 + N|u0| |Au0| ||u0||2,

which, together with the above estimate, suggests (24).
Moreover, (18) yields

|| p̂||21 + ν2|Aû|2 ≤ | f |2 + |ût|2 + N2||φ||2||û|| |Aû|

≤ 1
2 ν2|Aû|2 + | f |2 + |ût|2 + N4

2ν2 ||φ||4||û||2.

Using (21), (22), and (24), we obtain (25).
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3.2. Long-Time Stability for the NSE

Now, we consider the following iterative scheme of problems (1) and (2): find (ul , pl) ∈
(X, M) (l = 1, 2, · · · ) such that

ul
t − ν∆ul + (ul−1 · ∇)ul +∇pl = f , div ul = 0 ∀(x, t) ∈ Ω× (0,+∞), (31)

ul(x, 0) = u0(x), ∀x ∈ Ω, ul(x, t)|∂Ω = 0, ∀t ∈ [0,+∞), (32)

with u0(x, t) being a given initial guess that can be chosen as required. The weak formula-
tion of (31) and (32) is as follows: find (ul , pl) ∈ (X, M) (l = 1, 2, · · · ) such that

(ul
t, v) + νa(ul , v)− d(v, pl) + d(ul , q) + b(ul−1, ul , v) = ( f , v), (33)

ul(x, 0) = u0(x), (34)

for all (v, q) ∈ (X, M). Then, for the solutions {(ul , pl)} of (33) and (34), the following
lemma holds.

Lemma 2. Assume that (A1) and (A2) hold, and (ul , pl) is the solution of problems (33)–(34).
For all t > 0,

(I). It is valid that

|ul |2 + 1
2

νe−νλ1t
∫ t

0
eνλ1s||ul ||2ds ≤ κ2

1. (35)

(II). Assuming that (u0, ν, f ) satisfies (21) and choosing an iterative initial guess u0(x, t) satisfy-
ing divu0(x, t) = 0 and ||u0(x, t)|| ≤ κ2, it holds that

||ul ||2 + 1
2

νe−νλ1t
∫ t

0
eνλ1s|Aul |2ds ≤ κ2

2, (36)

e−νλ1t
∫ t

0
eνλ1s(|ul

s|2 + ||pl ||21)ds ≤ κ2
3. (37)

(III). Under the assumptions in II) and choosing an iterative initial guess u0(x, t) satisfying
|u0

t (x, t)|2 + νe−νλ1t ∫ t
0 eνλ1s||u0

s (x, s)||2ds ≤ κ, it holds that

|ul
t|2 + νe−νλ1t

∫ t

0
eνλ1s||ul

s||2ds ≤ κ, (38)

ν2|Aul |2 + ||pl ||21 ≤ κ. (39)

Proof. The proof is similar to Lemma 1 via the induction, which is omitted here.

Next, by investigating the convergence of the sequence (ul , pl), we will prove that
the solution of the unsteady Navier–Stokes equations is uniformly bounded by some
power-type constants under some assumptions on (ν, u0, f ).

Theorem 1. Assume that (A1) and (A2) hold. For the solution (u, p) of the time-dependent
Navier–Stokes Equations (14) and (15), it holds that

|u|2 + νe−νλ1t
∫ t

0
eνλ1s||u||2ds ≤ κ2

1. (40)

Furthermore, assume that (21) holds; then, there exist subsequences {ul′} in the solution
sequence {ul} of problems (33)–(34) such that, as l′ → +∞,

ul′ → u weakly in L2,ν(0,+∞; X),

ul′ → u weak− star in L∞(0,+∞; Y).
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Proof. Inequality (40) can be proved by a similar process as that in Lemma 1, which is
omitted here.

To prove the convergence results, let

wl := ul − ul−1, ςl := pl − pl−1, l = 1, 2, · · · .

From (33), it is easy to check that (wl , ςl) ∈ (X, M) satisfies

(wl
t, v) + νa(wl , v)− d(v, sl) + d(wl , q) + b(ul−2, wl , v) + b(wl−1, ul , v) = 0, (41)

for all (v, q) ∈ (X, M).
Setting (v, q) = eνλ1t(wl , ςl) in (41), we have

1
2

d
dt

eνλ1t|wl |2 − 1
2

νλ1eνλ1t|wl |2 + νeνλ1t||wl ||2 + b(wl−1, ul , eνλ1twl) = 0. (42)

Since

|b(wl−1, ul , wl)| = |b(wl−1, wl , ul)| ≤ N|wl−1| ||wl || |Aul |

≤ ν
2 ||wl ||2 + N2

2ν |Aul |2|wl−1|2,
1
2 νλ1|wl |2 ≤ 1

2 ν||wl ||2,

and noting wl(x, 0) = ul(x, 0)− ul−1(x, 0) = u0(x)− u0(x) = 0, we obtain

|wl |2 ≤ N2

ν2

(
νe−νλ1t ∫ t

0 eνλ1s|Aul |2ds
)
|wl−1|2

≤ N2κ2
2

ν2 |wl−1|2 = σ2
1 |wl−1|2 ≤ σ2l

1 |w0|2.

Letting l → +∞ in the above inequality and using (21), we obtain

lim
l→+∞

|wl |2 = 0. (43)

On the other hand, it holds that

|b(wl−1, ul , wl)| = |b(wl−1, wl , ul)| ≤ N||wl−1|| ||wl || ||ul ||

≤ ν
2 ||wl ||2 + N2

2ν ||ul ||2||wl−1||2.

