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Abstract

Borrelia burgdorferi synthesizes an HtrA protease (BbHtrA) which is a surface-exposed,
conserved protein within Lyme disease spirochetes with activity toward CheX and BmpD of
Borrelia spp, as well as aggrecan, fibronectin and proteoglycans found in skin, joints and
neural tissues of vertebrates. An antibody response against BbHtrA is observed in Lyme
disease patients and in experimentally infected laboratory mice and rabbits. Given the sur-
face location of BbHtrA on B. burgdorferi and its ability to elicit an antibody response in in-
fected hosts, we explored recombinant BbHtrA as a potential vaccine candidate in a mouse
model of tick-transmitted Lyme disease. We immunized mice with two forms of BbHtrA: the
proteolytically active native form and BbHtrA ablated of activity by a serine to alanine muta-
tion at amino acid 226 (BbHtrAS2254). Although inoculation with either BbHtrA or
BbHtrAS22%A produced high-titer antibody responses in C3H/HeJ mice, neither antigen was
successful in protecting mice from B. burgdorferi challenge. These results indicate that the
search for novel vaccine candidates against Lyme borreliosis remains a challenge.

Introduction

Lyme borreliosis is the most commonly reported tick-borne disease in the United States with
approximately 35,307 cases in 2013 [1] and the disease is also highly prevalent in Europe and
Asia with 65,000 cases reported in the former in 2011 [2, 3]. Many cases are unreported; the
true burden of diagnosed Lyme disease in the United States has been estimated to be about
300,000 cases per year [4]. When properly diagnosed, Lyme disease can be effectively treated
with antibiotic therapy. Some patients, however, go undiagnosed, or develop post-treatment se-
quelae, such as antibiotic refractory arthritis indicating a need for improved treatments and
better preventive methods. Currently, prevention of Lyme disease is limited to personal protec-
tive measures against tick bites since no vaccine is commercially available [5].

The enzootic cycle of the causative agent of Lyme disease, Borrelia burgdorferi sensu stricto,
between tick vectors and vertebrate hosts is complex. Borrelia spirochetes have mechanisms for
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differentially expressing gene products in response to temperature, pH and osmolarity in order
to survive in the diverse milieus encountered in either ticks or mammals [6, 7]. For example,
outer surface protein A (OspA) is expressed by B. burgdorferi in a tick vector, Ixodes scapularis,
but is rarely produced in vertebrate hosts early in infection [8]. OspA was the target antigen for
the LYMErix vaccine with activity based upon the ability of host antibodies against OspA to
bind and neutralize B. burgdorferi in the midgut of an I. scapularis tick, thereby blocking trans-
mission to the same host [9-11]. A biologic limitation of LYMErix, which was withdrawn from
the market in 2002, was that OspA is expressed by B. burgdorferi in unfed ticks but is down-
regulated during tick feeding. Hosts are exposed to very little OspA at the time of tick bite, pre-
cluding a natural boost to the immune response and requiring an annual booster shot of the
vaccine to maintain a high titer of antibody for full protection [12]. Given the limitations of
this and other antigens for vaccination, attempts to identify alternative vaccine candidates
from surface-expressed proteins of B. burgdorferi continue.

B. burgdorferi High Temperature Requirement A (BbHtrA) was recently described as a sur-
face-exposed and conserved protease within Lyme disease spirochetes [13, 14]. Proteases are
critical proteins throughout the animal kingdom as they function in protective and regulatory
roles for other proteins in the cell cycle [15]. BbHtrA has activity toward CheX, which is in-
volved in spirochete motility, and BmpD, an outer membrane protein, of B. burgdorferi, as well
as aggrecan, fibronectin and proteoglycans found in vertebrate skin, joint and neural tissue [13,
14, 16]. The degradative activity of BbHtrA targeting extracellular matrix proteins of verte-
brates in vitro suggests a role in bacterial dissemination within the host for establishment of in-
fection [16].

An antibody response to BbHtrA is observed in Lyme disease patients as well as in experi-
mentally infected laboratory mice and rabbits [13]. Precedent exists for HtrA proteins as pro-
tective immunogens in other disease models including Haemophilus influenzae [17], Orientia
tsutsugamushi [18], and Chlamydia muridarum [19]. Given the exposure of BbHtrA on the
surface of Borrelia and its ability to elicit an immune response in infected hosts, we explored re-
combinant BbHtrA as potential vaccine candidate in a mouse model of tick-transmitted Lyme
disease. Two forms of BbHtrA were evaluated: a mutant protease with ablated activity due to a
substitution of alanine for serine at amino acid 226 (BbHtrAS?2°A) and the wild type protease
with intact proteolytic capacity.

