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Bone-metastatic prostate cancer is common in men with recurrent castrate-resistant 
disease. To date, therapeutic focus has largely revolved around androgen deprivation 
therapy (ADT) and chemotherapy. While second-generation ADTs and combination 
ADT/chemotherapy approaches have been successful in extending overall survival, 
the disease remains incurable. It is clear that molecular and cellular components of the 
cancer-bone microenvironment contribute to the disease progression and potentially to 
the emergence of therapy resistance. In bone, metastatic prostate cancer cells manip-
ulate bone-forming osteoblasts and bone-resorbing osteoclasts to produce growth and 
survival factors. While osteoclast-targeted therapies such as bisphosphonates have 
improved quality of life, emerging data have defined important roles for additional cells of 
the bone microenvironment, including macrophages and T cells. Disappointingly, early 
clinical trials with checkpoint blockade inhibitors geared at promoting cytotoxic T cell 
response have not proved as promising for prostate cancer compared to other solid 
malignancies. Macrophages, including bone-resident osteomacs, are a major compo-
nent of the bone marrow and play key roles in coordinating normal bone remodeling and 
injury repair. The role for anti-inflammatory macrophages in the progression of primary 
prostate cancer is well established yet relatively little is known about macrophages in 
the context of bone-metastatic prostate cancer. The focus of the current review is to 
summarize our knowledge of macrophage contribution to normal bone remodeling and 
prostate-to-bone metastasis, while also considering the impact of standard of care and 
targeted therapies on macrophage behavior in the tumor-bone microenvironment.
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iNTRODUCTiON

In 2018 alone, approximately 28,000 deaths from prostate cancer are predicted (1). While early stage 
disease is often treated successfully with surgery, radiation, and/or androgen deprivation therapy 
(ADT), advanced prostate cancer remains a moving target. Advanced disease typically manifests in 
the skeleton where metastases are often sensitive to first- and second-generation ADT. However, in 
a short period, the cancer becomes castrate resistant. In bone, prostate cancer causes extensive bone 
remodeling and formation that result in intense pain and heightened risk of pathologic fracture (2). 
These symptoms drastically reduce the patients’ quality of life and contribute substantially to disease 
morbidity and mortality. Bone-metastatic castrate-resistant prostate cancer (mCRPC) is currently 
incurable and appears to be refractory to recent advances in immunotherapy, such as checkpoint 
inhibitors (3–5). However, immune-based therapies such as Sipuleucel-T have been beneficial for 
some patients indicating that there may be room for alternative strategies in targeting the immune 
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microenvironment of bone mCRPC. Despite macrophages con-
stituting 8–15% of healthy adult male bone marrow, their role 
in the context of the bone-metastatic CRPC remains relatively 
underexplored.

MACROPHAGe FUNCTiON iN TiSSUe 
HOMeOSTASiS

Macrophages are phagocytic cells of the innate immune system 
responsible for maintenance of tissue homeostasis. Myeloid in 
nature and originating from hematopoietic stem cells that mature 
and differentiate into myeloblasts and monocytes, macrophages 
are noted for their diverse morphology and function across 
various tissues (6–8). For example, microglia are residential 
macrophages of the brain and play an important role in regulat-
ing synapse behavior (9). These cells have further demonstrated 
roles in immune modulation of inflammatory response to brain 
trauma at the blood–brain barrier (10). Other organ-specific mac-
rophages include kupffer cells which turnover heme molecules 
through phagocytosis and degradation of hemoglobin in the liver 
(11, 12), and alveolar macrophages which engulf and eliminate 
dust particulates and microbes from the air on the luminal side 
of the mucosal epithelium lining in the lung (13, 14). Precursor 
and mature macrophages derived from the bone marrow also 
circulate the body, surveying and infiltrating sites of injury and 
infection to regulate local responses. Macrophages are known for 
their plasticity, and depending on signaling cues, can polarize into 
pro- or anti-inflammatory phenotypes. Traditionally, these phe-
notypes have been referred to as M1 and M2, but more recently 
it has been recognized that there are a spectrum of phenotypes 
across the M1/M2 continuum. Inflammatory stimuli released by 
necrotic or damaged tissue, such as interferon-gamma (IFNγ), 
interleukin-12 (IL-12), and reactive oxygen species (ROS) pro-
mote polarization into a pro-inflammatory phenotype (15–19), 
leading to the secretion of pro-apoptotic cytokines such as tumor 
necrosis factor (TNF) to induce apoptosis of neighboring cells. 
Pro-inflammatory macrophages can remove apoptotic neutro-
phils and cellular debris through phagocytosis and efferocytosis 
(20–24) and participate in the adaptive immune response by 
presenting disease-associated antigens to T and B  cells that 
specifically target infectious agents or diseased cells (25–27). 
Following injury/infection resolution, secretion of factors includ-
ing interleukin-10 (IL-10) and transforming growth factor beta 
(TGFβ) by fibroblasts and platelets promote the polarization 
of anti-inflammatory macrophages (28). Anti-inflammatory 
macrophages suppress further inflammation by secreting TGFβ, 
vascular endothelial growth factor (VEGF), and ROS that will 
deactivate T cells and promote TH2 response (29–32). These fac-
tors will also stimulate expansion of fibroblasts, endothelial cells, 
and other cell types for tissue repair (33, 34).

