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Background: Osteoporosis is one of the most common systemic metabolic bone
diseases, especially in postmenopausal women. Circular RNA (circRNA) has been
implicated in various human diseases. However, the potential role of circRNAs in
postmenopausal osteoporosis (PMOP) remains largely unknown. The study aims to
identify potential biomarkers and further understand the mechanism of PMOP by
constructing a circRNA-associated ceRNA network.

Methods: The PMOP-related datasets GSE161361, GSE64433, and GSE56116 were
downloaded from the Gene Expression Omnibus (GEO) database and were used to
obtain differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were
applied to determine possible relevant functions of differentially expressed messenger
RNAs (mRNAs). The TRRUST database was used to predict differential transcription
factor (TF)-mRNA regulatory pairs. Afterwards, combined CircBank and miRTarBase,
circRNA-miRNA as well as miRNA-TF pairs were constructed. Then, a circRNA-miRNA-
TF-mRNA network was established. Next, the correlation of mRNAs, TFs, and PMOPwas
verified by the Comparative Toxicogenomics Database. And expression levels of key
genes, including circRNAs, miRNAs, TFs, and mRNAs in the ceRNA network were further
validated by quantitative real-time PCR (qRT-PCR). Furthermore, to screen out signaling
pathways related to key mRNAs of the ceRNA network, Gene Set Enrichment Analysis
(GSEA) was performed.

Results: A total of 1201 DE mRNAs, 44 DE miRNAs, and 1613 DE circRNAs associated
with PMOP were obtained. GO function annotation showed DE mRNAs were mainly
related to inflammatory responses. KEGG analysis revealed DE mRNAs were mainly
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enriched in osteoclast differentiation, rheumatoid arthritis, hematopoietic cell lineage, and
cytokine-cytokine receptor interaction pathways. We first identified 26 TFs and their target
mRNAs. Combining DE miRNAs, miRNA-TF/mRNA pairs were obtained. Combining DE
circRNAs, we constructed the ceRNA network contained 6 circRNAs, 4 miRNAs, 4 TFs,
and 12 mRNAs. The expression levels of most genes detected by qRT-PCR were
generally consistent with the microarray results. Combined with the qRT-PCR validation
results, we eventually identified the ceRNA network that contained 4 circRNAs, 3 miRNAs,
3 TFs, and 9 mRNAs. The GSEA revealed that 9 mRNAs participate in many important
signaling pathways, such as “olfactory transduction”, “T cell receptor signaling pathway”,
and “neuroactive ligand-receptor interaction”. These pathways have been reported to the
occurrence and development of PMOP. To sum up, key mRNAs in the ceRNA network
may participate in the development of osteoporosis by regulating related signal pathways.

Conclusions: A circRNA-associated ceRNA network containing TFs was established for
PMOP. The study may help further explore the molecular mechanisms and may serve as
potential biomarkers or therapeutic targets for PMOP.
Keywords: postmenopausal osteoporosis (PMOP), circular RNA (circRNA), transcription factor (TF), competing
endogenous network (ceRNA) network, bioinformatics analysis
INTRODUCTION

As one of the most common types of primary osteoporosis,
postmenopausal osteoporosis (PMOP) is characterized by bone
density reduction and bone microstructure deterioration,
contributing to increased bone fragility and fracture risk (1, 2).
PMOP-related fractures can affect individuals’ quality of life,
increase the disability and mortality of patients, and cause high
and rising economic and social burdens (3). PMOP is mainly
caused by estrogen deficiency (4), which disrupts the homeostasis
between bone formation facilitated by osteoblasts and bone
resorption regulated by osteoclasts (5). However, the complex
molecular biology mechanisms underlying PMOP have not been
fully elucidated, and the potential therapeutic targets are limited.
These factors hinder progress in the prevention and treatment of
PMOP (6). Underlying molecular mechanisms need to be further
explored and identify novel PMOP targets or biomarkers.

Notably, in recent years, various studies have indicated the
promise of exosomes as affect therapies in osteoporosis (7).
Exosomes are small, single-membrane organelles with diameters
ranging from ∼40 to ∼160 nm (8). Exosomes carry diverse cargos,
such as proteins, lipids, nucleic acids, and glycoconjugates (9). By
releasing these substances, exosomes can remodel the extracellular
matrix, and transmit signals or molecules between cells (10). In
exosomes, circular RNAs (circRNAs) were recently identified as
crucial cargos (11). CircRNAs are a vital class of non-coding
RNAs, who are formed a close loop structure by reverse splicing of
the 3′ end and 5′ end in the pre-mRNA (12). Highly conserved
and widely expressed circRNAs can mediate protein translation,
regulate gene transcription, and act as microRNA (miRNA) or
protein sponges to inhibit their functions (13, 14). By modulating
cell metabolism (15), cell proliferation (16), cell apoptosis (17),
and other functions (18), circRNAs are involved in the incidence
n.org 2
and development of some diseases, such as cancers (19),
neurological diseases (20), heart diseases (21), and endocrine
diseases (22), and circRNAs can function as therapeutic targets
and biomarkers. Meanwhile, emerging researches indicated that
circRNAs are also potential regulators of osteoporosis (23). For
example, some studies revealed that hsa_Circ_0001275,
hsa_circ_0002060, and hsa_circ_0006859 are recognized as
potential novel diagnostic biomarkers of osteoporosis (2, 24, 25).
CircFOXP1 can promote osteogenic differentiation of adipose-
derived mesenchymal stem cells and bone regeneration by miR-
33a-5p (26). Circ_0007059 can inhibit bone marrow stromal cells
differentiation into osteoclasts by mRNA‐378/BMP‐2 axis (27).
However, the functional roles of most circRNAs have not been
clarified. Therefore, it is urgent and imperative to further explore
the association between circRNAs potential functions and the
mechanisms of osteoporosis.