Methods and Materials
Ethics statement

The Division of Vector Borne Diseases, NCEZID, CDC, Animal Care and Use Commiittee ap-
proved study protocol #14-002 for vaccinating mice, feeding of ticks on mice, infecting mice
with spirochetes, and the isolation tissues from mice. All work in our study was conducted ad-
hering to the institution’s guidelines for animal husbandry, and followed the guidelines and
basic principals in the Public Health Service Policy on Humane Care and Use of Laboratory
Animals, and the Guide for the Care and Use of Laboratory Animals, United States Institute of
Laboratory Animal Resources, National Research Council.

Immunization and challenge of mice

Recombinant BbHtrA and BbHtrAS**** were previously generated [14]. BbHtrAS** 18 pg in
injection buffer (IB) (50 mM HEPES, 300 mM NaCl,) was adsorbed to Imject Alum (Pierce,
Rockford, IL) per manufacturer’s instructions. Eight mice were injected with IB + Imject Alum
and 8 were injected with BbHtrA + Imject alum. Mice were boosted at days 21 and 42. Blood
was collected for serology from the facial artery/vein plexus at days 0, 29, 49 and 91. Three B.
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burgdorferi (laboratory strain B31) infected I. scapularis nymphal ticks were placed on each
mouse at day 63 post-immunization and allowed to feed to repletion. Replete ticks were collect-
ed and cultured in BSK-II media or processed for TagMan PCR with endpoint detection as pre-
viously described [20] to confirm infection status. At day 91, mice were sacrificed and ear,
heart and bladder were collected and cultured in BSK-II medium for growth of B. burgdorferi
and observed by dark field microscopy to determine infection status. BbHtrA: 14.6 pg in injec-
tion buffer was adsorbed to Imject Alum or emulsified with TiterMax Gold (Sigma, St. Louis,
MO) per manufacturer’s instructions. Six mice were injected with IB + Imject Alum, 6 mice
were injected with IB + TiterMax Gold, 9 mice were injected with BbHtrA + Imject Alum, and
9 mice were injected with BbHtrA + TiterMax Gold. Mice were boosted at day 21 and 42. One
mouse in the IB + TiterMax Gold group and one mouse in the BbHtrA/TiterMax group died
while on study. Blood was collected for serology from the facial artery/vein plexus at days 0, 29,
49, 70 and 104. Four B. burgdorferi B31 infected I. scapularis nymphal ticks were placed on
each mouse at day 83 and allowed to feed to repletion. At day 104, mice were sacrificed and
ear, heart and bladder were collected and placed into BSK-II medium to determine

infection status.

Recombinant BbHtrA-mouse serum ELISA

Microtiter plates (Immulon 2HB, Thermo Scientific) were coated overnight at 4°C with 150 ng
of recombinant BbHtrA or BbHtrAS**** in 100 pl carbonate coating buffer (90 mM NaHCO;
and 60 mM Na,CO3, pH 9.6). All washing steps were performed with 13 mM Tris HCI, 3 mM
Tris base (pH 7.4), 140 mM NacCl, 2.7 mM KCI, and 0.05% Tween 20 (TBS-T) utilizing an au-
tomated plate washer (SkanWasher 300, Skatron) with 5 cycles of 500 ul TBS-T. BbHtrA-
coated plates were washed and incubated for 2 h at room temperature (RT) with 300 pl block-
ing buffer (Starting Block, Pierce). Blocked, duplicate wells, were incubated for 1 h at RT with
100 pL of each serum sample 2-fold serially diluted starting at a 1:400 dilution in blocking buft-
er. After washing, plates were incubated for 30 min at 37°C with secondary antibody (0.1 pg/ml
diluted in blocking buffer, alkaline phosphatase-conjugated goat anti-mouse IgG, KPL). After
two final washes, 100 pL of alkaline phosphatase substrate (p-nitrophenyl phosphate; Sigma
N9389, 1 mg/mL diluted in 23 mM NaHCO3, 25 mM Na,CO3, and 0.1 M MgCl,, pH 9.8) was
added to each well, and the optical density at 405 nm was measured using a Bio-Tek EL808
shaking ELISA plate reader and Gen5 software (Bio-Tek Instruments). Baseline was established
by subtracting the 1:400 dilution values from pre-challenge, adjuvant only serum. Reciprocal
90% end-point titers were defined as the serum dilution at which there was a 90% reduction in
signal from the starting 1:400 dilution.