MACROPHAGe ROLeS iN BONe 
ReMODeLiNG AND iNJURY RePAiR

In the bone marrow, osteoclasts and osteoblasts are bone-specific 
cell populations that serve to resorb and mineralize the bone, 

respectively. The activities of these two populations are tightly 
coupled to ensure balanced bone turnover as well as returning 
the bone to homeostasis subsequent to injury. Osteoclasts are 
found residing on osteal surfaces and are histologically charac-
terized as tartrate-resistant acid phosphatase (TRAP) positive 
and multi-nucleated (35, 36). Osteoclasts migrate to sites of 
active bone remodeling by chemotaxis, where they are involved 
in demineralization and resorption of the bone matrix (37–39). 
Upon apoptosis of the osteoclast, mesenchymal stem cell-derived 
osteoblasts rebuild the bone matrix via the deposition of type I 
collagen and hydroxyapatite (40). Traditionally, due to their 
myeloid origins and bone-specific functions, osteoclasts are 
considered the bone-resident macrophage population. However, 
roles for pro- and anti-inflammatory macrophages in controlling 
and coordinating osteoclast and osteoblast bone remodeling have 
been described. For example, IFNγ- and IL-12-stimulated NOS2 
and TNF positive pro-inflammatory macrophages can promote 
osteoclast formation and bone resorption (41, 42). Conversely, 
anti-inflammatory macrophages are thought to contribute to 
bone formation (43).