Besides circRNA, microRNA (miRNA) is also one type of non-
coding RNAs (ncRNAs) that contain about 22 nucleotides, who can
repress stability and translation of downstream messenger RNAs
(mRNAs) by binding to them (28, 29). Moreover, miRNAs also can
regulate the expression of transcription factors (TFs), which in turn
affect their corresponding target mRNAs (30). Some researches in
vivo and in vitro have demonstrated that miRNAs are associated
with the occurrence and development of osteoporosis (31–33).
CircRNAs can act as competitive endogenous RNAs (ceRNAs) to
competitive adsorb miRNA, thereby eliminating repressive effects of
miRNA on its target mRNAs or TFs, regulating the expression of
mRNA positively (34, 35). This mechanism is also known as the
ceRNA hypothesis. So far, based on the ceRNA hypothesis, only a
few studies have uncovered the functions of circRNA-related
networks in osteoporosis (36, 37). And there is no report
exploring the roles of circRNA-miRNA-TF-mRNA networks in
osteoporosis. Therefore, systematic characterization of circRNA-
June 2022 | Volume 13 | Article 899503
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miRNA-TF-mRNA regulatory networks may help further
understand the molecular mechanisms and identify potential
biomarkers of PMOP.
METHODS

Data Acquisition and Processing
CircRNA microarray dataset (GSE161361), miRNA microarray
dataset (GSE64433), and mRNA microarray dataset (GSE56116)
were downloaded from Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/). GSE161361 were obtained from
GPL28148 Agilent-084217 CapitalBio Technology Human
CircRNA Array v2, GSE64433 were obtained from GPL18402
Agilent-046064 Unrestricted Human miRNA V19.0 Microarray
and GSE56616 were obtained from GPL11097 Custom Affymetrix
Glyco v4 GeneChip.

GSE161361 contained serum samples of 3 PMOP patients
and 3 matched healthy controls. GSE64433 contained 6 whole
blood samples isolated from postmenopausal Chinese women
with osteopenia or osteoporosis. GSE56116 contained peripheral
blood samples from 10 patients with PMOP and 3 healthy
postmenopausal controls.

The probe IDs of the original data were converted to official
gene symbols by using data tables of microarray platforms with R
software. Raw expression values were log 2 transformed with
Aaffy package encoded by R. Finally, gene expression values were
normalized using the normalize Between Arrays function of the
R package limma.

Identification of Differentially
Expressed Genes
All samples were from serum and the samples were classified as
PMOP and control groups (CON). The Limma package was
utilized to screen DE circRNAs, DE miRNAs, and DE mRNAs
between the PMOP group and CON group. The cutoff was set as |
logfold change (FC)| > 2 and P value < 0.05 to identify DE
circRNAs in GSE161361. To assess DE miRNAs in GSE64433,
transcripts with a cut-off point of |logFC| > 0.5 and P value <0.05
were retrieved. In the analysis of DEmRNAs in GSE56616, |logFC|
> 0.5 and P value <0.05 were implemented. Heatmaps and volcano
maps of DE circRNAs and DE miRNAs were visualized using the
“pheatmap” and “ggplot2” packages of R software, respectively.

Functional Enrichment Analysis
of DE mRNAs
Based on up-and downregulated DE mRNA transcripts, functional
Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis were
performed, respectively. Enrichment analysis and drawing of bar
graphs of GO and KEGG pathways were performed using the
“org.Hs.eg.db” and “clusterProfiler” packages in R. GO terms and
KEGG pathways were filtered at P < 0.05.

Construction of TF-mRNA Network
The TF-mRNA relationship pair data were downloaded from the
TRRUST database (https://www.grnpedia.org/trrust/). Findings
Frontiers in Endocrinology | www.frontiersin.org 3
of the RNA differential analysis were intersected with the TFs
and corresponding mRNAs in the relationship pairs to obtain a
differential TF-miRNA network. Mulberry mapping of
differential TF-mRNA network was performed using the
“ggalluvial” and “ggplot2” packages in R.