Native BbHtrA-mouse serum IgG immunoblots

Commercially available B. burgdorferi lysate strips containing in vitro-cultivated strain B31
(Borrelia B31 IgG ViraBlots, ViraMed, Planegg, Germany) were incubated for 1 h at RT with
100 pL of each serum sample diluted 1:100 in blocking buffer. Strips were washed with TBS-T
3 times for 5 min each and incubated for 45 min at RT with secondary antibody (0.02 pg/ml di-
luted in blocking buffer, alkaline phosphatase-conjugated goat anti-mouse, KPL). After 4
washes, strips were incubated for 20 min with precipitating AP substrate (BioRad 170-6432).

Challenge of mice with B. burgdorferi strain B31 by tick-bite

5-6 week-old female C3H/He]J mice were purchased from the Jackson Laboratories (Bar Har-
bor, ME) and housed in HEPA-filtered cages. Laboratory-reared nymphal I. scapularis ticks
were infected with B. burgdorferi strain B31 (infection rate, >90%) as previously described
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[21]. Mice were anesthetized by inhalation of isoflurane and 3-4 nymphal ticks were placed
dorsally between the scapulae and allowed to feed to repletion. Replete ticks were recovered
and either processed for DNA extraction and PCR confirmation of B. burgdorferi infection

[20] or cultured in BSK-II medium supplemented with antibiotics and fungizone to confirm in-
fection. The mice were assayed for infection at 28 days post challenge by serology and culture
of ear, heart and bladder at necropsy in BSK-II medium supplemented with antibiotics and
fungizone as previously described [22]. The Animal Care and Use Committee at the Division
of Vector Borne Diseases, CDC, Fort Collins, CO approved all experimental protocols
involving mice.

Statistical analysis

Significant differences between experimental groups and control groups were determined
using Fisher’s Exact Test of Probability. P-values were determined for each sample. A p-value
of < 0.05 was considered to be significant

Results

In the first experiment, mice were immunized with recombinant BbHtr with Imject
Alum as the adjuvant, followed by two booster injections. Prior to challenge with B. burgdorferi
infected I. scapularis ticks, mice were bled at day 49 and determined by ELISA to have serocon-
verted. 90% end-point titers were observed at serum dilutions of less than 1:40,000 in all mice
vaccinated with BbHtrA*?%* (median 21,570, Fig 1A, column 1). No adverse effects were ob-
served in any of the mice. Mice were sacrificed three weeks post-challenge and serology as well
as culture of ear, heart and bladder was performed. The observed antibody response was inade-

quate to prevent B. burgdorferi infection by tick bite (Table 1 and Fig 2). With the exception of
52264

A5226A

one mouse in the BbHtr control group (injection buffer/Imject Alum), all mice were
confirmed to have been fed upon by B. burgdorferi infected I. scapularis ticks with tick infection
confirmed by PCR (Table 1).

For experiment two, mice were given an initial inoculation of recombinant wild type
BbHtrA with either Imject Alum or TiterMax Gold as the adjuvant. Antibody titers to BbHtrA

were examined by ELISA in 4 mice from each group at day 49 and six of eight mice had end-
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Fig 1. Comparison of pre-challenge reciprocal 90% end-point titers for mice vaccinated with
BbHtrAS225A or BbHtrAYT in Imject Alum or TiterMax adjuvants. O corresponds to baseline established
from adjuvant-only, pre-challenge serum at day 70. Bars represent median values.

doi:10.1371/journal.pone.0128868.g001
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Table 1. Infection status of vaccinated mice after challenge with B. burgdorferi infected ticks.

Experimental Group No. of mice positive No. of mice positive by No. of infected mice/total no. of Fisher’s Exact Probablility
by culture Virablot analysis mice challenged?® Test p-value

BbHtrAS22%A control (Injection 6/7 6/7 6/7°

buffer/Imject Alum)

BbHtrAS228A / Imject Alum 77 77 717 0.4999

BbHtrA control (Injection buffer/  6/6 6/6 6/6

Imject Alum)

BbHtrA control (Injection buffer/  6/6 6/6 6/6

TiterMax Gold)

BbHtrA/Imject Alum 7/9 7/9 7/9° 0.3429

BbHtrA/TiterMax Gold 9/9 9/9 9/9 0.9999

3Infection was assessed by culture of ear, heart and bladder as well as serology.

PNo ticks were recovered from the one mouse that was uninfected in this group.
°Only a single infected tick was recovered from one uninfected mouse and no infected ticks were recovered from the second uninfected mouse.

doi:10.1371/journal.pone.0128868.t001

point titers of less than 1:45,000 (median 27,092, data not shown). In an effort to increase the
response to BbHtrA™", all mice were boosted a third time on day 63. No adverse effects were
seen in any of the immunized mice. At day 70, all mice achieved pre-challenge antibody titers
greater than 1:15,000 and 9 of 17 mice achieved end-point titers at dilutions greater than
1:50,000 (Fig 1A, columns 2 and 3). Higher titers were observed in the group vaccinated with
Imject Alum as the adjuvant (median 63,200, Fig 1, column 2) versus the group vaccinated
with TiterMax as the adjuvant at day 70 (median 39,344, Fig 1 column 3). Mice were sacrificed
three weeks post tick challenge and serology demonstrated that 16 of 18 BbHtrA-vaccinated
mice became infected by B. burgdorferi when challenged by infected ticks (Fig 2).