A distinct population of bone-resident macrophages, 
osteomacs, has been described, and recent studies have shown 
important roles for these cells in modulating osteoblast activity 
in both bone homeostasis and injury repair (44). Osteomacs are 
morphologically characterized as mononuclear cells that form 
canopy-like structures around osteoblasts and can occupy as much 
as 75% of both murine and human endosteal and trabecular bone 
surfaces that are under active remodeling (45–48). Histologically, 
osteomacs are distinct from osteoclasts and are F4/80 positive but 
TRAP negative. Additionally, other groups have shown osteo-
macs to express common macrophage markers such as CD68, 
and also more specific markers, such as Mac-3 and CD169 (45, 
46, 49). While osteomacs can be stimulated by receptor activator 
of nuclear kappa B ligand (RANKL) and colony stimulating fac-
tor-1 (CSF-1/M-CSF) to become osteoclasts in vitro, monocytes 
and other myeloid precursors were found to be more efficient 
osteoclast precursors (45). These data indicate that osteomacs are 
a plastic, yet distinct cell type, with specific functions in the bone 
marrow microenvironment. Indeed, further studies have revealed 
that osteomacs have diverse roles in regulating osteogenesis and 
osteolysis. Osteoblasts become inefficient as they age and need 
to be replenished to ensure proper homeostatic bone turnover 
(46). During normal bone turnover, osteomacs engulf apoptotic 
osteoblasts in a process called efferocytosis, which induces the 
secretion of TGFβ, TNF, and oncostatin M that facilitate osteo-
blastogenesis and bone formation (45, 46, 48). This mechanism 
has been confirmed in various in vitro and in vivo contexts. For 
example, removal of osteomacs from bone marrow-derived 
osteogenic co-cultures reduced osteoblast number and osteoblas-
tic mineralization (47). The MAcrophage Fas-Induced Apoptosis 
(MAFIA) murine model is one in which administration of ligand 
AP20187 can systemically suppresses macrophage differentiation. 
Reduced osteoblast occupancy of the endosteal bone surfaces was 
observed in maturing MAFIA mice following AP20187 admin-
istration (47, 50). Congruently, parathyroid hormone-induced 
bone anabolism in the MAFIA model was suppressed upon mac-
rophage ablation (51). Interestingly, when murine macrophages 
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were depleted by clodronate liposome-induced apoptosis, 
osteoblast numbers remained stable (47, 50). Further compari-
son between two methods of macrophage depletion showed that 
transient macrophage apoptosis induced osteomac expansion 
and efferocytosis, which further enhanced osteoblast activity (46, 
51, 52). Additionally, C57BL/6 mice bone marrow treated with 
trabectedin, a chemotherapy antagonist of macrophages, showed 
diminished phagocytic genetic signature, efferocytotic osteomac-
induced RUNX2 positive osteoblastogenesis, and associated BV/
TV status (53). During bone fracture repair, osteomacs can also 
sense apoptotic damaged cells and in response, initiate inflam-
mation and immune recruitment through secretion of immune 
attractant factors, such as chemokine (C–C motif) ligand 2 
(CCL2) and M-CSF (48). Additionally, LPS-stimulated osteo-
macs express TNF and NOS2, and suppress osteoblast activity 
in  vitro (45). In vivo, bone fracture induced pro-inflammatory 
polarization of immune macrophages and osteomacs to secrete 
TNF and IFNβ, driving osteoclastogenesis and osteolysis (45). In 
fact, osteomacs have been shown to associate with osteoclasts at 
catabolic sites, substantiating their distinction from osteoclasts, 
and supporting their additional roles in regulating osteolysis (48). 
These studies indicate that osteomacs can direct the transition 
between osteolysis and osteogenesis by directly modulating the 
expansion and activity of osteoclasts and osteoblasts for repair 
in the event of bone injury (46). Taken together, these studies 
demonstrate the complex roles of bone-resident macrophages in 
bone remodeling (54, 55). How they contribute to the progres-
sion of bone-metastatic prostate cancer and respond to applied 
therapies has not been fully elucidated at this juncture.

MACROPHAGeS PROMOTe PRiMARY 
PROSTATe CANCeR PROGReSSiON

Just as in other cancers, chronic inflammation in prostate cancer is 
thought to serve as a prelude to tumorigenesis (56). In fact, in cases 
of premalignant prostatic inflammatory atrophy, macrophages 
were observed coalescing at sites where inflammation-driven 
neoplasia caused disruptions in the epithelial lining of the pros-
tate (57). In primary prostate cancer, pro- and anti-inflammatory 
tumor-associated macrophages (TAMs) have been found to 
comprise a significant portion of the immune cells infiltrating the 
tumor microenvironment with studies beginning to dissect roles 
for each population with regards to progression of the disease (58, 
59). The exact pro- and anti-inflammatory constitution of TAMs 
vary across cancer types, but protective roles for TAMs have 
been described in prostate cancer. For example, macrophages 
located in the tumor-peripheral stroma correlated with increased 
recurrence-free survival (60), while macrophages expressing 
CD204, a marker associated with activation of antigen presenta-
tion in dendritic cells, correlate with better overall survival and 
prognosis (60–62). However, for the most part, macrophages 
have been found to contribute to, or directly promote, primary 
prostate cancer progression with individual patient cohort and 
meta-analysis studies identifying that macrophage infiltration 
correlates with disease aggressiveness and poor prognosis in 
prostate cancer (63–67). With respect to therapy, the density of 

anti-inflammatory macrophages in the primary disease correlates 
with extracapsular and biochemical recurrence following radical 
prostatectomy and/or ADT (63, 65, 66, 68).