The miRNA-mRNA regulatory relationship pairs were
downloaded from miRTarBase (https://mirtarbase.cuhk.edu.
cn/). Then, target mRNAs of DE miRNAs were intersected
with TFs and mRNAs of the TF-mRNA network that had been
constructed in the previous step. Then, the miRNA-mRNA/TF
regulatory relationship network was obtained.

Construction of circRNA-miRNA-TF-mRNA
Interaction Network
Information about circRNAs can be obtained in circBase (http://
www.circbase.org/). For each DEcircRNA, all predicted target
miRNAs were obtained by the circBank database (http://www.
circbank.cn/). Next, miRNAs that overlapped with predicted and
miRNAs in the miRNA-mRNA/TF network were gathered and
the relative circRNAs in DE circRNAs were obtained. Finally, a
ceRNA regulatory network in PMOP was constructed based on
circRNA-miRNA pairs, miRNA-mRNA/TF pairs, and TF-
mRNA pairs. The ceRNA network was visualized by Cytoscape
version 3.8.0 software (https://cytoscape.org/).

Verification of Selected mRNAs by CTD
Candidate mRNAs were further validated by Comparative
Toxicogenomics Database (CTD) (http://ctdbase.org/) using
the keyword “postmenopausal osteoporosis”. The inference
score and reference count of candidate mRNAs were obtained.

Patients and Samples
A total of 12 samples were collected in this study for candidate
genes verification, including 6 PMOP patients and 6 healthy
controls. Samples with other associated metabolic diseases, such
as hyperparathyroidism, osteoarthritis, and diabetes were
excluded. All the subjects underwent scanning of the total
lumbar spine (L1–L4), total hip, femoral neck by dual X-ray
absorptiometry (DXA). According to the WHO diagnostic
classification, osteoporosis is defined by BMD at the hip or
lumbar spine T-score≤ -2.5 SD. And the BMD diagnosis of
normal is based on T-score of lumbar spine or hip at -1.0 SD and
above. The detailed characteristics of the study subjects are
summarized in Supplementary Table 2. The study was
approved by Gansu Provincial Hospital.

Verification of Candidate Genes by
qRT-PCR
Peripheral blood was taken from each sample, and mononuclear
cells were isolated. Total RNAs from mononuclear cells were
extracted using TRIzol reagent (Takara, Japan), following the
manufacturer’s protocol. 1 mg RNA from each sample was
reverse-transcribed into cDNA using M5 Sprint qPCR RT kits
with gDNA remover (Mei5 Biotech, Beijing, China) andmiRNA 1st
strand cDNA synthesis kits (Accurate Biology, Changsha, China).
The qPCR reactions were performed with 1x Hieff qPCR SYBR
GreenMaster Mix (Yeasen, Shanghai, China) on the ABI7500 Real-
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Time System (Applied Biosystems, American) according to
standard protocols. Specific primers for mRNAs were synthesized
by Sangon Biotech (Shanghai, China), and miRNA primers and
circRNA primers were synthesized by Accurate Biology (Changsha,
China). All specific primer sequences are listed in Table 1.

Relative transcript levels of circRNAs and mRNAs were
normalized with b-actin, and U6 was employed as an internal
control of miRNAs. The expression level of each mRNA,
miRNA, and circRNA was calculated using the 2−DDCt method.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed with the
“clusterProfiler (v4.2.2)” package in R software. The annotated
gene set (c2.cp.kegg.v7.5.1.entrez.gmt) was downloaded from the
GSEA website (http://www.broadinstitute.org/gsea/index.jsp) as
the reference gene set. “Ggplot2” and “enrichplot” R packages
were applied to visualize the GSEA results. FDR (q value) < 0.25
and P < 0.05 were considered statistically significant.
RESULTS

The general scheme of the method used in this study is shown in
Figure 1. The three datasets were used for differential analysis of
Frontiers in Endocrinology | www.frontiersin.org 4
mRNA, miRNA, and circRNA, respectively, and a circRNA-
miRNA-TF-mRNA network was constructed based on the
database interaction results.
Data Download
We downloaded the gene expression profile of PMOP with the
accession number GSE56116 from the GEO database, which
contained 10 peripheral blood samples from patients with
PMOP, and 3 healthy postmenopausal controls. Peripheral
blood miRNA expression matrices of 3 PMOP patients and 3
matched controls were downloaded from the GSE64433 dataset
for miRNA analysis. Serum samples of 3 PMOP patients and 3
matched healthy controls were downloaded from the GSE161361
dataset for exosomal circRNA analysis.
Results of the DEGs Analyses
The results for all DEGs analyzed are shown in Table 2. Results
of mRNA and miRNA differential analysis are shown in the
heatmap and the volcano plot (Figures 2A, B). A total of 1201
DE mRNAs and 44 DE miRNAs were obtained by filtering at P <
0.05 and log2FC > 0.5, respectively. Results of circRNA
differential analysis are shown in the heatmap and the volcano
TABLE 1 | Sequences of gene-specific primers used for qRT-PCR.