Equation (42) yields

e−νλ1t ∫ t
0 eνλ1s||wl ||2ds ≤ N2

ν2 ||ul ||2e−νλ1t ∫ t
0 eνλ1s||wl−1||2ds + λ1e−νλ1t ∫ t

0 eνλ1sds|wl |2

≤ σ2l
1

(
e−νλ1t ∫ t

0 eνλ1s||w0||2ds
)
+

(1−σ2l
1 )(1−e−νλ1t)

ν(1−σ2
1 )

|wl |2,

which suggests, by using (43), that

lim
l→+∞

e−νλ1t
∫ t

0
eνλ1s||wl ||2ds = 0. (44)

Thus, there exist Cauchy subsequences {ul′} in both L∞(0,+∞; Y) and L2,ν(0,+∞; X),
such that u := liml′→+∞ ul′ is the solution of the time-dependent Navier–Stokes
Equations (14) and (15). The proof is completed.
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Theorem 2. Under the assumptions of Theorem 1, there exist subsequences {ul′}, {ul′
t }, and {pl′}

in the solution sequences {ul}, {ul
t}, and {pl} of problems (33) and (34) such that, as l′ → +∞,

ul′ → u weak− star in L∞(0,+∞; X),

ul′ → u weakly in L2,ν(0,+∞; D(A)),

ul′
t → ut weakly in L2,ν(0,+∞; Y),

pl′ → p weakly in L2,ν(0,+∞; M ∩ H1(Ω)),

and

||u||2 + νe−νλ1t
∫ t

0
eνλ1s|Au|2ds ≤ κ2

2, (45)

e−νλ1t
∫ t

0
eνλ1s(|us|2 + ||p||21)ds ≤ κ2

3. (46)

Proof. Differentiating d(wl , q) with respect to t in (41) and setting (v, q) = eνλ1t(wl
t, ςl),

we obtain

eνλ1t|wl
t|2 +

ν

2
d
dt

eνλ1t||wl ||2 + b(ul−2, wl , eνλ1twl
t) + b(wl−1, ul , eνλ1twl

t) =
ν

2
νλ1eνλ1t||wl ||2.

Due to
|b(ul−2, wl , wl

t)| ≤ N|ul−2|1/2|Aul−2|1/2||wl || |wl
t|

≤ 1
4 |wl

t|2 + N2|ul−2| |Aul−2| ||wl ||2,

|b(wl−1, ul , wl
t)| ≤ N||wl−1|| ||ul ||1/2|Aul |1/2 |wl

t|

≤ 1
4 |wl

t|2 + N2||ul || |Aul | ||wl−1||2,

we obtain

ν||wl ||2 + e−νλ1t ∫ t
0 eνλ1s|wl

s|2ds ≤ ν
2 νλ1e−νλ1t ∫ t

0 eνλ1s||wl ||2ds

+N2|ul−2| |Aul−2|e−νλ1t ∫ t
0 eνλ1s||wl ||2ds

+N2||ul || |Aul |e−νλ1t ∫ t
0 eνλ1s||wl−1||2ds.

Letting l → +∞ in the above inequality and using Lemma 2 and (44), it holds that

lim
l→+∞

||wl ||2 + lim
l→+∞

e−νλ1t
∫ t

0
eνλ1s|wl

s|2ds = 0. (47)

Hence, there exist Cauchy subsequences {ul′} in L∞(0,+∞; X) and {ul′
t } in L2,ν(0,+∞; Y)

such that
||u||2 := lim

l′→+∞
||ul′ ||2 ≤ κ2

2,

and

e−νλ1t
∫ t

0
eνλ1s|us|2ds := lim

l′→+∞
e−νλ1t

∫ t

0
eνλ1s|ul′

s |2ds ≤ κ2
3.

From (41), we have

ν2|Awl |2 + ||ςl ||21
≤ |wl

t|2 + N2|ul−2| ||ul−2|| ||wl || |Awl |+ N2|wl−1| ||wl−1|| ||ul || |Aul |

≤ ν2

2 |Awl |2 + N4

2ν2 |ul−2|2||ul−2||2||wl ||2 + |wl
t|2 + N2|wl−1| ||wl−1|| ||ul || |Aul |.



Entropy 2022, 24, 948 10 of 21

Integrating above inequalities from 0 to t, letting l → +∞, and using Lemma 2,
(43), (44), and (47), we arrive at

lim
l→+∞

e−νλ1t
∫ t

0
eνλ1s|Awl |2ds + lim

l→+∞
e−νλ1t

∫ t

0
eνλ1s||ςl ||21ds = 0. (48)

Hence, there exist convergent Cauchy subsequences {Aul′} in L2,ν(0,+∞; Y) and
{pl′

t } in L2,ν(0,+∞; M ∩ H1(Ω)) such that

e−νλ1t
∫ t

0
eνλ1s|Au|2ds := lim

l′→+∞
e−νλ1t

∫ t

0
eνλ1s|Aul′ |2ds ≤ κ2

2,

and

e−νλ1t
∫ t

0
eνλ1s||p||21ds := lim

l′→+∞
e−νλ1t

∫ t

0
eνλ1s||pl′ ||21ds ≤ κ2

3.

The proof is completed.

