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Bacterial exotoxins and the 
inflammasome
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The inflammasomes are intracellular protein complexes that play an important role in 
innate immune sensing. Activation of inflammasomes leads to activation of caspase-1 and 
maturation and secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. In 
certain myeloid cells, this activation can also lead to an inflammatory cell death (pyroptosis). 
Inflammasome sensor proteins have evolved to detect a range of microbial ligands and 
bacterial exotoxins either through direct interaction or by detection of host cell changes 
elicited by these effectors. Bacterial exotoxins activate the inflammasomes through diverse 
processes, including direct sensor cleavage, modulation of ion fluxes through plasma 
membrane pore formation, and perturbation of various host cell functions. In this review, we 
summarize the findings on some of the bacterial exotoxins that activate the inflammasomes.

Keywords: inflammasome, caspase-1, interleukin-1, pyroptosis, exotoxins, NLRP3, Nod-like receptors, anthrax 
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iNTRODUCTiON

Inflammasomes are multiprotein complexes that form in response to microbial effectors, metabo-
lites, nucleic acids, and other danger signals. These signals are sensed by cytosolic pattern recognition 
receptors [reviewed in Ref. (1)]. The most well-known inflammasome sensors, the nucleotide-binding 
domain/leucine rich repeat (NLR) proteins, contain common domains, including a leucine rich 
repeat (LRR), a nucleotide-binding domain (NACHT), a caspase activation and recruitment domain 
(CARD), and in some, but not all cases, a pyrin domain (PYD). Other inflammasome sensors are the 
absent in melanoma 2 domain (AIM2) protein, which will not be further discussed in this review, 
and a sensor called Pyrin, whose function remains controversial and has been described as both 
an inflammasome activator and inhibitor (2, 3). Upon activation, the inflammasome sensors initi-
ate assembly of a complex that often includes an adaptor protein [usually the apoptosis-associated 
speck-like protein containing a CARD (ASC)], and pro-caspase-1. Proximity-based autoproteolysis 
of pro-caspase-1 then leads to cleavage of its substrates – the pro-inflammatory cytokines interleukin 
(IL)-1β and IL-18, and initiation of a rapid lytic cell death called pyroptosis that requires caspase-1 
activity and targeting of unknown death substrates [reviewed in Ref. (1)]. IL-1β and IL-18 are 
well-studied for their roles in recruiting innate immune cells and promoting adaptive and humoral 
immunity. Pyroptosis and the accompanying release of cellular contents also act as danger signals, 
resulting in effects on bystander cells that can impact both innate and adaptive immune responses.

Different sensors activate inflammasome assembly in response to seemingly disparate stimuli. 
The mechanism of activation of some inflammasome sensors, such as rodent NLRP1, NAIP/NLRC4, 
and AIM2, are now known [for review see Ref. (1)]. Exactly how the promiscuous NLRP3 inflam-
masome, however, is activated by a diversity of seemingly disparate stimuli is still a matter of much 
debate [reviewed in Ref. (1, 4)].
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This review focuses on effector bacterial exotoxins and 
how they activate different inflammasome sensors (Table  1; 
Figure 1). Most toxins that have been described to activate the 
inflammasomes are pore-forming toxins that activate NLRP3. 
However, toxins with unique enzymatic actions also activate the 
inflammasomes. There are also many other bacterial proteins that 
activate inflammasomes, such as flagellin and needle/rod com-
ponents of the bacterial type III secretion system (T3SS), which 
activate NAIP/NLRC4 by direct binding. These are reviewed 
elsewhere (5–7). Furthermore, the “non-canonical” caspase-11 
inflammasome, which directly senses bacterial endotoxin Lipid 
A, has been examined in a series of elegant studies (8–12) and 
is also reviewed elsewhere (1, 13, 14). We will discuss bacterial 
exotoxins that directly activate the inflammasome by sensor 
modification, namely, Bacillus anthracis lethal toxin (LT), and 
other bacterial exotoxins that activate the NLRP3 and Pyrin 
inflammasomes indirectly by altering host cell function in ways 
that include plasma membrane pore formation, co-option of the 
host actin cytoskeleton, and as-of-yet unknown mechanisms.

ANTHRAX LeTHAL TOXiN AND DiReCT 
ACTivATiON OF THe NLRP1 
iNFLAMMASOMe

Anthrax LT is a major virulence factor of B. anthracis, inducing 
vascular collapse during anthrax infection of animals ranging 

TABLe 1 | inflammasome-activating bacterial exotoxins.