Gene Sequence(5’!3’)

Forward Reverse

mRNA
b-actin
ASNS
CYP17A1
DAPK1
HGF
HMOX1
HBB
SLC19A1
PRL
SPI1
TNFAIP6
TFPI2
VWF

TGGCACCCAGCACAATGAA
GCTATGAAGATTGCACACAGAG
CACCAACTATCAGTGACCGTAA
GAGTTCTCTGGAAATCCTGTGT
AATCCACTCATTCCTTGGGATT
CCTCCCTGTACCACATCTATGT
CACGTGGATCCTGAGAACTT
CCAGCAAGAGCAGGTATGG
CCACTACATCCATAACCTCTCC
GCCCTATGACACGGATCTATAC
GTTGCTTGGCTGATTATGTTGA
TACAGTCCAAAAGATGAGGGAC
CCTGTTACTATGACGGTGAGAT

CTAAGTCATAGTCCGCCTAGAAGCA
ACAGAGCCACAAATACGGATAT
TGATGATAACTTCTGTGCCCTT
AAGACAACAACATGGATTGACG
TCCCATTTACAACTCGCAATTG
GCTCTTCTGGGAAGTAGACAG
CCAGCCACCACTTTCTGATA
CCACTGCATTCTCGGTTTTG
GTTGATGGCCTTGGTAATGAAC
AAGTCCCAGTAATGGTCGCTAT
CTCATCTCCACAGTATCTTCCC
GAATTTTCCGGATTCTACTGGC
CATGAAGCCATCCTCACAGTAG

TF
BACH1
CEBPB
NFIC
POU2F2

CTCTGAGTACTGAAGGCTGTTC
CATCGACTTCAGCCCGTAC
CTACCCACCTCATCTCAACC
TGGACCAGACACTAATCATCAG

GAGTCGTCTCCCAAGCTAATG
GAGAAGAGGTCGGAGAGGAAG
GAGCTGACCACTTCCATTTAAC
TCAGCCTTGATCTTTGTACTGG

circRNA
hsa_circ_0023417
hsa_circ_0078309
hsa_circ_0063533
hsa_circ_0036760
hsa_circ_0086166
hsa_circ_0039035

ATCCATGGCACTGAAGAGGG
CCAACCAGTGCACCATTGAT
AGCTCAACAACTGTGGCATG
GATCCAGGACATCGAGGGAG
ATCAAAAAATTCACATGGGATAGAC
TGCTTCCCTTGCTCTCTGAG

GCCAGTGGAAAGTAACCCCA
GGCCGGCTTTCTCTAATGTG
TTGGGACTGGCACTAACTGT
TCCCCGGAAATCTGTTGGT
ACGTGTTCTGGCCGAGAGAC
CTCACTCCCTAGACCTGTGC

miRNA
hsa-miR-4768-3p
hsa-miR-629-3p
hsa-miR-623
hsa-miR-566

CCAGGAGATCCAGAGAGAAT
GTTCTCCCAACGTAAGCCCAGC
ATCCCTTGCAGGGGCTGTT
GGGCGCCTGTGATCCCAAC
Jun
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plot (Figure 2C), filtered by P < 0.05 and log2FC > 2 to obtain
1613 DE circRNAs.
Functional Enrichment Analysis
GOandKEGGenrichmentanalyses forDEmRNAswereperformed.
Bar graphs represent the top 10most significantly enrichedbiological
processes (BPs), cell components (CCs), and molecular functions
(MFs) (Figure 3A). In the PMOP group, BPs of DE mRNAs
determined by GO analysis were mainly “positive regulation of
cytokine production”, “active regulation of IL-6 production”,
“regulation of chemotaxis”, and “regulation of peptidase activity”.

Themainly enriched cell components (CCs) included “secretory
granule”, “endocytic vesicle”, “tertiary granule”, and “lysosomal
membrane”. The molecular functions (MFs) were mainly enriched
“Toll-like receptor binding”, “endopeptidase regulator activity”,
“endopeptidase inhibitor activity”, and “chemoattractant activity”.

KEGG pathway analysis (Figure 3B) revealed that the DE
mRNAs were mainly enriched in pathways, involving “osteoclast
Frontiers in Endocrinology | www.frontiersin.org 5
differentiation”, “rheumatoid arthritis”, “hematopoietic cell
lineage”, and “cytokine-cytokine receptor interaction”.

Identification of TF-mRNA
Regulatory Pairs
A total of 118 TF-mRNA regulatory pairs were obtained after
intersecting with differentially expressed mRNAs from the
TRRUST database. A Sankey diagram shows the relationships
between 26 TFs and their target mRNAs (Figure 4A). The
heatmap shows the relative gene expression levels in the TF-
mRNA regulatory network (Figure 4B).

