
CELL DIVISION

Sibling cell size matters
A motor protein called Klp10A ensures that germline stem cells in male

fruit flies divide to produce two sibling cells that are equal in size.

CLEMENS CABERNARD

C
ell division is a highly regulated and

tightly choreographed process. It

ensures that the DNA, organelles and

other components in a cell are correctly distrib-

uted between the two "sibling" cells that are

produced during the cell division process. In

most cases, the dividing cell ensures that the sib-

ling cells are near identical in size. However,

many types of cells, including baker’s yeast and

cells in animal ovaries, produce sibling cells of

different sizes. How and why dividing cells regu-

late the sizes of the sibling cells are unresolved

questions in cell biology (Roubinet and Caber-

nard, 2014). Now, in eLife, Cuie Chen, Mayu

Inaba, Zsolt Venkei and Yukiko Yamashita of the

University of Michigan report a new mechanism

that dividing cells use to ensure that both sibling

cells are equal in size (Chen et al., 2016).

In animal and other eukaryotic cells, DNA is

packaged into structures called chromosomes.

During cell division, the chromosomes in a cell

are divided into two groups by a structure called

the spindle apparatus. In animal cells two organ-

elles called centrosomes help to build the spin-

dle apparatus (Nigg and Raff, 2009). It is

important that the spindle apparatus is assem-

bled correctly because asymmetric spindles

could exert uneven spindle forces and may result

in the sibling cells having incorrect numbers of

chromosomes.

In the testes of male fruit flies, germline stem

cells divide to produce one new germline stem

cell and one gonialblast (which will go on to pro-

duce sperm cells) that are equal in size. Chen

et al. found that the centrosomes of germline

stem cells contain high levels of a motor protein

called Klp10A. Decreasing the amount of Klp10A

in these cells causes one of the centrosomes –

presumably the older "mother" centrosome – to

become much longer than normal. This, in turn,

leads to the formation of asymmetric spindles

and results in a new germline stem cell that is sig-

nificantly larger than the gonialblast (Figure 1A,

B). Despite the importance of centrosome activ-

ity for chromosome segregation, all of the chro-

mosomes (except for the small fourth

chromosome) segregate normally in Klp10A

depleted germline stem cells.

This imbalance in centrosome activity seems

to be specific to male germline stem cells since

Klp10A depleted cells that are destined to

become sperm do not show this behavior. A

possible explanation is that male germline stem

cells – like other stem cells – segregate their

centrosomes asymmetrically during cell division

with the new stem cell always retaining the

mother centrosome. It is also possible that this

specificity is due to the fact that germline stem

cells are attached to hub cells, which provide a

niche environment for the stem cells.

Why do germline stem cells need to form sib-

ling cells of equal size? Chen et al. addressed

this question by using live cell imaging to follow

the fates of sibling cells in Klp10A depleted tes-

tes. These experiments revealed that the smaller

gonialblasts often die. This is unlikely to be due

to the mis-segregation of the fourth chromo-

some (because it is not essential for cells to
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survive; Gelbart, 1974), but may be caused by

differences in the segregation of organelles

between the sibling cells. For example, the

smaller gonialblasts inherit more mitochondria,

but less Golgi, than the gonialblasts in normal

testes.

The observations reported by Chen et al.

agree with recent reports from teams led by Iain

Cheeseman (Kiyomitsu and Cheeseman, 2013)

and Patrick Meraldi (Tan et al., 2015). They

showed that changes in spindle position or the

location of the metaphase plate (where chromo-

somes line up before the cell divides) can induce

asymmetric division of animal cells that, under

normal conditions, always produce equally sized

siblings. Similar to the small gonialblasts in fruit

fly testes, the smaller siblings died or spent lon-

ger preparing for cell division. There is currently

no molecular explanation for how differences in

sibling cell size could affect cell fate, but it is

possible that altered segregation of cell organ-

elles, a cell size checkpoint or cell competition

may be responsible.

Whether animal cells produce sibling cells

that are equal or unequal in size seems to be

tightly controlled during development. In
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Figure 1. Animal cells can divide to produce sibling cells that are equal or unequal in size. Structures called

centrosomes help to organize networks of microtubules (straight lines) inside cells. (A) Early in the cell cycle

(during interphase; left column) the mother centrosome (green) in a fruit fly male germline stem cell is slightly

more active than the other centrosome (red), which helps to anchor (brown) the stem cell to the hub cell

(pale purple). Later in the cell cycle (during metaphase and telophase) both centrosomes are equally active,

organizing the microtubules to form a symmetrical spindle apparatus across the center of the cell. When the cell

divides it produces a new germline stem cell and a gonialblast that are equal in size. (B) The mother centrosome

in a Klp10A depleted germline stem cell is more active than the other centrosome in interphase, metaphase and

telophase, which leads to an asymmetric spindle and siblings of different size. The larger cell remains attached to

the hub cell, adopting stem cell fate, whereas the smaller sibling often dies. (C) Neural stem cells in fruit flies are

intrinsically polarized (green and red crescent, respectively) and also contain asymmetric centrosomes, which result

in an asymmetric spindle at telophase. The larger cell is destined to become the neural stem cell whereas the

smaller cell becomes a ganglion mother cell. In contrast to germline stem cells, it is the asymmetric localization of

motor proteins in neural stem cells during anaphase (between metaphase and telophase; not shown) that is largely

responsible for producing sibling cells that are unequal in size. Small circles in interphase cells represent cell

nuclei; the chromosomes are not shown.
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contrast to germline stem cells, neural stem cells

in fruit flies develop asymmetric spindles so that,

when they divide, the new neural stem cell is

larger than its sibling (Homem and Knoblich,

2012; Figure 1C). If neural stem cells are forced

to divide symmetrically they produce two new

neural stem cells of equal size (Cabernard and

Doe, 2009). Similarly, some neural stem cells in

the worm Caenorhabditis elegans also produce

siblings of different sizes (Ou et al., 2010). In

both of these examples, the difference in cell

size seems to be primarily controlled through

asymmetric localization of a motor protein called

non-muscle myosin, which drives cell division,

and not through inherent asymmetries in the

spindle (Ou et al., 2010; Cabernard et al.,

2010; Connell et al., 2011). Thus, nature has

developed at least two independent mecha-

nisms to ensure that sibling cells adopt the right

size.

It is currently not clear how Klp10A regulates

the size of centrosomes, or what molecular

mechanisms regulate spindle asymmetry in

germline stem cells and other systems. In the

future it may be possible to develop tools that

allow us to artificially change the relative sizes of

sibling cells in order to investigate how this

affects animal development.
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