The tumor-promoting roles of anti-inflammatory macrophages 
are thought to revolve around their immune-suppressive and 
angiogenic effects, both of which are important hallmarks of pros-
tate cancer progression (68–71). Prostate cancer cells have been 
shown to secrete factors such as CSF-1 and CCL2 that lead to the 
recruitment of monocytes and macrophages that facilitate these 
processes (68, 72–78). Once recruited to the microenvironment, 
macrophages are exposed to a milieu of environmental cues that 
can drive their polarization into pro- or anti-inflammatory states 
(58). For example, exposure to tumor-derived IL-10 and -13 pro-
motes macrophage polarization into an anti-inflammatory state. 
Subsequently, macrophages secrete factors, such as epidermal 
growth factor (EGF), platelet derived growth factors, and VEGF 
that promote cancer cell proliferation and angiogenesis of the 
tumor microenvironment (69, 79–83). Furthermore, ARG1 and 
TGFβ positive anti-inflammatory macrophages, along with mye-
loid-derived suppressor cells and regulatory T cells, collectively 
suppress inflammation and immune response within the tumor 
microenvironment (84–88). Both pro- and anti-inflammatory 
macrophages can also modulate T cell expansion and cytotoxic-
ity by regulating the bioavailability of l-arginine, an important 
amino acid for T cell activity and survival (89). In addition, NOS2 
positive pro-inflammatory macrophages synthesize nitric oxide 
that can promote T cell TH1 expansion (90, 91). Conversely, anti-
inflammatory macrophages expand during TH2 response and 
additionally suppress T cell proliferation through expression of 
co-inhibitory molecule PD-L2 (30). Importantly, macrophages 
can also contribute to the activity of non-immune cells in the 
tumor microenvironment, such as cancer-associated fibroblasts 
(CAFs). Macrophage-secreted factors such as TGFβ are known 
potent regulators of CAFs that also promote tumor growth 
and invasion into the peripheral tissue to facilitate metastasis  
(68, 71, 92, 93).

MACROPHAGe ROLeS iN eSTABLiSHiNG 
THe PRe-MeTASTATiC BONe MARROw 
NiCHe?

While much is known about the role of macrophages in primary 
prostate cancer progression, less is known about how their polari-
zation states in the bone marrow contribute to, or protect against 
prostate cancer metastasis to the bone and subsequent estab-
lishment. TNF, TGFβ, and VEGFA can be secreted by primary 
prostate cancer cells into circulation (94), which can activate 
marrow cell populations including bone-resident macrophages 
and hematopoietic progenitor cells. Furthermore, these tumor-
derived factors have been shown to induce the recruitment of 
immunosuppressive myeloid populations into the bone that sup-
port immune evasion and ease the establishment of circulating 
tumor cells (95).

Emerging evidence has also defined important roles for 
prostate cancer-derived exosomes in the genesis of receptive 
pre-metastatic niches (96, 97). Exosomes are nanometer-sized 
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vesicles that can be shed in large numbers by cancer cells. The 
cargo contents of cancer cell-derived exosomes vary greatly, but 
can contain cell-adhesion molecules, receptor tyrosine kinases, 
proteases, miRNAs and miRNA processing machinery, mRNA, 
and DNA (98, 99). Injection of mice with exosomes derived 
from human prostate cancer peripheral blood or murine prostate 
cancer cells lines (TRAMPc1) demonstrated impaired murine 
osteoclast formation and enhanced osteoblast differentiation sug-
gesting that prostate cancer-derived exosomes play a role in tip-
ping the balance toward bone formation, a common hallmark of 
bone-metastatic prostate cancer (100, 101). Milk fat globule-EGF 
factor 8 protein (MFG-E8) was found in human prostate cancer 
patient exosomes, and tissue biopsies. MFG-E8 has been shown 
to mediate macrophage efferocytosis of apoptotic osteoblasts and 
cancer cells; these macrophages then exhibit an anti-inflammatory 
phenotype and in turn promote immune suppression through 
expression of TGFβ and ARG1 (102, 103). Characterization of 
prostate cancer-derived exosomes has identified various proteins 
and miRNA that can promote metastasis. Among the miRNA 
identified, miRNA-21 is particularly interesting given that it is 
upregulated in bone-metastatic prostate cancer and has known 
roles in regulating osteoclasto- and osteoblastogenesis (23, 97, 
104, 105). Additionally, miRNA-21 is known to regulate mac-
rophage phagocytosis of necrotic or diseased tissue in the context 
of wounding (23). Other miRNA identified in prostate cancer-
derived exosomes that can influence osteoclast and osteoblast 
differentiation include miRNA-128 and -183 (95, 97).

Collectively, these studies show that bone marrow macrophages 
contribute to bone-metastatic outgrowth of disseminated 
prostate cancers, whereby cancer-derived signals or exosomes 
significantly influence macrophage activity in the pre-metastatic 
niche. In turn, these changes appear to be permissive for prostate 
cancer cell colonization of bone.