Theorem 3. Under the assumptions of Theorem 1, it holds that

|ut|2 + νe−νλ1t
∫ t

0
eνλ1s||us||2ds ≤ e−νλ1tC̃2

0 + (ν + νλ1 + 1)κ2
3 + νC̃2

f := κ2
4, (49)

ν2|Au|2 + ||p||21 ≤ ν2κ2
1 + 2κ2

4 + 2C2
f , (50)

τ(t)||ut||2 + νe−νλ1t
∫ t

0
eνλ1sτ(s)|Aus|2ds ≤ 2

(1 + νλ1

ν
+ 5
)

κ2
4 + 2C̃2

f , (51)

e−νλ1t
∫ t

0
eνλ1sτ(s)(|uss|2 + ||ps||21)ds ≤ [1 + (λ1 + 9)ν +

√
ν(1 + νλ1)]κ

2
4 + νC̃2

f , (52)

where C̃2
0 = C2

f + ν2C2
0 + N2C4

0 .

Proof. Differentiating (14) with respect to t yields

(utt, v) + νa(ut, v)− d(v, pt) + d(ut, q) + b(ut, u, v) + b(u, ut, v) = ( ft, v). (53)

Taking (v, q) = eνλ1t(ut, pt) in (53) and using (6), we have

1
2

d
dt

eνλ1t|ut|2 + νeνλ1t||ut||2 + b(ut, u, eνλ1tut) =
1
2

νλ1eνλ1t|ut|2 + ( ft, eνλ1tut). (54)

Since (7) follows

|b(ut, u, ut)| ≤ N|ut| ||ut|| ||u|| ≤
ν

2
||ut||2 +

N2

2ν
|ut|2||u||2,

integrating (54) from 0 to t, multiplying by e−νλ1t, and noting

|ut(0)|2 ≤ | f (0)|2 + ν2|Au0|2 + N2||u0||2|Au0|2 := C̃2
0 ,

we obtain

|ut|2 + νe−νλ1t
∫ t

0
eνλ1s||us||2ds = e−νλ1tC̃2

0 + (ν1 + νλ1 + 1)κ2
3 + νC̃2

f ,

which implies (49).
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On the other hand, (14) yields

ν2|Au|2 + ||p||21 ≤ |ut|2 + N2|u| ||u||2|Au|+ | f |2

≤ ν2

2 |Au|2 + N4

2ν2 |u|2||u||4 + |ut|2 + | f |2

≤ ν2

2 |Au|2 + ν2κ2
1

2 + κ2
4 + | f |2.

We obtain (50).
Applying P to (53) and taking v = eνλ1tτ(t)Aut, we arrive at

1
2

d
dt eνλ1tτ(t)||ut||2 + νeνλ1tτ(t)|Aut|2 + b(ut, u, eνλ1tτ(t)Aut) + b(u, ut, eνλ1tτ(t)Aut)

= 1
2 eνλ1t||ut||2 + 1

2 νλ1eνλ1tτ(t)||ut||2 + ( ft, eνλ1tτ(t)Aut).
(55)

By (11) and (12), it holds that

|( ft, eνλ1tτ(t)Aut)| ≤ ντ(t)
4 |Aut|2 + 1

ν | ft|2,

|b(ut, u, τ(t)Aut)| ≤ ντ(t)
4 |Aut|2 + N2τ(t)

ν |ut| ||ut|| ||u|| |Au|,

|b(u, ut, τ(t)Aut)| ≤ ντ(t)
4 |Aut|2 + 4N4τ(t)

ν3 ||u||4||ut||2.

Substituting these inequalities into (55), integrating from 0 to t, multiplying by e−νλ1t, and
using Theorems 1 and 2 and (49), we obtain

τ(t)||ut||2 +
ν

2
e−νλ1t

∫ t

0
eνλ1tτ(s)|Aus|2ds

≤1 + νλ1

ν
κ2

4 + C̃2
f +

N2

ν
|ut| ||u||e−νλ1t

∫ t

0
eνλ1s||us|| |Au|ds

+
4N4

ν3 ||u||
4e−νλ1t

∫ t

0
eνλ1s||us||2ds

≤1 + νλ1

ν
κ2

4 + 5κ2
4 + C̃2

f .

Finally, it follows from (53) that

|utt|2 + ||pt||21 ≤ ν2|Aut|2 + N2|ut| ||ut|| ||u|| |Au|+ N2|u| ||u|| ||ut|| |Aut|+ | ft|2.

Thus, by using Theorems 1 and 2, and (49)–(51), we obtain

e−νλ1t
∫ t

0
eνλ1sτ(s)(|uss|2 + ||ps||21)ds

≤e−νλ1t
∫ t

0
eνλ1sτ(s)(ν2|Aus|2 + N2|us| ||us|| ||u|| |Au|+ N2||u||2||us|| |Aus|)ds + νC̃2

f

≤ν
(1 + νλ1

ν
+ 5
)

κ2
4 + νκ2

4 + ν

√
1 + νλ1

ν
+ 5κ2

4 + νC̃2
f .

