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Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells

which are abnormally accumulated during the differentiation of myeloid cells.

Immunosuppression is the main functional feature of MDSCs, which inhibit T

cell activity in the tumor microenvironment (TME) and promote tumoral

immune escape. The main principle for immunotherapy is to modulate,

restore, and remodel the plasticity and potential of immune system to have

an effective anti-tumor response. In the TME, MDSCs are major obstacles to

cancer immunotherapy through reducing the anti-tumor efficacy and making

tumor cells more resistant to immunotherapy. Therefore, targeting MDSCs

treatment becomes the priority of relevant studies and provides new

immunotherapeutic strategy for cancer treatment. In this review, we mainly

discuss the functions and mechanisms of MDSCs as well as their functional

changes in the TME. Further, we review therapeutic effects of immunotherapy

against MDSCs and potential breakthroughs regarding immunotherapy

targeting MDSCs and immune checkpoint blockade (ICB) immunotherapy.
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Introduction

It is known that the incidence of cancer is still rising with

poor prognosis and high mortality, despite the continuous

improvement of treatment modalities (1). At present, the main

treatments for cancer include surgery, radiotherapy,

chemotherapy. However, those treatments have severe side

effects on healthy cells, and have limitations such as drug

resistance. Immunotherapy has increasingly attracted wide

attention due to its unique advantages, especially its long-

lasting therapeutic effects (2, 3). Recently, it was reported that

the immune checkpoint blockade (ICB) immunotherapy, such

as those targeting CTLA-4, PD-1, and PD-L1. ICB greatly

improved treatment efficacy on tumors with high mutation

rates, such as non-small cell lung cancer (NSCLC). In the

clinical data statistics of NSCLC, it was found that the

composite mutation characteristics are closely related to the

pro-inflammatory tumor microenvironment (TME). In

addition, the checkpoint proteins are the most commonly used

biomarkers for NSCLC patients, especially for high expression of

PD-L1 on tumor and PD-1 on T cells (4, 5). However, the

response rate for ICB immunotherapy is only 15-20% in various

types of solid tumors, which is far from clinical request due to

complex TME (6).. Therefore, the impact of cancer on the

immune system still needs to be explored.

The immune system consists of many negative feedbacks of

inhibitory pathways that are found to suppress the development

of excessive immune responses to avoid autoimmune reactions

(7, 8). In the process of cancer development, there is a balance

complex between cancer and the immune system. The

occurrence and development of cancer cause immune escape,
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promoting cancer progression (9). The long-term inflammatory

invasion of cancer cells disrupts the balance of the immune

system, making immune cells exhausted, finally leading to

continuous tumor growth and metastasis. Therefore,

researchers are paying more attention to the anti-tumor

immune responses on the TME, where there are plenty of

cancer suppressor factors such as tumor-related stromal cells,

regulatory T cells (Treg) and immunosuppressive myeloid cells

(IMCs) (10). The immunosuppressive cytokines in TME

produced by tumor cells, MDSCs and CAFs are crucial factors

that mediate T-cell and other immune cell dysfunction. TGF-b
signaling pathway, for example, plays an important role in

tumor promotion (11, 12). A hallmark of cancer development

is persistent inflammatory invasion and immune escape, which

induce oncogene protein, reduces tumor suppressor genes, and

produces IMCs which include TAMs and MDSCs (13, 14).

Plenty of IMCs in TME and their strong inhibitory roles on

lymphocytes have become the main obstacle to tumor

immunotherapy (15). Here we focus on one type of cell of

IMCs, MDSCs, which suppress T cell to promote tumor cell

proliferation, metastatic growth and immunotherapy

resistance (16).

MDSCs are a class of highly heterogeneous cells derived

from immature myeloid progenitors, consisting of myeloid

progenitors and precursors of macrophages, granulocytes and

DCs, trigger the abnormal state of hematopoietic stem cells in

the differentiation process and display immunosuppressive

activity on T cells and NK cells during the progression of

cancer (17) (Figure 1). MDSCs mainly consist of two cell

subsets: granulocytic/polymorphonuclear MDSCs (PMN-

MDSCs) and monocytic MDSCs (M-MDSCs) (18). During
FIGURE 1

During normal myelogenesis, bone marrow hematopoietic stem cells differentiate into immature cells, which migrate to corresponding
peripheral organs and further differentiate into macrophages, dendritic cells or neutrophils. However, in a chronic inflammatory or tumor
microenvironment, the differentiation of immature bone marrow cells is blocked, and abnormal accumulation of immature bone marrow cells is
induced. Tumor MDSCs are increased to inhibit T/NK cells anti-tumor immune response. Promotion: !; Inhibition: ┤.
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cancer development, it is stimulated by long-term inflammatory