Construction of miRNA-mRNA/TF Network
Based on DE miRNAs, target genes were predicted using the
miRTarBase databases. The predicted genes were intersected
with the above differential TF-mRNA network to obtain 12
differential miRNAs and their corresponding target mRNAs
(containing TF). A Sankey diagram shows the differential
miRNA-mRNA/TF regulatory relationship pairs (Figure 5).
FIGURE 1 | Schematic presentation of the analysis process.
June 2022 | Volume 13 | Article 899503
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Construction of the
circRNA-Related Network
With bioinformatics prediction from circBank, circRNAs that
can target miRNAs of the above miRNA-mRNA/TF regulatory
Frontiers in Endocrinology | www.frontiersin.org 6
relationship were obtained. Combining DE circRNAs from
dataset GSE161361, we identified 18 circRNAs. According to
the above regulatory pairs, the Cytoscape software was used to
map and construct the circRNA-related network (Figure 6A).
A

B

C

FIGURE 2 | Results of differential analysis and volcano plot for mRNA, miRNA, and circRNA. (A) Heat map showing differential mRNA expression levels on left.
Volcano plot showing fold differences in gene expression and P value relationship for the significance test on the right. (B) Heat map showing differential miRNA
expression levels on left. Volcano plot showing fold differences in miRNAs expression and P value relationship for the significance test on the right. (C) Heat map
showing differential circRNA expression levels on left. Volcano plot showing fold differences in circRNAs expression and P value relationship for the significance test
on the right. Red represents upregulated expression, and blue represents downregulated gene expression in all volcano plots.
June 2022 | Volume 13 | Article 899503
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A

B

FIGURE 3 | GO enrichment analysis and KEGG enrichment analysis of differential mRNA in PMOP and control groups. (A) The top 10 GO enrichment analyses of
biological processes, cellular components, and molecular functions. (B) KEGG enrichment analysis of differential mRNA in the PMOP and control groups.
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A

B

FIGURE 4 | Construction of TF-mRNA network. (A) A Sankey diagram showing the predicted differential TF-mRNA regulatory relationships according to the
TRRUST database. (B) The heatmap for the gene transcripts expression in the TF-mRNA regulatory network in the PMOP group and CON group.
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Then regulatory relationship pairs that did not contain TFs were
excluded. Finally, we built a circRNA-miRNA-TF-mRNA
network, which contains 6 circRNAs, 4 miRNAs, 4 TFs, and
12 mRNAs (Figure 6B).

CTD Analysis of Candidate mRNAs
By mining the CTD using the keywords “postmenopausal
osteoporosis”, a total of 14,521 potential target genes of PMOP
were obtained. 12 mRNAs and 4 TFs in the above circRNA-
related network were also identified in the database. We found
that these genes were associated with PMOP with different
inference scores and reference counts (Table 3).

qRT-PCR Verification of the Key Genes of
the ceRNA Network
We verified the relative gene expression levels of the key genes in
the ceRNA network by qRT-PCR. There was no statistically
significant difference in the expression of hsa_circ_0039035 and
hsa_circ_0086166 between the PMOP and the control group.
Other circRNAs, such as hsa_circ_0023417, hsa_circ_0078309,
hsa_circ_0063533, and hsa_circ_0036760 were up-regulated,
which were consistent with microarray data (Figure 7A). The
qPCR results showed the expression levels of hsa-miR-566, hsa-
miR-623, hsa-miR-629-3p, and hsa-miR-4768-3p were generally
consistent with the microarray results (Figure 7B). The qRT-
PCR results also showed similar expression trends of TFs to
microarray analysis (Figure 8A). Of the 12 mRNAs examined
Frontiers in Endocrinology | www.frontiersin.org 9
with qRT-PCR, 3 miRNAs did not match the results of the
microarray: HMOX1, SPI1, and SLC19A1(Figure 8B).

Construction of the circRNA-miRNA-TF-
mRNA Network
By combining the qRT-PCR validation results, the circRNAs and
mRNAs that did not agree with the microarray analysis trend
were excluded. Finally, a ceRNA network containing 4 circRNAs,
3 miRNAs, 3 TFs, and 9 mRNAs was obtained (Figure 9).

Gene Set Enrichment Analysis
GSEA is a method that confirms whether a given set of genes
shows statistically obvious differences between two biological
states (38). To further understand the underlying mechanisms of
the 9 key mRNAs, such as CYP17A1 and TFPI2, in the ceRNA
network, GSEA was performed. Firstly, we divided samples from
the GSE56166 dataset into two groups based on the median
expression level of these key mRNAs. Then, according to the
normalized enrichment score (NES), false discovery rate (FDR)
q-value, and nominal (NOM) P value, the five most significantly
enriched signaling pathways associated with key genes,
respectively, were identified (Figure 10).