Toxin Source Mechanism Sensor effect sensed by NLR  
(direct or indirect)

Reference

Lethal toxin (LT) B. anthracis Protease NLRP1 NLRP1 cleavage (19–24)

Nigericin S. hygroscopicus Ionophore NLRP3 K+ efflux (40)

α-Hemolysin S. aureus Pore former NLRP3 K+ efflux (60–62)

Panton-valentine leukocidin S. aureus Pore former NLRP3 K+ efflux (68)

Leukocidin A/B S. aureus Pore former NLRP3 K+ efflux (69)

Listeriolysin O L. monocytogenes Pore former NLRP3 K+ efflux (42, 43, 50)

Aerolysin A. hydrophila Pore former NLRP3 K+ efflux (44)

Tetanolysin O C. tetani Pore former NLRP3 K+ efflux (49)

Pneumolysin S. pneumonia Pore former NLRP3 K+ efflux (51–53)

β-Hemolysin Group B Streptococcus Pore former NLRP3 K+ efflux (55–57)

Streptolysin O S. pyogenes Pore former NLRP3 K+ efflux (58, 59)

α-Hemolysin E. coli Pore former NLRP3 K+ efflux (77)

Enterohemolysin E. coli O157:H7 Pore former NLRP3 K+ efflux (76)

Various hemolysins Vibrio species Pore former NLRP3 K+ efflux (78–80)

TcdB C. difficile Glucosylase Pyrin Rho GTPase inactivation (87, 90)

VopS V. parahaemolyticus Adenylyltransferase Pyrin Rho GTPase inactivation (87)

IbpA H. somni Adenylyltransferase Pyrin Rho GTPase inactivation (87)

C3 toxin C. botulinum ADP-ribosyltransferase Pyrin Rho GTPase inactivation (87)

Unknown B. cenocepacia Deamidase Pyrin Rho GTPase inactivation (87)

Pertussis toxin (PTX) B. pertussis ADP-ribosyltransferase Pyrin Unknown (87)

CdtB Aggregatibacter 
actinomycetemcomitans

Lipid phosphatase NLRP3 GSK3β-induced P2X7 
activation

(92, 93)

IpaH7.8 S. flexneri E3 ubiquitin ligase NLRP3, NLRC4 GLMN degradation (94)

Pertussis adenylate cyclase 
toxin

B. pertussis Adenylate cyclase and pore 
former

NLRP3 Pore formation; K+ efflux (98)

Heat-labile enterotoxin (LT) E. coli ADP-ribosyltransferase NLRP3 cAMP increase (100, 101)

Cholera toxin (CT) V. cholerae ADP-ribosyltransferase Unknown cAMP increase (101)

from rodents to monkeys (15–17). LT is a bipartite toxin made 
of a receptor-binding moiety, protective antigen (PA), and 
a zinc-dependent metalloprotease, lethal factor (LF). Upon 
endosome acidification, PA delivers LF to the host cell cytosol 
[reviewed in Ref. (18)]. LF activates the NLRP1 inflammasome 
in macrophages and dendritic cells from certain inbred rodent 
strains by cleavage of NLRP1 (19, 20). Cleavage occurs in an 
N-terminal region of unknown function, located in a position 
corresponding to the PYD of human NLRP1 (19, 21). This cleav-
age is necessary and sufficient for inflammasome activation (19, 
22). In most rat strains, only one of the two NLRP1 paralogs is 
expressed, and susceptibility to pyroptosis is perfectly correlated 
with the ability of LT to cleave the expressed NLRP1 sensor (19, 
21, 23). Rat strains, such as Fischer and Brown Norway, express 
NLRP1 variants that are cleaved by LF and have macrophages 
that pyroptose in response to the toxin. Furthermore, when these 
rats are challenged with LT, they undergo death in <1 h. Strains 
such as SHR, Lewis, and Copenhagen have an altered sequence 
within the LF cleavage site, rendering NLRP1 resistant to cleav-
age, macrophages resistant to pyroptosis, and the animals highly 
resistant to toxin challenge (19, 21, 23).

Rat NLRP1 proteins from all tested rat strains are 98% identical 
(21), pointing to the evolutionary pressure conserving the sensor’s 
sequence outside of the few polymorphisms in the LF cleavage 
site. In mice, three Nlrp1 alleles (Nlrp1a, Nlrp1b, Nlrp1c) exist 
(24, 25). The one most homologous to the expressed rat NLRP1 
is NLRP1a, which is, in a manner similar to rat NLRP1, highly 
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conserved among all mouse strains in which it is expressed1 (25). 
Murine NLRP1a, however, is not cleaved by LF and its activator 
is currently unknown.