4. Long-Time Error Estimate

Let 0 < h < 1, and (Xh, Mh) ⊂ (X, M) be finite-dimensional subspaces for the velocity
and pressure, which are characterized by τh with the mesh size h and assumed to be
uniformly regular in the usual sense. We refer the reader to [28] for more details. We define
the L2-orthogonal projection operator Ph : Y → Xh by

(Phv, vh) = (v, vh) ∀v ∈ Y, vh ∈ Xh,
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which follows by the properties (see [1,26,29])

|v− Phv|+ h||v− Phv|| ≤ ch||v|| ∀v ∈ X, (56)

|v− Phv|+ h||v− Phv|| ≤ ch2|Av| ∀v ∈ D(A). (57)

We also introduce the discrete analogues Vh = {vh ∈ Xh|div vh = 0} and Ah = −Ph∆h of
the Stokes operator A as

(−∆huh, vh) = (A1/2
h uh, A1/2

h vh) = ((uh, vh)) ∀uh, vh ∈ Xh.

Furthermore, we assume that the above finite element spaces (Xh, Mh) satisfy the fol-
lowing properties (see [26,27,29,30]):

(A3). For each v ∈ H2(Ω)2 ∩ V and q ∈ H1(Ω) ∩ M, there exist approximations
πhv ∈ Vh and ρhq ∈ Mh such that

|v− πhv|+ h||v− πhv|| ≤ chk||v||k, k = 1, 2, (58)

|q− ρhq| ≤ chk||q||k, k = 0, 1, (59)

together with the inverse inequality

||vh|| ≤ ch−1|vh|, vh ∈ Xh,

and the so-called inf-sup inequality: for each qh ∈ Mh such that

βh|qh| ≤ sup
vh∈X,vh 6=0

d(vh, qh)

||vh||
, (60)

where βh is a positive constant depending on Ω.
For examples of element pairs satisfying the assumption (A3), we refer to the P2− P0

finite element pairs and the P1b− P1 mini finite element pairs (see [30,31]).
With the above notations, the finite element variational formulation for (33) and (34)

and (14) and (15) are, respectively, as follows: find (ul
h, pl

h) ∈ (Xh, Mh) (l = 1, 2, · · · )
such that

(ul
ht, vh) + νa(ul

h, vh)− d(vh, pl
h) + d(ul

h, qh) + b(ul−1
h , ul

h, vh) = ( f , vh), (61)

ul
h(0) = ul

0h = Phu0, (62)

and find (uh, ph) ∈ Xh ×Mh such that

(uht, vh) + νa(uh, vh)− d(vh, ph) + d(uh, qh) + b(uh, uh, vh) = ( f , vh), (63)

uh(0) = u0h = Phu0, (64)

for all (vh, qh) ∈ Xh ×Mh.
To derive power-type error estimates for the finite element solution, we need the Galerkin

projection (Rh, Qh) = (Rh(u, p), Qh(u, p)) : (X, M)→ (Xh, Mh), which is defined in [1,30]

νa(u− Rh, vh)− d(vh, p−Qh) + d(u− Rh, qh) = 0,

∀(u, p) ∈ (X, M), (vh, qh) ∈ (Xh, Mh).
(65)

Lemma 3. The Galerkin projection (Rh, Qh) = (Rh(u, p), Qh(u, p)), defined in (65), satisfies
∀(u, p) ∈ (H2(Ω)2 ∩V, H1(Ω) ∩M), such that

ν|u− Rh(u, p)|+ h(ν||u− Rh(u, p)||+ |p−Qh(u, p)|)

≤ chk(ν||u||k + ||p||k−1),
(66)
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ν|ut − Rh(ut, pt)|+ h(ν||ut − Rh(ut, pt)||+ |pt −Qh(ut, pt)|)

≤ chk(ν||ut||k + ||pt||k−1),
(67)

with k = 1, 2.

Proof. The proof is very similar to that in proving Lemma 1 in [1,30], which is omitted
here.

4.1. Stability for Finite Element Solution

Similar to the continuous problems in Section 3, for the finite element variational formu-
lations of (61)–(64), we can derive the following lemma and theorem.

Lemma 4. Under the assumptions of Lemma 2 and (A3), for the solution (ul
h, pl

h) of problems
(61)–(62), it holds that

|ul
h|

2 + νe−νλ1t
∫ t

0
eνλ1s||ul

h||
2ds ≤ κ2

1, (68)

||ul
h||

2 + νe−νλ1t
∫ t

0
eνλ1s|Ahul

h|
2ds ≤ κ2

2, (69)

e−νλ1t
∫ t

0
eνλ1s(|ul

hs|
2 + ||pl

h||
2
1)ds ≤ κ2

3. (70)

Theorem 4. Under the assumptions of Theorem 1 and (A3), for the finite element solution of
the time-dependent Navier–Stokes Equations (63) and (64), it holds that

|uh|2 + νe−νλ1t
∫ t

0
eνλ1s||uh||2ds ≤ κ2

1, (71)

||uh||2 + νe−νλ1t
∫ t

0
eνλ1s|Ahuh|2ds ≤ κ2

2, (72)

e−νλ1t
∫ t

0
eνλ1s(|uhs|2 + ||ph||21)ds ≤ κ2

3, (73)

|uht|2 + νe−νλ1t
∫ t

0
eνλ1s||uhs||2ds ≤ κ2

4, (74)

ν2|Ahuh|2 + ||ph||21 ≤ ν2κ2
1 + 2κ2

4 + 2C2
f , (75)

τ(t)||uht||2 + νe−νλ1t
∫ t

0
eνλ1sτ(s)|Ahuhs|2ds ≤ 2

(1 + νλ1

ν
+ 5
)