GSEA results suggested that ASNS and CYP17A1 might
participate in “complement and coagulation cascades”, “drug
metabolism-cytochrome P450”, “drug metabolism-other
enzymes”, “metabolism of xenobiotics by cytochrome P450”, and
“PPAR signaling pathway”. DAPK1 might be related with
FIGURE 5 | A Sankey diagram showing results of miRNA -TF/mRNA (containing TF) regulatory pairs.
June 2022 | Volume 13 | Article 899503
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A

B

FIGURE 6 | Construction of circRNA regulatory network. (A) circRNA-miRNA-TF/mRNA regulatory network. (B) circRNA-miRNA-TF-mRNA regulatory network.
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“complement and coagulation cascades”, “drug metabolism-
cytochrome P450”, “olfactory transduction”, and “PPAR signaling
pathway”. HBB might participate in “neuroactive ligand-receptor
interaction” and “olfactory transduction”. HGF might only
participate in “neuroactive ligand-receptor interaction”. PRL
might be related with “gap junction”, “neuroactive ligand-receptor
interaction”, “olfactory transduction”, and “systemic lupus
erythematosus”. TFPI2 also might related with “complement and
coagulation cascades”, “drug metabolism-cytochrome P450”,
“neuroactive ligand-receptor interaction”, “olfactory transduction”,
“PPAR signaling pathway”. VWF might associate with
“complement and coagulation cascades”, “drug metabolism-other
enzymes”, “neuroactive ligand-receptor interaction”, “PPAR
signaling pathway”, and “prion disease”. TNFAIP6 might be
involved in “allograft rejection”, “cytokine-cytokine receptor
interaction”, “drug metabolism-other enzymes”, “primary
immunodeficiency”, and “T cell receptor signaling pathway”.
DISCUSSION

Osteoporosis is one of the most common systemic metabolic
bone diseases (39), especially in postmenopausal women (40).
Osteoporosis occurs due to excessive bone resorption and
impaired bone formation (41). Accumulating evidences have
suggested that dysregulated circRNAs are associated with the
occurrence and progression of osteoporosis (42, 43). However,
the specific role of the circRNA-related network remains mostly
undescribed in osteoporosis. Furthermore, various studies
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nowadays are assessing the circRNA-miRNA or TF-mRNA
regulatory networks, but fewer studies focus on the miRNA-TF
co-regulatory network. Herein, we constructed a circRNA-
miRNA-TF-mRNA regulatory network using bioinformatics
analysis approaches. The network may help to elucidate the
key roles of circRNAs in the pathogenesis of PMOP and may
help to guide the diagnosis and treatment of PMOP.

We first downloaded PMOP-related datasets, GSE161361,
GSE64433, and GSE56116, from the GEO database, which
were used for analysis to obtain differentially expressed
circRNAs, miRNAs, and mRNAs. A total of 1201 differentially
expressed mRNAs were identified in PMOP patients compared
with the control group, including 935 upregulated and 266
downregulated mRNAs. We applied GO enrichment analysis
on selected differentially expressed mRNAs, the results showed
that enriched mRNAs were involved in many biological
processes, which included “positive regulation of cytokine
production”, “active regulation of IL-6 production”, and
“regulation of chemotaxis”, “regulation of peptidase activity”.
Besides, the most common molecular functions for these DE
mRNAs included “Toll-like receptor binding”, “endopeptidase
regulator activity”, “endopeptidase inhibitor activity”, and
“chemoattractant activity”. Most of the biological processes
and the main molecular functions are related to inflammatory
responses. Previous studies also suggested that inflammation
plays a crucial role in the progression of OP. Human and
animal experiments have shown pro-inflammatory cytokines
are crucial mediators of the accelerated bone loss in PMOP,
such as interleukin-6 (44). Some proinflammatory cytokines,
pathogen-associated molecular patterns, or endogenous
pathogenic factors can induce osteoporosis by binding to the
Toll-like receptors (TLRs) (45).

The results of the KEGG pathway enrichment analysis
illustrated that DE mRNAs were mainly related to some
pathways, such as “osteoclast differentiation”, “rheumatoid
arthritis”, “hematopoietic cell lineage”, and “cytokine-cytokine
receptor interaction”. Previous studies have also supported the
roles of these pathways in osteoporosis. Hyper-differentiation of
osteoclasts is the hallmark of PMOP (46). Osteoclasts are
specialized cells derived from hematopoietic cell lineage,
specifically from the monocyte/macrophage lineage, which
adhere to the bone matrix and resorb the bone (47). Genes
enriched in the hematopoietic cell lineage pathway, such as the
CSF-1 receptor (CSF-1R) can regulate the development of
osteoclasts (48). In addition, osteoporosis is generally common
in patients with rheumatoid arthritis which is a systemic
inflammatory disease, and inflammation is also mediated by
the Toll-like receptor signal (49). The other significant pathway
was cytokine-cytokine receptor interaction, which is involved in
TABLE 2 | Statistical analysis of all differentially expressed ncRNAs and mRNAs.