Rather, the highly polymorphic mouse NLRP1b, which has up 
to 200 polymorphisms between different inbred mouse strains, is 
cleaved by the toxin (24, 25). NLRP1 activation in rodent mac-
rophages and dendritic cells and the resulting pyroptosis requires 
proteasome activity (26–28) and can occur independently of ASC 
(29–31). Activation results in an inflammatory cytokine (16, 32, 
33) and eicosanoid response (34) that confers an increased resist-
ance to B. anthracis spore infection (32, 33). Thus, among inbred 
mouse strains, there is an inverse correlation between sensitivity 
of macrophages and dendritic cells to LT-induced pyroptosis and 
animal susceptibility to B. anthracis infection.

The unique, rapid death induced by LT in rats, which is not rep-
licated in toxin-sensitive mice at even 10-fold higher doses, does 
not display the inverse relationship observed in mice. Instead, rat 
death following both toxin and spore challenge is positively cor-
related to NLRP1 sensitivity to LT cleavage (35). Human NLRP1 
proteins sequenced thus far do not contain an LT cleavage site and 
instead have an N-terminal PYD. Human NLRP1 is not activated 
by LT, and human macrophages and dendritic cells are resistant 
to this toxin (35).

In addition, the obligate intracellular parasite, Toxoplasma 
gondii, has also been shown to activate the NLRP1 inflammasome 

FiGURe 1 | Overview of mechanisms of toxin-induced activation of the Pyrin, NLRP3, and rodent NLRP1 inflammasomes. Bacterial exotoxins can 
activate the inflammasome sensors through diverse direct or indirect mechanisms. After inflammasome sensor activation, these different pathways converge on 
caspase-1 recruitment to the inflammasome platform and autoproteolytic activation. Caspase-1 cleaves its substrates pro-IL-1β and pro-IL-18 to their mature forms 
for secretion. Caspase-1 activation is also accompanied by pyroptosis through an unknown mechanism.

in select inbred rat strains by an unknown mechanism (36–39). 
However, it is unknown if T. gondii activates NLRP1 in a manner 
similar to LT, through actions of a protease or toxin. We speculate 
that NLRP1 has evolved to sense diverse pathogen proteases, and 
polymorphisms present in different NLRP1 alleles may define 
responsiveness to different pathogens. Future work is needed 
to identify other NLRP1 agonists and the pressures driving the 
evolution of its conserved and polymorphic sequences.

PORe-FORMiNG TOXiNS AND iNDiReCT 
NLRP3 ACTivATiON

Unlike the toll-like receptors (TLRs) and the NAIP/NLRC4 and 
AIM2 inflammasomes, which directly sense microbial products, 
some inflammasome sensors indirectly sense the effects of 
bacterial toxins on host cell function. For example, NLRP3 is 
believed to be activated by an indirect mechanism. While the 
precise signals that activate NLRP3 remain unknown, it has been 
proposed that NLRP3 may be indirectly activated by K+ efflux, 
lysosomal damage and cathepsin B release, mitochondrial dam-
age, or reactive oxygen species production (1). The best-studied 
example of indirect inflammasome activation by bacterial toxins 
is the impact of pore formation on cellular potassium levels and 
subsequent NLRP3 activation.
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Early studies linking IL-1β responses to addition of exogenous 
ATP or the Streptomyces hygroscopicus-derived potassium iono-
phore, nigericin (40), occurred before inflammasome components 
were identified and the term introduced. Bhakdi and colleagues 
confirmed that additional agents that deplete potassium in cells, 
including the pore-forming Staphylococcus aureus alpha toxin, 
the ionophore valinomycin, and the Na+/K+ ATPase inhibitor 
ouabain, can trigger processing of IL-1β (41). These investiga-
tors hypothesized that cellular K+ concentration changes could 
control the function of caspase-1. Ten years later, studies with the 
calcium channel activator maitotoxin, nigericin, and ATP showed 
that induction of IL-1β and IL-18 secretion in TLR-primed mac-
rophages treated with these K+ efflux-inducing agents occurred 
in a manner dependent on the inflammasome adaptor ASC and 
the NLRP3 sensor (42). It was found that IL-1β secretion induced 
by Listeria monocytogenes infection of macrophages required 
listeriolysin expression (42, 43), suggesting that pore formation 
and perturbation of cellular K+ levels could also be the basis for 
inflammasome activation by this toxin, although the purified 
toxin itself was not tested.