κ2
4 + 2C̃2

f , (76)

e−νλ1t
∫ t

0
eνλ1sτ(s)(|uhss|2 + ||phs||21)ds ≤ [1 + (λ1 + 9)ν +

√
ν(1 + νλ1)]κ

2
4 + νC̃2

f . (77)

Furthermore, there exist subsequences {ul′
h } in the solution sequence {ul

h} of problems
(61)–(62) such that, as l′ → +∞,

ul′
h → uh weakly in L2,ν(0,+∞; X),

ul′
h → uh weak− star in L∞(0,+∞; Y),

ul′
ht → uht weakly in L2,ν(0, T; Y),

pl′
h → ph weakly in L2,ν(0, T; M ∩ H1(Ω)).
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4.2. Error Estimate

Lemma 5. Under the assumptions of Theorem 4, let (u, p) and (uh, ph) be the solutions of problems
(14) and (15), and (63) and (64), respectively. If

σ2 :=
Nκ2

ν
√

1− ε
< 1, ∀ε ∈ (0, 1), (78)

it holds that

|u− uh|2 ≤
κ2

5
1− σ2

2
h2, (79)

e−νλ1t
∫ t

0
eνλ1s||u− uh||2ds ≤ κ2

6h2, (80)

where κ2
5 and κ2

6 are power-type functions satisfying κ2
5 := c[||u0||2 + (νκ2

1 + κ2
3) + κ3(κ2ν−1/2 +

κ3ν−1) +
σ2

2
ε (κ2

2 + κ2
3ν−1) +

σ2
2

1−ε (κ
2
2 + κ2

1 + (κ2
4 + C2

f )ν
−2)], and κ2

6 := κ2
2 + κ2

3ν−1 +
κ2

5
1−σ2

2
+

2
1−σ2

2
κ2

5.

Proof. Taking (v, q) = (vh, ph) in (33) and subtracting (61), we arrive at

(el
ht, vh) + νa(el

h, vh)− d(vh, ξ l
h) + d(el

h, qh) + b(el−1
h , ul

h, vh) + b(ul−1, el
h, vh) = 0, (81)

where el
h := ul − ul

h = ul − Rh(ul , pl) + Rh(ul , pl)− ul
h := ηl

h + θl
h and ξ l

h := pl − pl
h =

pl − Qh(ul , pl) + Qh(ul , pl) − pl
h := γl

h + ζ l
h. Setting (vh, qh) = eνλ1t(θl

h, ζ l
h) in (81) and

using the Galerkin projection (65), we obtain

1
2

d
dt eνλ1t|el

h|
2 + νeνλ1t||θl

h||
2 + b(el−1

h , ul
h, eνλ1tθl

h) + b(ul−1, el
h, eνλ1tθl

h)

= eνλ1t(el
ht, ηl

h) +
1
2 νλ1eνλ1t|el

h|
2.

(82)

Using (3), (6), (7) and (56), it holds that

(el
ht, ηl

h) ≤ |e
l
ht| |η

l
h|,

1
2

νλ1|el
h|

2 ≤ 1
2

νλ1(|ηl
h|

2 + |θl
h|

2)

≤ ν

2
||θl

h||
2 +

1
2

νλ1|ηl
h|

2,

|b(el−1
h , ul

h, θl
h)| ≤ |b(η

l−1
h , ul

h, θl
h)|+ |b(θ

l−1
h , ul

h, θl
h)|,

|b(ηl−1
h , ul

h, θl
h)| ≤ N||ηl−1

h || ||θl
h|| ||u

l
h||

≤ εν

4
||θl

h||
2 +

N2

νε
||ul

h||
2||ηl−1

h ||2,

|b(θl−1
h , ul

h, θl
h)| ≤

(1− ε)ν

2
||θl

h||
2 +

N2

2(1− ε)ν
|Ahul

h|
2|θl−1

h |
2

≤ (1− ε)ν

2
||θl

h||
2 +

N2

2(1− ε)ν
|Ahul

h|
2(|el−1

h |
2 + |ηl−1

h |2),

|b(ul−1, el
h, θl

h)| = |b(u
l−1
h , ηl

h, θl
h)|

≤ εν

4
||θl

h||
2 +

N2

νε
||ul−1

h ||
2||ηl

h||
2,

|el
h(0)|

2 = |ul(0)− ul
h(0)| = |u0 − Phu0|2 ≤ ch2||u0||2.
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Substituting these inequalities into (82); integrating from 0 to t; multiplying by e−νλ1t;
and using Lemmas 3 and 4, (4) and (78), we obtain

|el
h|

2 ≤ ch2||u0||2 + νλ1e−νλ1t ∫ t
0 eνλ1s|ηl

h|
2ds

+ch2
(

e−νλ1t ∫ t
0 eνλ1s|ul

s|2 + |ul
hs|

2ds
) 1

2
(

e−νλ1t ∫ t
0 eνλ1s(|Aul |2 + ||pl ||21/ν2)ds

) 1
2

+
2N2||ul

h ||
2

νε e−νλ1t ∫ t
0 eνλ1s||ηl−1

h ||2ds + 2N2||ul−1
h ||2

νε e−νλ1t ∫ t
0 eνλ1s||ηl

h||
2ds

+ N2

(1−ε)ν
|ηl−1

h |2e−νλ1t ∫ t
0 eνλ1s|Ahul

h|
2ds + N2

(1−ε)ν
|el−1

h |
2e−νλ1t ∫ t

0 eνλ1s|Ahul
h|

2ds

≤ κ2
5h2 + σ2

2 |e
l−1
h |

2

≤ κ2
5

1−σ
2(l−1)
2

1−σ2
2

h2 + σ2l
2 |e0

h|
2.