TAMs iN MeTASTATiC CASCADe  
OF PROSTATe CANCeR

The role of TAM in the metastatic dissemination of primary pros-
tate cancer has been extensively studied and reviewed. Here, we 
reference seminal review articles that outline the molecular and 
cellular communication between TAMs and primary prostate 
cancers resulting in tumor vascularization, epithelial-to-mes-
enchymal transition, intravasation, and eventual colonization of 
distal sites, including, specifically, the skeletal bone marrow (58, 
83, 106–109).

MACROPHAGeS iN THe PROGReSSiON 
OF eSTABLiSHeD PROSTATe TO BONe 
MeTASTASeS

Once actively growing in the skeleton, prostate cancer cells 
manipulate the cells of the bone microenvironment to promote 
areas of extensive osteolysis and osteogenesis. Osteoclasts have 
traditionally been regarded as a specialized bone-resident mac-
rophage population due to their myeloid lineage and phagocytic 
nature in bone resorption, which leads to the release of bone 

matrix-sequestered factors that feed the metastatic prostate can-
cer cells (110–112). While macrophages can fuse and form into 
osteoclasts in response to RANKL (113, 114), the role of individual 
macrophage populations in controlling prostate cancer bone inter-
action remains relatively underexplored. Recent observations in 
patient biopsies have implicated the role of osteal macrophages in 
established bone-metastatic prostate cancer (115). CD68 positive 
macrophages were detectable at high density within the tumor, 
whereas osteoclasts and osteomacs were found at the tumor-
bone interface, suggesting potentially differential functions for 
each population in the growing lesions (115). Studies have also 
defined causal roles for macrophage populations in the growth 
of prostate cancer in bone. For example, intratibial inoculation of 
RM1 prostate cancer cells into macrophage-depleted bone mar-
row of MAFIA mice resulted in decreased pathologic osteolysis 
(107, 116). Additionally, depleting macrophages using clodronate 
liposome prior to tumor inoculation significantly limited cancer 
growth in bone (116). Further evidence supporting contributory 
roles for macrophages in the progression of bone-metastatic 
prostate cancer lesions has been provided using similar total 
macrophage depletion approaches (107, 115). Additionally, 
roles for osteomacs in the cancer-bone microenvironment have 
also been described, where CD169 positive tumor-associated 
osteomacs were found to facilitate tumor-induced pathologic 
osteogenesis. Interestingly, CD169 negative macrophages have 
been shown to promote tumor growth (115) and phenotypically 
resemble CD206 positive anti-inflammatory macrophages found 
in primary prostate cancer (109, 117). Taken together, these 
studies suggest that macrophages contribute to prostate cancer 
metastasis and growth in the bone microenvironment (Figure 1). 
However, deeper investigations into the precise roles of pro- and 
anti-inflammatory macrophages and osteomacs in the process 
are warranted.

MACROPHAGe ReSPONSe TO 
STANDARD OF CARe TReATMeNTS/
THeRAPieS

As discussed, macrophage polarization can have protective 
or contributory roles; however, the impact of standard of care 
approaches on macrophage behavior has not been explored in 
depth thus far. For men with bone-metastatic CRPC, treatment 
options largely focus on radiation therapy to alleviate pain and 
reduce tumor burden, or therapeutics that target the cancer cells, 
such as chemotherapy and ADT. Although castrate-resistant, 
CRPC prostate cancer cells remain dependent on androgen 
signaling via the expression of constitutively active androgen 
receptor splice variants, and/or autocrine expression of their 
own androgen (118–120). Underscoring this dependency on 
androgens or the AR receptor for survival, second-generation 
ADTs (enzalutamide and abiraterone) have been shown to sig-
nificantly improve overall survival. In murine xenograft models, 
enzalutamide treatment of C4-2B and TRAMPc1 prostate tumors 
induced STAT3-mediated CCL2 expression and recruitment of 
CCR2 positive macrophages, enhancing angiogenesis and tumor 
invasion (121–123). Other second-generation ADTs, such as 
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abiraterone, have also been shown to upregulate cancer cell CSF1 
expression to promote macrophage infiltration, wound healing 
and, subsequently, tumor proliferation (75). Additionally, ADT 
drives tumor secretion of IL-10 and -13 that contribute to the 
polarization of macrophages into an anti-inflammatory pheno-
type (75). While in-depth studies have not examined the precise 
effects of second-generation ADT on macrophage behavior in 
bone-metastatic disease, it is plausible that the drugs may have 
actions similar to those noted at the primary site by promoting 
an anti-inflammatory phenotype. Critically, little work has been 
done to explore the role of ADT on bone-resident macrophages. 
As discussed, osteomacs appear to be key regulators of bone 
formation, and androgen depletion may impact the ability of 
osteomacs and osteoblasts to generate bone. This would be 
beneficial in reducing the aberrant osteogenesis associated with 
bone-metastatic prostate cancer, although it could promote 
systemic osteoporosis, a phenomenon noted in men undergoing 
chronic ADT treatment (124).