The first demonstration of NLRP3- and ASC-dependent 
inflammasome formation in response to a purified pore-forming 
bacterial toxin was reported with studies using aerolysin purified 
from Aeromonas hydrophila (44). Interestingly, this study identi-
fied a novel caspase-1-dependent protective response in cells 
treated with either aerolysin or S. aureus α-hemolysin. In contrast 
to the pyroptosis usually observed following caspase-1 activation, 
NLRP3-mediated activation of caspase-1 by sublytic doses of the 
pore-forming toxins resulted in induction of sterol regulatory 
element-binding proteins that altered membrane biogenesis and 
promoted cell survival (44). The link between pore-based lowered 
intracellular K+ and NLRP3 activation was later confirmed by 
multiple other groups (45, 46). These early studies led to the test-
ing of a large range of purified bacterial lysins and pore formers 
for their ability to activate the NLRP3 inflammasome.

Other cholesterol-dependent pore-forming toxins similar 
to aerolysin were also previously linked to IL-1β production 
(47, 48) and have since been tested in cells with inflammasome 
component deficiencies to link this response directly to caspase-1 
activation. Tetanolysin O, from Clostridium tetani induces IL-1β 
maturation and release from bone marrow-derived macrophages 
(BMDMs) at low, non-lytic doses in an NLRP3-, cathepsin B-, 
and caspase-1-dependent manner (49). Listeriolysin, originally 
suggested to play a role in IL-1β responses during Listeria infec-
tion via pore formation (42), directly activates the inflammasome 
by K+ efflux induction (50).

Streptococcus pneumoniae pneumolysin induces NLRP3-
dependent IL-1β secretion that is linked to a pro-inflammatory 
cytokine cascade, which includes IL-17 and IFN-γ responses (51). 
Pneumolysin mutants and bacterial serotypes associated with 
variable toxin production confirm the requirement for this lysin 
in NLRP3-, ASC- and caspase-1-dependent IL-1β and IL-18 pro-
duction (52). The host cytokine response to pneumolysin has also 
been shown to increase protection against pneumonia in a mouse 
model (52). In a murine model of pneumococcal meningitis, the 
extent of caspase-1 activation via the NLRP3 inflammasome has 
been linked to clinical disease severity (53). In contrast to the 

study described above, in this model, inflammasome activation 
was associated with pathology rather than bacterial clearance. 
Pneumolysin was the key inducer of the IL-1β response associated 
with disease, and inhibitors of IL-1β and IL-18 signaling-altered 
pathological responses. Pneumolysin activation of the inflam-
masome was suggested to require ATP release and lysosomal 
destabilization associated with cathepsin B cytosolic activity (53). 
Interestingly, pneumolysin has also been linked to the sensing 
of S. pneumonia by the cytosolic DNA-sensing molecule STING 
and the downstream type I interferon responses, likely in an 
inflammasome-independent manner (54). Other Streptococcal 
proteins can also mediate inflammasome activation through 
their pore-forming ability. The pigment associated with group B 
streptococci was recently shown to be hemolytic and capable of 
pore formation and induction of a K+ efflux linked to NLRP3 
activation (55). Previous studies demonstrated that β-hemolysin 
(56, 57) and other streptococcal lysins (58, 59) also activate the 
NLRP3 inflammasome.