(83)

Letting l → +∞ in the above inequality and using Theorem 4, we obtain (79).
On the other hand, the trilinear terms in (82) can be estimated as follows:

|b(ηl−1
h , ul

h, θl
h)| = |b(η

l−1
h , θl

h, ul
h)|

≤ ν

4
||θl

h||
2 +

N2

ν
||ul

h||
2||ηl−1

h ||2,

|b(θl−1
h , ul

h, θl
h)| ≤

ν

4
||θl

h||
2 +

N2

ν
|Ahul

h|
2|θl−1

h |
2,

|b(ul−1, el
h, θl

h)| = |b(u
l−1
h , ηl

h, θl
h)|

≤ ν

4
||θl

h||
2 +

N2

ν
||ul−1

h ||
2||ηl

h||
2.

Thus, we have

νe−νλ1t
∫ t

0
eνλ1s||el

h||
2ds

≤νe−νλ1t
∫ t

0
eνλ1s||ηl

h||
2ds + νe−νλ1t

∫ t

0
eνλ1s||θl

h||
2ds

≤νe−νλ1t
∫ t

0
eνλ1s||ηl

h||
2ds + 2νλ1|el

h|
2e−νλ1t

∫ t

0
eνλ1sds + ch2||u0||2

+ 4h2
(

e−νλ1t
∫ t

0
eνλ1s|ul

s|2 + |ul
hs|

2ds
) 1

2
(

e−νλ1t
∫ t

0
eνλ1s(|Aul |2 + ||pl ||21/ν2)ds

) 1
2

+
4N2||ul

h||
2

ν
e−νλ1t

∫ t

0
eνλ1s||ηl−1

h ||2ds +
4N2||ul−1

h ||
2

ν
e−νλ1t

∫ t

0
eνλ1s||ηl

h||
2ds

+
4N2

ν
|ηl−1

h |2e−νλ1t
∫ t

0
eνλ1s|Ahul

h|
2ds +

4N2

ν
|el−1

h |
2e−νλ1t

∫ t

0
eνλ1s|Ahul

h|
2ds,

which, together with Lemma 3, Theorem 4, and (79), implies (80). The proof is completed.

Lemma 6. Under the assumptions of Lemma 5, it holds that

τ(t)||u− uh||2 ≤ κ2
7h2, (84)

e−νλ1t
∫ t

0
eνλ1sτ(s)|us − uhs|2ds ≤ κ2

8h2, (85)

where κ2
7 and κ2

8 are power-type functions satisfying κ2
7 := ν−1{κ2

4ν−1 + [1 + (λ1 + 9)ν +√
ν(1 + νλ1)]κ

2
4ν−2 + ν−1C̃2

f + (1 + νλ1 + 5ν)κ2
4 + [1 + (λ1 + 9)ν +

√
ν(1 + νλ1)]κ

2
4ν−1 +

C̃2
f νκ2

2 + κ2
3 + N2κ1(κ1 + κ4ν−1)κ2

6 + N2κ1κ2κ5κ6ν−1/2} and κ2
8 := κ2

7 + νκ2
1 + 2κ2

4 + κ2
4 + [1+

(λ1 + 9)ν +
√

ν(1 + νλ1)]κ
2
4ν−2 + ν−1C̃2

f .
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Proof. Taking (v, q) = (vh, qh) in (14) and subtracting (63), we have

(eht, vh) + νa(eh, vh)− d(vh, ξh) + d(eh, qh) + b(eh, u, vh) + b(uh, eh, vh) = 0, (86)

where eh = u − uh = u − Rh(u, p) + Rh(u, p) − uh = ηh + θh and ξh = p − ph =
p − Qh(u, p) + Qh(u, p)− ph = γh + ζh. Differentiating d(eh, qh) with respect to t, using
the Galerkin projection (65), and taking (vh, qh) = τ(t)eνλ1t(θht, ξh) in (86), we arrive at

τ(t)eνλ1t|θht|2 + ν
2

d
dt τ(t)eνλ1t||θh||2 + b(eh, u, τ(t)eνλ1tθht) + b(uh, eh, τ(t)eνλ1tθht)

= τ(t)eνλ1t(ηht, θht) +
ν
2 eνλ1t||θh||2 + ν

2 τ(t)νλ1eνλ1t||θh||2.
(87)

Since

|τ(t)(ηht, τ(t)θht)| ≤
1
4

τ(t)|θht|2 + τ(t)|ηht|2,

|b(eh, ul
h, τ(t)θht)| ≤

1
8

τ(t)|θht|2 + 2N2τ(t)||uh|| |Ahuh| |eh| ||eh||,

|b(u, eh, τ(t)θht)| ≤
1
8

τ(t)|θht|2 + 2N2τ(t)|u| |Au| ||eh||2,

putting these inequalities into (87), integrating from 0 to t, multiplying by e−νλ1t, and using
Lemmas 3 and 5, we have