Taxane chemotherapies such as docetaxel and cabazitaxel are 
also used for the treatment of advanced prostate cancer patients. 
These drugs inhibit microtubule disassembly during mitotic 
chromosome segregation and induce apoptosis in neoplastic 
cells, and they are commonly given to patients with mCRPC who 
have failed ADT (125–128). Interestingly, for chemotherapy-
sensitive CRPC, docetaxel has immune-stimulatory effects and 
can inhibit myeloid-derived suppressor cells, while promoting a 
switch in macrophages from an anti- to pro-inflammatory phe-
notype (129, 130). However, bone-metastatic CRPCs eventually 
become resistant to docetaxel, at which point they progress. In the 

case of chemotherapy-resistant cancer, the cancer cells can now 
secrete inflammatory cytokines such as IL-6 and -8, to recruit and 
differentiate monocytes and endothelial cells, for immune sup-
pression and angiogenesis, respectively (131–134). Specifically, 
IL-6-induced mature macrophages are subsequently driven by 
other secreted cytokines such as IL-4 to anti-inflammatory states 
to induce immune suppression (131). IL-6 also induces prostate 
cancer survival by inducing Bcl/Stat-mediated survival signaling 
(131). Docetaxel can also induce CCL2 expression in cancer 
cells, a potent factor that not only induces prostate cancer growth 
and is correlated with disease progression but also recruits 
anti-inflammatory macrophages that drive tumor progression 
(74, 131, 135–139). Anti-inflammatory macrophages may also 
promote bone formation, but studies have shown that docetaxel 
impacts bone remodeling by suppressing osteoclast formation 
and osteoblast expansion, therefore, potentially off-setting the 
contribution of anti-inflammatory macrophages to cancer-
induced bone disease (140).

Newer therapies being employed in the clinic may also have 
important effects on macrophage behavior in bone. For example, 
radium-223 is an alpha-emitting radionuclide that binds to cal-
cium and promotes prostate cancer cell death in the neighboring 
vicinity. The treatment has been successful in extending the over-
all survival of men with bone-metastatic CRPC. The apoptosis 
induced by radium-223 may increase the bioavailability of tumor 
antigen in a cytotoxic microenvironment. Since macrophages are 
strong antigen presenting cells that mediate T cell antigenicity, 
it will be interesting to explore whether peripheral macrophages 
become pro-inflammatory and immune-stimulatory (141). 
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However, the effects of radiation therapy can be double edged. In 
humans, myelosuppression, leucopenia, and lymphopenia, were 
noted in radium-223 patients (142, 143). Further, in multiple 
cancer models, radiotherapy has been demonstrated to enhance 
macrophage infiltration, and over time, the polarization of mac-
rophages into an anti-inflammatory phenotype may promote 
angiogenesis and cancer cell survival/recurrence (144–146). 
Taken together, these studies indicate that while applied thera-
pies are initially successful in limiting disease progression, the 
emergence of resistant disease is often coupled/correlated with 
changes in macrophage polarization. Whether chronic exposure 
to standard of care therapies alters the microenvironment which 
in turn facilitates the emergence of resistant cancer cells remains 
to be determined. Conversely, little is known as to whether the 
evolution of resistant cancer cells in response to therapy impacts 
the behavior of the surrounding microenvironment.

CAN MACROPHAGe-BASeD THeRAPieS 
Be iMPACTFUL FOR THe TReATMeNT OF 
BONe-MeTASTATiC PROSTATe CANCeR?