Staphylococcus aureus is another gram-positive bacterium that 
has evolved to activate the NLRP3 inflammasome through the 
actions of multiple pore-forming toxins and hemolysins. Following 
up on Bhakdi’s early observation that S. aureus α-hemolysin is 
associated with the IL-1β response, this toxin was verified to 
induce NLRP3-dependent activation of caspase-1 in both human 
and mouse monocytic cells (60). Activation of the inflammasome 
by α-hemolysin has been reported to have both protective and 
detrimental consequences in  vivo. For example, α-hemolysin-
mediated activation of NLRP3 in a mouse pneumonia model has 
been linked to IL-1β-independent necrosis, pulmonary damage, 
and severe pneumonia (61). By contrast, inflammasome activa-
tion is protective in other models. Neutrophil-derived IL-1β in 
response to α-hemolysin was protective in an abscess model of 
infection in mice (62). Studies of patients with atopic dermatitis 
have linked α-hemolysin upregulation of NLRP3 expression and 
S. aureus-mediated caspase-1 activation in monocytes to the 
control of Th2 responses, which may ameliorate this disease (63). 
IL-1β has also been linked to protection against S. aureus-induced 
CNS disease and brain abscesses (64). Hemolysin-dependent 
induction of IL-1β was attenuated in NLRP3- and ASC-deficient 
microglia following bacterial infection. Interestingly, in these 
studies, IL-18 secretion from microglia occurred in a man-
ner independent of NLRP3, suggesting a different cleavage 
mechanism for IL-18 (65). Recently, S. aureus phenol soluble 
modulins (PSMs), another class of pore-forming substances that 
are important virulence factors [reviewed in Ref. (66)], were 
shown to induce IL-18 secretion from human keratinocytes in 
a caspase-1-independent manner (67). In a mouse model, PSMs 
were also shown to be important for S. aureus-induced neutrophil 
recruitment and systemic inflammation. These authors suggest 
that IL-18 release and neutrophil recruitment induced by PSMs is 
inflammasome independent, again suggesting novel mechanisms 
for IL-18 activation (67).

Other pore-forming toxins from S. aureus have also been 
shown to activate the inflammasome. The Panton–Valentine 
leukocidin associated with tissue necrosis has been shown to 
induce release of Il-1β and IL-18 in an NLRP3-dependent man-
ner (68). Leukocidin A/B is another pore-forming toxin that can 
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activate the NLRP3 inflammasome in human monocytes (69). 
Interestingly, it has also been suggested that S. aureus hemolysins 
do not activate caspase-1 alone and require S. aureus lipoproteins 
for inflammasome activation, albeit independently of the lipo-
protein actions on TLR-mediated inflammasome priming (70).

Certain S. aureus toxins have also been described to have 
effects on necroptosis in a manner that may link to their activa-
tion of the inflammasome. For example, it was found that the 
virulent methicillin-resistant (MRSA) strain USA300 induces 
receptor-interacting serine–threonine kinase (RIP)1/RIP3/
mixed lineage kinase domain-like (MLKL)-dependent necropto-
sis, thereby contributing to inflammatory lung pathology (71). 
S. aureus treatment of human and murine macrophages leads to 
phosphorylation of MLKL- and necroptosis-induced cell death. 
Rip3−/− macrophages are protected from S. aureus-induced 
cytotoxicity. Live bacteria or supernatants from mutants lacking 
either the α-hemolysin, leukocidin A/B, or PSM toxins display 
reduced induction of macrophage cytotoxicity. Interestingly, 
α-hemolysin-induced inflammasome activation has been shown 
to be dependent on MLKL pore formation, supporting the link 
between the NLRP3 inflammasome and necrosome components 
RIP1, RIP3, and MLKL (71–75). Necroptosis contributes to lung 
pathology and reduced bacterial clearance in vivo by depleting 
immunoregulatory resident alveolar macrophages that are essen-
tial for bacterial clearance (71).

Gram-negative bacteria also produce a variety of hemolysins 
that have been implicated in activation of the NLRP3 inflamma-
some. Enterohemorrhagic Escherichia coli (EHEC) O157:H7, 
the causative agent of hemorrhagic uremic syndrome, produces 
a hemolysin that induces IL-1β from the THP-1 macrophage/
monocyte cell line, and RNA-interference experiments indicate 
a role for NLRP3, ASC, and caspase-1 in the initiation of the 
cytokine release (76). Uropathogenic E. coli also induces IL-1β, 
and E. coli α-hemolysin was found to be responsible for NLRP3-
dependent responses in mouse macrophages infected with certain 
bacterial strains. Other strains activated an NLRP3-independent 
cell death pathway and hemolysin-independent IL-1β secretion 
from human macrophages (77). Vibrio vulnificus and Vibrio 
cholerae were first shown to activate the NLRP3 inflammasome 
in macrophages through the action of hemolysins (78). Vibrio 
parahaemolyticus also produces thermostable direct hemolysins 
known as TDHs that can activate the NLRP3 inflammasome (79). 
Vibrio fluvialis, which induces a diarrheal disease in humans, pro-
duces a hemolysin that can activate the inflammasome in mouse 
and human macrophages. Importantly, in a mouse model, the 
toxin was associated with IL-1β production, and toxin-containing 
cell-free culture supernatants induced higher levels of cytokine 
production. Hemolysin-deficient bacteria and their supernatants 
had lower levels of response in vivo (80).