Expression RNAs Total No No. upregulated No. downregulated Most upregulated (P value) Most downregulated (P value)

circRNA 1613 639 974 hsa_circ_0047341 (0.000313768) hsa_circ_0014219 (0.000902399)
miRNA 44 35 9 hsa-miR-18b-5p (0.017421388) hsa-miR-4793-3p (0.040633291)
mRNA 1201 935 266 C17orf87 (0.014557551) TMEM119 (0.044540982)
June 20
TABLE 3 | The candidate genes associated with PMOP in CTD.

Gene Symbol Inference Score Reference Score

mRNA
ASNS 12.16 16
CYP17A1 14.57 5
DAPK1 14.6 4
HGF 25.57 18
HMOX1 23.38 20
HBB 10.16 3
SLC19A1 20.17 17
PRL 23.96 18
SPI1 7.44 2
TNFAIP6 23.25 6
TFPI2 10.68 3
VWF 19.22 17
TF
POU2F2 2.67 1
NFIC 2.52 1
BACH1 6.56 2
CEBPB 27.14 19
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inflammatory host defenses, cell growth, differentiation, and
angiogenesis aimed at restoration of homeostasis (50). Some
studies have confirmed genes enriched in this pathway
contribute to the development of osteoporosis (51).

Transcription factors (TFs) are proteins that can bind to gene-
specific sequences, also known as promoters of genes, and thus
mediate genes transcription and expression (52).Numerous studies
have demonstrated that several transcription factors play a
regulatory role in the pathogenesis of OP (53). Hence, to further
identifykey transcription factors inPMOP,weobtainedhumanTF-
mRNA pairs among differentially expressed mRNAs by TRRUST
v2 database, which is now believed to be the most comprehensive
database based on manual curation for TF-target interactions in
humans and mice (54). Here we first identified 26 transcription
factors and their targetmRNAs.MiRNAs could target TF and form
miRNA-TF gene expression regulatory circuits to regulate target
gene expression. Combining DE miRNAs, we next obtained
miRNA-TF/mRNA pairs, which include 9 miRNAs and 12TF/
Frontiers in Endocrinology | www.frontiersin.org 12
mRNAs. Combining DE circRNAs, we constructed the ceRNA
network containing 6 circRNAs, 4miRNAs, 4 TFs, and 12mRNAs.

CTD is a powerful public database that aims to improve
understanding of how environmental exposure affects human
health (55). The results of CTD further suggested that these 4
TFs and 12 mRNAs are associated with postmenopausal
osteoporosis. Furthermore, we verified the expression of
candidate genes in the network in PMOP and control samples
using qRT-PCR. Except for hsa_circ_ 0039035, hsa_circ_
0086166, HMOX1, SPI1, and SLC19A1, the expression levels of
other circRNAs, miRNAs, mRNAs, and TFs were consistent with
the microarray results. Combined with the PCR validation results,
the ceRNA network was finally constructed containing 4
circRNAs, 3 miRNAs, 3 TFs, and 9 mRNAs. The core mRNAs
in the ceRNA network may contribute to osteoporosis. For
example, hepatocyte growth factor (HGF) has been highlighted
to relieve bone loss in the early stages of PMOP mouse models
(56). Previous studies have reported that prolactin (PRL) is related
A

B

FIGURE 7 | qRT-PCR experiment validation. (A) The expression levels of circRNAs. (B) The expression levels of miRNAs.
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A

B

FIGURE 8 | qRT-PCR experiment validation. (A) The expression levels of TFs. (B) The expression levels of mRNAs.
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FIGURE 9 | Construction of circRNA-miRNA-TF-mRNA regulatory network.
FIGURE 10 | Barcode plots showing the presentative results of GSEA.
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to osteoporosis risk (57). TNF alpha induced protein 6 (TNFAIP6)
is implicated in bone loss and the pathology of osteoporosis in
aging (58). As a target gene of lncRNA SNHG5, hemoglobin
subunit beta (HBB) may be involved in the development of male
osteoporosis (59). Cytochromes P450 (CYPs) are important for
bone homeostasis (60), and cytochrome P450 family 17 subfamily
A member 1(CYP17A1) is thought to be a susceptibility loci for
altered BMD in PMOP patients (61). In previous studies, there was
no direct evidence for the role of other genes, such as VWF, TFPI2,
ASNS, and DAPK1 in PMOP.

Next, to further understand the underlying mechanisms of
the 9 key mRNAs in the ceRNA network, GSEA was performed.
The Gene set enrichment analysis (GSEA) revealed that these
differentially expressed genes participate in many important
signaling pathways. Previous studies have shown that the
occurrence and development of PMOP are related to “olfactory
transduction” (62), “systemic lupus erythematosus” (63), and “T
cell receptor signaling pathway” (64). Besides, the pathway of
neuroactive ligand-receptor interaction may involve in
osteoclastogenesis (65). In GC-induced osteoporosis, PPAR-g
could affect osteogenic differentiation (66). Gap junctions play a
significant role in bone development and function, research
showed that gap junction modulation may be a promising new
target for osteoporosis therapy (67). In summary, key mRNAs in
the ceRNA network may participate in the development of
osteoporosis by regulating related signal pathways.