Two mice in the BbHtrA/Imject Alum group did not become infected as evidenced by the
absence of serodiagnostic antibodies (Fig 2, lanes 15 and 16) and negative cultures of ears,
hearts, and bladders (Table 1). At the end of the experiment, the infection status of the chal-
lenge ticks was confirmed by culture. At least one infected tick was recovered from 28 of 29
mice (data not shown). Of the two uninfected mice, only one infected tick was recovered from
one while no ticks were recovered from the other mouse, while all other mice had confirmed
infected tick bite (Table 1).

Discussion

We hypothesized that BbHtrA would be a protective antigen against tick transmitted B. burg-
dorferi infection based on its biophysical properties and the precedents for use of HtrAs as vac-
cines for other bacterial infections [17, 19, 23]. The protease is surface exposed, elicits a strong
antibody response in infected hosts, and stimulates inflammatory responses in vitro which led
us to examine BbHtrA as a potential vaccine candidate. It has been demonstrated by several
groups that cultured B. burgdorferi is not the most appropriate vehicle for infectious challenges,
as it does not exhibit the same protein expression patterns as organisms in ticks that adapt
their surface structures to the tick feeding environment. We therefore challenged our immu-
nized mice by the more rigorous method of infectious tick bite. Results from this study demon-
strated that immunization with either proteolytically inactive or wild-type BbHtrA was not
protective against B. burgdorferi challenge by feeding I. scapularis.

Initially, we chose to explore BbHtrA ablated of protease activity to prevent potential ad-
verse effects from injecting an active protease knowing that polyclonal antibodies developed
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Fig 2. IgG immunoblots probed with serum from BbHtrA immunized mice. Serum is considered positive
for antibodies to B. burgdorferi when > 5 bands are present. Lanes 1-6 are Injection Buffer (IB)/Imject Alum,
7-11 are IB + TiterMax Gold, 12—20 are BbHtrA + Imject Alum, and 21-28 are BbHtrA + TiterMax Gold. Lane
29 was probed with mouse monoclonal anti-BbHtrA antibody. Lanes 30 and 31 was probed with goat anti-
human and goat anti-mouse secondary antibodies alone. * indicates recognition of native BbHtrA by serum
of immunized mice that did not seroconvert after challenge with infected ticks.

doi:10.1371/journal.pone.0128868.9002

against wild-type BbHtrA also reacted to BbHtrAS****, Although the host generated an anti-

AS?2%A none of the mice were protected from B. burgdorferi infec-

S226A
A

body response against BbHtr
tion. To ensure that the lack of vaccine efficacy observed with BbHtr
inherent non-protective properties of the protein, we repeated the vaccination protocol with
wild-type BbHtrA. We also chose to use a second adjuvant, TiterMax Gold, to test for host en-
hancement of antibody titer, as often adjuvant choice is determined empirically. The use of two
different adjuvants also had the advantage of intentionally stimulating a Th2 response with
Imject Alum and a Th1 response with TiterMax Gold [24-26]. In spite of these additional mea-
sures, 16 of 18 immunized mice became infected (Fig 2). Although the optimal concentrations
of protease utilized for immunizations were not determined by a titration series, the doses ad-
ministered were consistent with those which demonstrated partial protection in vaccine trials
with HtrA proteases from other organisms [17, 19, 23, 27].

Two of the mice in the Imject Alum BbHtrA" " vaccination group remained uninfected as
assessed by serology and by culture of ear, heart, and bladder for B. burgdorferi. No ticks were
recovered from one of the uninfected mice and the other mouse had only one infected tick re-
covered from the feeding. Additionally, the end-point titers for these mice were observed at di-
lutions greater than 60,000. Seven of seventeen vaccinated animals in this experiment achieved
end-point titers equal to or greater than those observed for the two uninfected mice. Thus,

was due to
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antibody titers cannot explain the uninfected status of the two mice; it seems likely that the
mice did not receive an infectious dose of B. burgdorferi.

In conclusion, although BbHtrA is immunogenic in mice, it did not prove to be an effective
vaccine candidate. Elucidating the important immunogenic factors of B. burgdorferi continues
to be a priority as we work toward developing preventive tools for controlling Lyme disease.
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