The study of pore formation-mediated inflammasome activa-
tion first started with analysis of marine and fungal ionphores 
(42) and has now again been extended beyond bacterial toxins. 
Mold pore-forming mycotoxins (81), viral viraporins (82), 
melittin, the small cationic pore-forming peptide found in 
bee venom, which can form a single alpha helix spanning the 
plasma membrane (83), and the Bombina maxima frog derived 
aerolysin-like protein (84) are examples of unique non-bacterial 

toxin pore-forming agents that activate the NLRP3 inflamma-
some and caspase-1. The utility of these and many of the toxins 
described in this section as potential adjuvants for amplification 
of the immune response, or pro-inflammatory therapeutics is an 
area that awaits investigation.

iNDiReCT ACTivATiON OF THe 
iNFLAMMASOMeS BY OTHeR 
BACTeRiAL eXOTOXiNS HAviNG 
eNZYMATiC ACTiONS

In addition to NLRP3 activation by pore-forming bacterial toxins, 
inflammasome activation can also occur by other mechanisms of 
indirect sensing of bacterial effectors.

Rho family of GTPases is molecular switches that control the 
dynamics of the actin cytoskeleton. The actin cytoskeleton can be 
co-opted by bacterial pathogen effectors targeting Rho GTPases 
for either hyper-activation or inactivation (85). Several cytosolic 
innate immune-sensing pathways have evolved to recognize the 
sequelae of Rho GTPase actions. For example, activation of Rho 
GTPases, including Rac1 and Cdc42, by bacterial toxins activates 
the cytosolic NOD1 sensor and leads to NFκB-dependent expres-
sion of pro-inflammatory genes (86). Recently, Shao and col-
leagues identified Pyrin as an innate immune sensor of bacterial 
toxin inhibition of Rho GTPases (87). They demonstrated that the 
Clostridium difficile toxin TcdB, which glucosylates and inactivates 
Rho proteins, activates the Pyrin inflammasome. This discovery 
provided a link between the previous findings that Pyrin con-
trolled inflammatory familial Mediterranean fever pathogenesis 
(88, 89) through inflammasome activation (2), and that C. difficile 
toxins TcdA/B activate the ASC-dependent inflammasome (90). 
Interestingly, Pyrin specifically recognizes Rho subfamily inhibi-
tion, as cytochalasin D, an inhibitor of actin polymerization, and 
the Clostridium sordellii lethal toxin TcsL, which modifies Rac/
Cdc42 and some Ras-related GTPases, do not activate the Pyrin 
inflammasome. Furthermore, a variety of bacterial toxins with 
different enzymatic activities can activate the Pyrin inflamma-
some. Other Pyrin activators include Parahaemolyticus VopS, 
Histophilus somni IbpA, Clostridium botulinum C3 toxin, and 
Burkholderia cenocepacia. These toxins inactivate Rho subfamily 
GTPases by modifying I-switch residues through glucosylation, 
adenylation, ADP-ribosylation, and deamidation. Together, the 
diversity of chemical modifications of Rho GTPases, and the 
inability to co-IP RHOA/B/C and Pryin suggest that Pyrin does 
not directly interact with Rho GTPases and detect modifications; 
rather, it is proposed that Pyrin senses downstream effects on the 
actin cytoskeleton (87).

Interestingly, the Bordetella pertussis toxin PTX, which is an 
ADP-ribosyltransferase (similar to the botulinum C3 toxin, but 
targeting a different substrate), has been shown to activate the 
Pyrin inflammasome in vivo (91), as well as to upregulate IL-1β 
expression in a TLR4-dependent manner. Both events require on 
the toxin’s ADP-ribosyltransferase activity. While the mechanism 
of PTX activation of the Pyrin inflammasome is unknown, the 
intriguing possibility remains that PTX, which ADP-ribosylates 
the αi subunit of heterotrimeric G proteins, may activate the 
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Pyrin inflammasome via an indirect mechanism similar to that 
of the other bacterial toxins targeting the GTPases, discussed 
above.