The core transcription factors in the ceRNA network, NFIC,
BACH1, CEBPB, and POU2F2, might be related to osteoporosis.
NFIC(nuclear factor IC) is amemberof thenuclear factor I familyof
transcription proteins (68). NFI-C serves as one of the vital
transcription factors for postnatal bone formation and bone
homeostasis (69). A previous study found the expression of NFIC
was decreased in osteogenic cells from human osteoporotic patients
(70). The deficiency of NFIC inhibited osteoblast differentiation and
bone formation in vivo (70). CEBPB, also called CEBPb (CCAAT/
enhancer-binding protein b), belongs to the transcription factors
family of the CCAAT/enhancer-binding proteins (71). Previous
studies have proven that the C/EBPB is involved in lytic bone
diseases, especially osteoporosis (72). C/EBPB can promote
osteoblast differentiation (72). C/EBPB is also known as a switch
in osteoclast differentiation (72). Moreover, as an adipogenic
transcription factor, C/EBPB also can participate in adipogenic
differentiation of bone marrow mesenchymal stem cells (73).
POU2F2 (POU-2 Homeobox 2) belongs to the POU transcription
factor family (74). There is no direct evidence that POU2F2 is
involved in osteoporosis. Recent studies have shown that POU2F2
could promote glioblastoma progression by regulating glycolysis
(74). The pathogenesis of osteoporosis is related to the dysregulation
of glycolysis (75). Furthermore, POU2F2 expression is related to
fracture healing, and overexpression of POU2F2 promoted protein
and mRNA expression of Colla1, Runx2, Osterix, and Osteocalcin
(76) in osteoporosis. These genes are associatedwith bone formation
and osteoblastic differentiation. Combined with these previous
studies, our results demonstrated correlations between these core
TFs andPMOP. Furtherworkwill focus on the exact contribution of
NFIC, BACH1, CEBPB, and POU2F2 to osteoporosis pathogenesis.
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MiRNAs are key components in forming a ceRNA regulatory
network (77). Undoubtedly, identifying the relationship between
miRNAs and diseases can not only improve the understanding of
molecular mechanisms and disease pathogenesis, but also be
beneficial to clinical diagnosis and treatment (78). In our study,
4 miRNAs were finally identified in this circRNA-miRNA-TF-
mRNA regulatory network, and they were hsa-mir-566, hsa-
mir-4768-3p, hsa-mir-629-3p, and hsa-mir-623. No direct
studies have addressed the roles of the 4 miRNAs in
osteoporosis to date. Therefore, in our study, the association
between miRNAs and PMOP was further validated by qRT-
PCR experiments. Our results corroborated the involvement of
these miRNAs in PMOP and shed new light on the role of these
miRNAs in PMOP pathogenesis. However, how these miRNAs
are involved in PMOP requires further carrying out
experiments . In addit ion, as a complement to the
experimental approaches, computational methods, such as the
unsupervised deep learning model of the variational
autoencoder for MiRNA–disease association prediction
(VAEMDA) (78), and the computational model of random
walk with restart for MiRNA–disease association (RWRMDA)
(79) may also provide more help in probing PMOP-related
candidate miRNAs in the following study.

Finally, we identified 4 circRNAs in the ceRNA network
associated with the above miRNAs, which were hsa_circ_0023417,
hsa_circ_0078309, hsa_circ_0063533, and hsa_circ_0036760.
CircRNA is believed to be a new and promising hotspot in the field
of non-coding RNA research, compared with known miRNA and
LncRNA(80). Some circRNAshave been identified, but their specific
regulatory roles are often poorly understood (81). Thefour circRNAs
of the ceRNAnetwork identified in our research have not been
presently reported to be associated with PMOP. Estrogen receptor
1(ESR1) is the host gene of hsa_circ_0078309, which is an estrogen
receptor subtype widely expressed in bone tissue (82). Studies have
illustrated that estrogen plays a role in regulating bone metabolism
mainly by interacting with ESR1 (83). So, has_circRNA_0078309
may regulate bonemetabolismofPMOP.Currently, nodirect studies
are reporting the role of hsa_circ_0023417, hsa_circ_0063533, and
hsa_circ_0036760 in osteoporosis. Our data further support the
possibility that the four circRNAs maybe important regulators of
osteoporosis development.However, the precisemechanismof these
circRNAs and their related network requires further study.To sum
up, we constructed the ceRNA network jointed by 4 circRNAs, 3
miRNAs, 3 TFs, and 9 mRNAs. To our knowledge, this is the first
time that a ceRNA network containing TFs has been established in
osteoporosis., Combined with experimental validation and
bioinformatics analysis, the findings suggest that the circRNA-
miRNA-TF-mRNA regulatory network may be involved in PMOP
and may be potential therapeutic targets of PMOP.
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