The addition of therapies geared at blocking macrophage func-
tion, in particular anti-inflammatory function, in combination 
with standard of care treatments may yield more effective and 
durable responses in addition to preventing the recurrence of 
resistant disease. The role of macrophages in promoting the 
progression of numerous solid malignancies has been described, 
and as a consequence, translational studies have been geared 
toward the development of targeted therapies that can either 
deplete myeloid populations and/or alter the polarization status 
of macrophages. Numerous factors control macrophage infiltra-
tion and polarization but can have dual tumor-promoting and 
-protective effects. For example, correlative and causal roles for 
TNF in the progression and metastasis of prostate cancer have 
been described (147–153). Given the roles of TNF in inflamma-
tory diseases, such as arthritis, it is unsurprising that biologicals 
targeting either the ligand or the receptor have been an active 
area of research. In the cancer setting, TNF can promote tumor 
growth and angiogenesis with preclinical trials demonstrating 
efficacy for TNF blocking reagents (154). Conversely, however, 
tumor-protective roles have been described in addition to 
potential risks for the development of cancers such as soft tissue 
sarcoma. This, combined with the potential for adverse toxicity 
associated with TNF inhibition, has diminished enthusiasm for 
the application of TNF inhibitors in the cancer setting. However, 
more encouraging results for other targets that impact mac-
rophage behavior have been noted including, CCL-2/CCR-2, 
IL-4, and CSF1 receptor (CSF1R).

CCL-2
Chemokine (C–C motif) ligand 2 is expressed by prostate cancer 
cells, and while it can promote cell growth and invasion in an 
autocrine manner, it has also been shown to be a key driver of 
CCR2-expressing (CCL2 receptor) macrophages and monocyte 
recruitment (73, 155, 156). Moreover, the role of CCL2 seems 
particularly relevant in the context of bone-metastatic disease, 

where CCL2-expressing prostate cancers recruit endothelial cells 
and osteoblasts to drive angiogenesis and osteogenesis, respec-
tively, both of which enhance the progression of the disease (73, 
157). Underscoring the importance of CCL2 in the tumor-bone 
microenvironment, studies demonstrated that neutralization 
of CCL2 with a monoclonal antibody (C1142) was successful 
in both attenuating tumor growth as well as bone pathology in 
various preclinical models (156, 158). As a result, the humanized 
version, CNTO 888 (Carlumab), was developed to neutralize 
CCL2 signaling function in advanced prostate cancer. While the 
drug was well-tolerated in clinical trials, no anti-tumor activity 
was noted as a single agent for the treatment of metastatic CRPC 
(158–161). Given that targeting CCL2, or the receptor CCR2, 
in other diseases has been shown to be impactful in reducing 
inflammatory responses, it is possible that combination with 
standard of care treatments may result in more profound effects. 
Interestingly, heightened levels of CCL2 were noted in patients 
that developed resistance to docetaxel, and pre-clinical studies 
in which docetaxel and C1142 were combined demonstrated 
significant inhibition of bone-metastatic cancer growth and 
associated bone disease (139, 162, 163). Surprisingly, a phase I 
clinical trial combining docetaxel with CNTO 888 demonstrated 
tolerability but not a suppression of serum CCL2 levels or tumor 
response. This may indicate that higher dosing is required to 
block the CCL2–CCR2 axis or a combination of CNTO 888 with 
CCR2-specific antibodies such as MLN1202 is needed to achieve 
effective responses in humans (164). In addition to potentially 
depleting macrophages from the bone-tumor microenvironment, 
CCL2/CCR2 therapies can also reduce osteoclast recruitment and 
formation thereby protecting the patient from skeletal-related 
events such as pathologic fracture (157, 165).

interleukin 4 (iL-4)/iL-4R
Interleukin 4 is an anti-inflammatory cytokine found upregulated 
in various solid malignancies that can promote tumor growth by 
driving anti-inflammatory macrophage polarization which in 
turn facilitates tumor proliferation, angiogenesis, and metastasis 
(166–168). This effect may be concentration dependent as high 
levels of IL-4 have an anti-tumor effect (169–171). In prostate 
cancer, IL-4 trends with PSA expression and can stimulate IL-4 
receptor (IL-4R) positive prostate cancer cells to grow and metas-
tasize via downstream activation of JAK/STAT6 pathway (172). 
IL-4 can also promote anti-tumor immunity. While IL-4 supports 
proliferation of T  cells, it converts mature CD8 T  cells from 
TH1 to TH2 response; this transition suppresses their cytolytic 
potential and leads to immune evasion and tolerance (168). IL-4 
expression is especially heightened in hormone-refractory versus 
hormone-sensitive prostate cancer (169, 172). In the context of 
ADT, studies have shown that IL-4 can induce AR signaling 
reactivation, independent of androgen, suggesting IL-4 over 
expression as a resistance mechanism to restore cancer growth 
in androgen-depleted prostate cancer (172, 173). Combination 
of anti-IL-4 agents with ADT may, therefore, extend tumor ADT 
sensitivity. To this end, IL-4-targeted therapies are in development 
for the treatment of asthma and allergic responses. However, the 
anti-cancer effects of the therapy could be lessened due to the 
potential impact of IL-4 blockade on the activity of cytotoxic 
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immune cells. Adverse systemic effects may also be an issue, but 
strategies that focus on cancer cell- or TAM-specific delivery may 
be of use. Furthermore, IL-4 has been shown to limit osteoblast 
proliferation and induce the expression of IL-6 while inhibiting 
osteoclastogenesis (174, 175). Therefore, while inhibiting IL-4 
may exacerbate the cancer-associated bone disease, it would also 
inhibit IL-6 expression by osteoblasts which in turn may prevent 
macrophage-mediated resistance to chemotherapy (176).