The Aggregatibacter actinomycetemcomitans cytolethal 
distending toxin (Cdt), can act as both signal 1 and signal 2 for 
inflammasome activation, up-regulating pro-inflammatory 
cytokine expression (signal 1) and also activating the NLRP3 
sensor (signal 2) (92, 93). Cdt is a heterotrimeric protein found 
in several bacterial species, also including Campylobacter jejuni, 
Shigella species, and some E. coli isolates. The CdtA and CdtC 
subunits comprise the receptor-binding moiety, and the CdtB 
subunit is an lipid phosphatase. CdtB dephosphorylates the 
signaling lipid phosphatidylinositol-3,4,5-triphosphate (PIP3) 
and leads to its degradation, decreased phosphorylation of Akt 
and glycogen synthase kinase 3β (GSK3β), decreased Akt kinase 
activity but increased GSK3β kinase activity, and inhibition of the 
PI-3K signaling pathway. GSK3β activation induced by CdtB in 
human macrophages and monocytes is believed to lead to NFκB 
activation and the expression of pro-inflammatory cytokines, 
including IL-1β, dependent on CtdB lipid phosphatase activity 
(92). Cdt-induced GSK3β activation leads to the generation of 
extracellular ATP, activation of the P2X7 purinergic receptor, K+ 
efflux, activation of the NLRP3 inflammasome, and IL-1β release 
(93). Inflammasome activation is NLRP3, ASC, and caspase-1 
dependent (93). This is a case where a single bacterial toxin, once 
in the macrophage cytosol, may act as both signal 1 and signal 2 
for inflammasome activation. Interestingly, it should be noted that 
Cdt toxins are also considered to act as DNases that induce DNA 
damage and cause cell cycle arrest. Which of these activities is 
more important in vivo is not clear, and the possibility remains that 
the DNase activity could also result in activation of other sensors.

The NAIP/NLRC4 inflammasome has been demonstrated 
to be activated by bacterial flagellin and T3SS needle and rod 
proteins [reviewed in Ref. (7)]. In contrast to previously known 
NAIP/NLRC4 agonists, which activate the inflammasome by 
direct binding to the NAIP sensors, a novel, indirect activator of 
the NLRC4 inflammasome has recently been identified (94). A 
Shigella flexneri E3 ubiquitin ligase effector protein secreted into 
the host cell cytosol via the type III secretion system (T3SS), inva-
sion plasmid antigen H7.8 (IpaH7.8), was found to activate the 
NLRP3 and NLRC4 inflammasomes (94). This protein was found 
to be an important virulence factor, as enzymatically inactive 
mutants were defective in lung colonization following intranasal 
infection. Although in most cases inflammasome activation is 
important for controlling bacterial infection, this is a case were 
the activation is used by the bacterium to promote dissemina-
tion. The LRR domain of IpaH7.8 was found to directly interact 
with the host protein glomulin/flagellar-associated protein 68 
(GLMN) and target both GLMN and itself for degradation by the 
proteasome. GLMN was suggested to inhibit the NLRP3 inflam-
masome through an unknown mechanism. Future studies may 
reveal whether GLMN inhibits the inflammasome, or if IpaH7.8 
activates this sensor through a different mechanism (94).

Interestingly, ricin, a highly poisonous toxin found in the 
seeds of the Ricinus communis plant, and an inhibitor of pro-
tein syntheses, has also been shown to induce a macrophage 
IL-1β-mediated pro-inflammatory response in the airways, 

contributing to lethality (95). Upregulation of IL-1β transcription 
and the pro-inflammatory response is believed to be mediated 
by activation of the stress-activated protein kinases (SAPKs), 
including JNK and the p38 MAPK [reviewed in Ref. (96)]. Ricin 
was also demonstrated to activate the NLRP3 inflammasome in 
a proteasome-dependent manner (97). Inflammasome activation 
was independent of the ribotoxic stress response and phospho-
rylation of p38 and JNK. It was proposed that inflammasome 
activation was the result of breakdown of an unidentified, labile 
NLRP3 inhibitor whose synthesis is blocked by ricin. JNK- and 
p38-independent NLRP3 inflammasome activation may contrib-
ute to the previous finding that IL-1β plays an important role in 
ricin-induced severe lung inflammation and lethality (95).