ντ(t)||θh||2 + e−νλ1t
∫ t

0
eνλ1sτ(s)|θhs|2ds

≤2e−νλ1t
∫ t

0
eνλ1sτ(s)|ηl

hs|
2ds

+ νe−νλ1t
∫ t

0
eνλ1s(||eh||2 + ||ηh||2)ds + ν2λ1e−νλ1t

∫ t

0
eνλ1s(||eh||2 + ||ηh||2)ds

+ 4N2|u| |Au|e−νλ1t
∫ t

0
eνλ1s||eh||2ds

+ 4N2||uh|| |eh|
(

e−νλ1t
∫ t

0
eνλ1s|Ahuh|2ds

)1/2(
e−νλ1t

∫ t

0
eνλ1s||eh||2ds

)1/2

≤ch2e−νλ1t
∫ t

0
eνλ1sτ(s)(||ut||2 + ||pt||21/ν2)ds + ch2e−νλ1t

∫ t

0
eνλ1sτ(s)(ν||us||22 + ||ps||21/ν)ds

+ ch2e−νλ1t
∫ t

0
eνλ1s(ν2||u||22 + ||p||21)ds

+ 4N2|u| |Au|e−νλ1t
∫ t

0
e−νλ1s||eh||2ds

+ 4N2||uh|| |eh|
(

e−νλ1t
∫ t

0
eνλ1s|Ahuh|2ds

)1/2(
e−νλ1t

∫ t

0
eνλ1s||eh||2ds

)1/2
,

which, together with Theorems 2–4 and Lemmas 3 and 5 yields Lemma 6.

Lemma 7. Under the assumptions of Lemma 5, it holds that

τ2(t)|ut − uht|2 ≤ κ2
9h2, (88)

e−νλ1t
∫ t

0
τ2(s)eνλ1s||us − uhs||2ds ≤ κ2

10h2, (89)

where κ2
9 and κ2

10 are power-type functions satisfying κ2
9 := cν−1{[1+(λ1 + 9)ν+

√
ν(1 + νλ1)]

1/2

[(1+ νλ1)ν
−2 + 5ν−1 +[1+(λ1 + 9)ν+

√
ν(1 + νλ1)]

1/2ν−1]κ2
4 + νC̃2

f + κ2
8 + N2κ1κ4κ2

8ν−1 +
1√

1−σ2
2

N2κ2
1κ5ν−1/2} and κ2

10 := κ2
9 +(1+ νλ1 + 5ν)κ2

4 + [1+(λ1 + 9)ν+
√

ν(1+ νλ1)]κ
2
4ν−1 + C̃2

f .
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Proof. Differentiating (86) with respect to t, using the Galerkin projection (65), and taking
(vh, qh) = τ2(t)eνλ1t(θht, ξht), we arrive at

1
2

d
dt τ2(t)eνλ1t|eht|2 + ντ2(t)||θht||2 + eνλ1tb(eht, u, τ2(t)θht) + eνλ1tb(eh, ut, τ2(t)θht)

+eνλ1tb(uht, el
h, τ2(t)θht) + eνλ1tb(uh, eht, τ2(t)θht)

= eνλ1t(ehtt, τ2(t)ηht) + τ(t)eνλ1t|eht|2 + 1
2 νλ1τ2(t)eνλ1t|eht|2.

(90)

Since

|(ehtt, τ2(t)ηht)| ≤ τ2(t)|ehtt| |ηht|,

|b(eht, u, τ2(t)θht)| ≤
ν

8
τ2(t)||θht||2 + 2N2τ2(t)|u| |Au| |eht|2,

|b(eh, ut, τ2(t)θht)| ≤
ν

8
τ2(t)||θht||2 + 2N2τ2(t)|ut| ||ut|| |eh| ||eh||,

|b(uht, eh, τ2(t)θht)| ≤
ν

8
τ2(t)||θht||2 + 2N2τ2(t)|uht| ||uht|| |eh| ||eh||,

|b(uh, eht, τ2(t)θht)| ≤
ν

8
τ2(t)||θht||2 + 2N2τ2(t)|uh| |Ahuh| |eht|2,

putting these inequalities into (90), integrating from 0 to t, multiplying by e−νλ1t, and using
Theorems 2–4, we have

τ2(t)|eht|2 + νe−νλ1t
∫ t

0
eνλ1sτ2(s)||θl

hs||
2ds

≤2
(

e−νλ1t
∫ t

0
eνλ1sτ(s)(|uss|2 + |uhss|2)ds

) 1
2
(

e−νλ1t
∫ t

0
eνλ1sτ(s)|ηhs|2ds

) 1
2

+ (2 + νλ1)e−νλ1t
∫ t

0
eνλ1sτ(s)|ehs|2ds + 4N2|u| |Au|e−νλ1t

∫ t

0
eνλ1sτ(s)|ehs|2ds

+ 4N2|uh| |Ahuh|e−νλ1t
∫ t

0
eνλ1sτ(s)|ehs|2ds

+ 4N2τ(t)|ut| |eh|
(

e−νλ1t
∫ t

0
eνλ1sτ(s)||us||2ds

) 1
2
(

e−νλ1t
∫ t

0
eνλ1sτ(s)||eh||2ds

) 1
2

+ 4N2τ(t)|uht| |eh|
(

e−νλ1t
∫ t

0
eνλ1sτ(s)||uhs||2ds

) 1
2
(

e−νλ1t
∫ t

0
eνλ1sτ(s)||eh||2ds

) 1
2
.

Using the triangle inequality and Lemmas 3, 5, and 6, we can derive (88) and (89).
The proof is completed.