CSF1/CSF1R
Prostate cancer-derived colony stimulatory factor 1 (CSF1) 
can lead to the recruitment of CSF1R positive macrophages. 
In the tumor, CSF1 signaling promotes macrophage survival 
and polarization into an ARG1, CD206, and IL-10 positive 
anti-inflammatory phenotype, while simultaneously inhibiting a 
NOS2 and IL-12 positive pro-inflammatory phenotype (75–77). 
Additionally, tumor-derived CSF1 recruits MDSC, and these 
immunosuppressive myeloid infiltrates are particularly important 
in tumor survival and progression (76). Interestingly, standard of 
care therapies such as radiation and ADT promote CSF1 expres-
sion by prostate cancer cells leading to increased infiltration of 
macrophages (75, 77). The CSF1/CSF1R axis is known to play a 
role in macrophage infiltration and anti-inflammatory polariza-
tion in other cancers and several anti-CSF1R agents have been 
developed, including GW2580 and PLX3397. These agents have 
demonstrated significant success in abrogating therapy-induced 
CSF1R positive macrophage infiltration using animal models of 
cancer progression, including prostate cancer (75, 77, 177–179). 
Further, treatment with ADT and PLX3397 or GW2580 reduced 
macrophage infiltration compared to either therapy as a single 
agent (75). This indicates that combination of ADT and anti-
CSF1R therapy would be clinically beneficial. Currently, several 
clinical trials are ongoing that will test the efficacy and impact 
of CSF/CSF1R inhibitors. For prostate cancer, recent studies 
have shown that PLX3397 delays the emergence of CRPC by 
reducing the number of infiltrating TAM, and a phase II clinical 
trial was performed in a small cohort of bone-metastatic CRPC 
patients with results pending (NCT 01499043). Various other 
combination therapy studies for prostate cancer using ADT with 
PLX3397 and other anti-CSF1R agents are underway and it will 

be interesting to see how well they perform relative to when 
used as single agents (78). Of note, blockade of CSF1R signal-
ing in mice significantly reduced osteoclast number, leading 
to increased bone mass that may be useful in offsetting ADT-
associated osteoporosis (180).

CONCLUSiON

Bone-metastatic CRPC is currently incurable and will be present 
in over 90% of the men who succumb to the disease. While ADTs 
and chemotherapy have improved overall survival rates, more 
work is required to help in controlling and/or eradicating the 
disease. This can be achieved by understanding the cellular and 
molecular mechanisms involved. To this end, clear roles for the 
stromal and immune components of the tumor microenvironment 
have been described. Macrophages represent a large component 
of the immune infiltrate, and depending on their polarization 
state, can contribute to the progression of the disease. Many 
standard of care therapies focus on elimination of the cancer cell 
but indirectly, these therapies also impact the behavior of the sur-
rounding macrophage population and lessen therapeutic efficacy. 
The factors controlling macrophage infiltration and polarization 
are the focus of translational efforts with several reagents in clini-
cal trials. Combination therapies such as ADT with anti-CCL2/
CCR2 or anti-CSF1R inhibitors may prove to significantly extend 
the overall survival of men with bone-metastatic CRPC. Further, 
given the role of macrophages in controlling bone remodeling, 
dampening macrophage activity may reduce prostate cancer-
induced osteogenesis, thereby directly improving patient quality 
of life.
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