BACTeRiAL TOXiN iNFLAMMASOMe 
ACTivATORS AND ADAPTive iMMUNiTY

Some studies demonstrated that toxin-induced production of 
IL-1β also influences adaptive immunity, and it is likely that many 
toxins that activate the inflammasomes will have similar effects. 
The pertussis RTX adenylate cyclase toxin previously mentioned 
contains, in addition to its enzymatic domain, a separate pore-
forming domain, which activates the NLRP3 inflammasome. 
This activation leads to IL-1β production by dendritic cells and 
induction of antigen-specific Th17 cells that require the cytokine 
for expansion. Th17 differentiation induced by inflammasome 
activation is required for control of infection and clearance of 
bacteria from the lungs in a mouse model (98). Similarly, the 
IL-17 response associated with NLRP3 inflammasome activation 
by S. pneumonia pneumolysin is also associated with protective 
immunity against intranasal infection, and IL-1β is required for 
promoting the IL-17 response (51). Interestingly, the non-toxic 
trehalose-6,6-dibehenate (TBD) adjuvant, which promotes Th1/
Th17 responses, also requires inflammasome adaptor ASC-
dependent activation of IL-1β production (99).

The adjuvant role of non-pore-forming bacterial enterotoxins 
and their enzymatically inactive mutants in inducing inflamma-
some dependent, Th17-polarized protective immunity has also 
been studied (100, 101). The E. coli heat-labile enterotoxin (HL-LT, 
commonly termed LT) and cholera toxin (CT) are AB toxins that 
ADP-ribosylate the Gs component of adenylate cyclase, leading 
to an increase in cAMP. They have been shown to be potent adju-
vants, but their enterotoxicity precludes their use in human oral 
vaccines. HL-LT along with an enzymatically highly attenuated 
mutant can both activate the NLRP3/caspase-1 inflammasome 
and induce mature IL-1β secretion from LPS-primed dendritic 
cells (100). Inflammasome activation and the associated IL-1β 
response are required for promoting Th17 responses in  vivo, 
which in turn protect against B. pertussis challenge in a model 
where the toxin is the primary adjuvant in the pertussis vaccine 
(100). In related studies, the heat-killed mycobacteria compo-
nents in Complete Freund’s Adjuvant (CFA) have been shown 
to drive Th17 differentiation through a mechanism that requires 
NLRP3 inflammasome activation (102).

A recent study examined the ability for double-mutant HL-LT 
and multiple-mutated CT to induce a Th17-mediated adjuvant 
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response in human peripheral blood mononuclear cells (PBMCs) 
(101). These variants have highly reduced enzymatic activity and, 
unlike the wild type toxins, are non-toxic but still induce very 
low levels of cAMP and can stimulate IL-17A production from 
human PBMCs when administered to cells with a polyclonal 
T cell superantigen (101). This effect is dependent on cAMP/
protein kinase A (PKA) signaling, as a PKA inhibitor inhibits 
IL-17A production, and a cAMP analog recapitulates the toxin 
effects. Monocytes were demonstrated to have a modest increase 
in cAMP in response to the mutant toxins, and monocytes 
pre-incubated with the toxins and then co-cultured with CD4+ 
T cells led to an increase in IL-17A production in a caspase-1-, 
IL-1β-dependent manner (101). These studies demonstrate the 
important role that toxin-induced inflammasome activation may 
play in vaccine development.

CONCLUDiNG COMMeNTS

The recognition of self from non-self is the foundation of the 
innate immune response. Pattern recognition receptors such as 
the TLRs and some of the inflammasome sensors detect highly 
conserved microbial molecular patterns, including LPS, pepti-
doglycan, flagellin, and CpG DNA. The inflammasome receptors 
discussed in this review, however, are able to detect highly diverse 
bacterial effectors because they sense these toxins through their 
functional effects rather than their molecular patterns. In the 
case of NLRP1, the sensor is activated by direct cleavage by a 
bacterial protease that also cleaves the mitogen-activated protein 

kinase kinases (MEKs) and results in cell – and animal – death. 
The NLRP3 and Pyrin inflammasomes, on the other hand, detect 
indirect effects on host cell state including ion fluxes and pertur-
bation of the actin cytoskeleton. In this way, the inflammasome 
sensors have evolved to respond to different bacterial toxins with 
diverse mechanisms of action to converge on caspase-1 activation 
and initiation of the immune response.

Toxin activation of the inflammasome in the first-responder 
cells of the innate immune system plays an important role in 
pro-inflammatory and pyroptosis events that can have protec-
tive or pathogenic consequences in the host. Interestingly, 
bacterial effectors that inhibit the inflammasome or suppress its 
activation have also been described in recent years [reviewed 
in Ref. (103)], suggesting that microbes have also evolved to 
evade inflammasome detection by the host. With the threat 
of antimicrobial-resistant bacteria, an understanding of the 
mechanisms by which microbes modulate the innate immune 
responses is essential to studies of microbial pathogenesis and 
therapeutic development.
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