Lemma 8. Under the assumptions of Lemma 5, it holds that

τ2(t)|p− ph|2 ≤ κ2
11h2, (91)

where κ2
11 is a power-type function satisfying κ2

11 := β−1
h [κ2

9 + κ2
7 +

1
1−σ2

2
Nκ5κ7κ2(ν

2κ2
1 + 2κ2

4)
1/2ν−1 +

Nκ2
7κ1(ν

2κ2
1 + 2κ2

4)
1/2ν−1].

Proof. Using (60) and (86), we obtain

βh|p− ph| ≤ sup
vh∈X,vh 6=0

|d(vh, ξh)|
||vh||

≤ |(eht, vh) + νa(eh, vh) + b(eh, u, vh) + b(uh, eh, vh)|
||vh||

≤|eht|+ ν||eh||+ N|eh|1/2||eh||1/2||u||1/2|Au|1/2 + N|uh|1/2|Ahuh|1/2||eh||,

which, together with Lemmas 5–7 and Theorems 2–4, yields (91). The proof is completed.
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From Lemmas 5, 6, and 8, we arrive at the main result of this paper as follows.

Theorem 5. Assuming that (A1)–(A3) and (78) hold, and (u, p) and (uh, ph) are the solutions of
(14) and (15) and (63) and (64), respectively, then it holds that

|u− uh|2 ≤
κ2

5
1− σ2

2
h2,

τ(t)||u− uh||2 ≤ κ2
7h2,

τ2(t)|p− ph|2 ≤ κ2
11h2.

5. Numerical Examples

In this section, we will show some numerical examples to confirm the theoretical
predictions derived above.

Let the domain Ω = (0, 1)× (0, 1); the spatial mesh h = 1/30; the initial data u0 =
(u1(0), u2(0))T = (10x2

1(x1− 1)2x2(x2− 1)(2x2− 1),−10x1(x1− 1)(2x1− 1)x2
2(x2− 1)2)T ;

the simulation time T = 120; and ν = 1/40, 1/80, and 1/160, respectively. Due to
the constants N and λ1 only depending on the domain, for the computational domain
considered here, it holds that N ≤ 1/2π and || f ||−1 ≤ | f |/(

√
2π) (see [32]). Thus, it is

easy to check that the assumption (21) is valid in this case. Firstly, setting the body force
f = ( f1, f2)

T = (0.01, 0.01)T , we investigate the development of the numerical solutions
with respect to the time t. From the definitions of κ1 and κ2, we know that with this
given body force independent of the time here, the numerical solutions will decay as
an exponential function with respect to the time t and arrive at a steady state when the time
t is big enough; the smaller the viscosity is, the bigger the numerical solution will be.
Furthermore, the smaller the viscosity is, the slower the system will decay. All of these are
consistent with the results shown in Figure 1.

0 20 40 60 80 100 120

Time t
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10-8

10-6

10-4

10-2

100

||u
h|| L2

 = 0.025
 = 0.0125
 = 0.00625

(a)

0 20 40 60 80 100

Time t

10-10

10-8

10-6
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100

||u
h|| H

1

 = 0.025
 = 0.0125
 = 0.00625

(b)
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Time t
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6

6.05

6.1

6.15

||p
h|| L2

10-3

 = 0.025
 = 0.0125
 = 0.00625

2 4 6
Time t

5.775

5.78

5.785

5.79

5.795

||p
h
|| L

2

10-3

(c)

Figure 1. Numerical solutions with respect to the time t (steady body force). (a) ||uh||L2 ; (b) ||uh||H1 ;
(c) ||ph||L2 .

Secondly, with a periodic body force f = ( f1, f2)
T = (0.01 cos(t), 0.01 cos(t))T and

the other computational parameters the same as that in the above, we collect the numerical
results in Figure 2. We can see that the performance is similar to that for the steady body
force, except the system will arrive at the periodic state as the time develops. The reason is
that the exponential terms decay fast in κ1 and κ2 as t increases, and the periodic function
cos(t) will be dominant after some critical times (these times depend on the viscosity and
the norm investigated). These confirm the theoretical analysis again.
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 = 0.0125
 = 0.00625
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Figure 2. Numerical solutions with respect to the time t (periodic body force). (a) ||uh||L2 ; (b) ||uh||H1 ;
(c) ||ph||L2 .

Finally, we study the relationship between the numerical solutions and the viscosity.
With ν = 1/40, 1/60, 1/80, 1/100, 1/120, 1/140, 1/160, respectively, we plot the devel-
opment of the approximation in Figure 3. The graphs imply that the numerical solutions
increase as a power function with respect to the viscosity, not as an exponential function.
All of these suggest that the analysis in this paper is sharper than that in the references.
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10-7

10-6

10-5

10-4

10-3

10-2
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t = 9
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t = 3
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Figure 3. Numerical solutions with respect to the viscosity ν. (a) ||uh||L2 ; (b) ||uh||H1 ; (c) ||ph||L2 .

6. Conclusions

We derive finite element error estimates with power-type asymptotic constants for long-
time approximation of the Navier–Stokes equations, which can describe the approach
feature better compared with ones with exponential-type asymptotic coefficients errors.
The main technique used in this paper is to construct a kind of fixed-point operator,
by which the Gronwall lemma is avoided in the analysis. The analysis is confirmed by
some numerical examples. This idea can be extended to the fully discrete and other
time-dependent problems, which will be considered in our future work.
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