factors and cytokines (e.g., high levels of GM-CSF, VEGF, IL-6,

IL-1b, adenosine, HIF1a). This leads to myelogenesis and

regulation in the bone marrow, which transforms into

pathological ly act ivated cel ls in t issues ; Moderate

myelogenesis, changes in cellular metabolism, thereby

inhibiting immune function. Immunosuppression roles of

MDSCs are mainly regulated through STAT3, STAT1, STAT6,

NF-kB, ER stress pathway, Down-regulation of cAMP, COX2,

PTGES, CEBPb, IRF8, RB1 and lipid oxidation (19, 20). MDSCs

participate in promoting tumor progression by enhancing tumor

angiogenesis and invasion, and facilitating pre-metastatic niche

formation (21, 22). Thus, MDSCs play an important role in

determining the therapeutic effect of immunotherapy. In this

review, we address the regulatory mechanisms of MDSCs as well

as their functional changes in the TME, and summarize

combined therapeutic effect of targeting tumor MDSCs and ICB.
Characteristics and functioning
mechanisms of MDSC in the TME

During normal myelopoiesis, the major myeloid populations

include granulocytes (with the most representative being

neutrophils), monocytes, terminally differentiated macrophages

(MF), and DCs. Those mature myeloid cells are one of the main

protective mechanisms against pathogens (23–25) (Figure 1).

For instance, classical activation of myeloid cells occurs in

response to antipathogenic signals, mainly in the form of toll-

like receptor (TLR) ligands, various damage-associated

molecular pattern (DAMP) molecules, and pathogen-

associated molecular pattern (PAMP) molecules (26). The

activation leads to the production of monocytes and

neutrophils in the bone marrow, markedly increase

phagocytosis, a respiratory burst, the production of pro-

inflammatory cytokines and the upregulation of both the

major histocompatibility complex (MHC) class II and co-

stimulatory molecules. This process usually lasts for only a

short time and the reaction disappears with the threat (i.e.,

pathogen) lost. MDSC formation is different from normal

myelogenesis, which is a pathological activation state resulting

from continuous stimulation of tumor or chronic inflammation

on bone marrow compartment, leading to high levels of ROS,

MPO, NO, and most anti-inflammatory cytokines, which

prevent the generation of mature bone marrow cells (27, 28).

C/EBPa and C/EBPb play the important role in the formation of

bone marrow and affect the formation and development of

MDSC. C/EBPa makes the granulocyte lineage specific

transition from CMP to granulocyte-monocyte precursors

(GMPs), GMP. After the GMP phase, C/EBPa is dispensable,

while C/EBPb plays a major role. C/EBP family members have

been found to control the expansion and functional properties of

MDSC, and may regulate MDSC differentiation into neutrophils
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and macrophage. Under pathological conditions, C/EBPa may

be down-regulated in MDSCs, but C/EBPb, C/EBP-d may be

strongly up-regulated (29). MDSC-like cells are continuously

activated through signal transduction and activator of

transcription 3 (STAT3) or NF-kB pathway (20).However, in

some chronic infections and cancers, the signals that activate

myeloid cells are quite different (24, 30). These signals are

relatively weak and long-lasting in the present of growth

factors and inflammatory mediators. Both neutrophils and

monocytes under these conditions exhibit immature

phenotype and morphology, relatively weak phagocytic

activity, increased levels of reactive oxygen species (ROS),

nitric oxide (NO) production, Arginase and Prostaglandin E2

(PGE2) (23, 26, 30, 31). Those myeloid cells in the pathological

state suppress T cell anti-tumor immune response, are now

referred to as MDSCs (32, 33) (Figure 2).

MDSCs are the main suppressive immune cells with the

ability to suppress the adaptive and innate immune responses

(34–36). However, the functional mechanisms of MDSCs in

immune suppression have been completely uncovered. They can

be further divided into two subtypes: PMN-MDSCs and M-

MDSCs) (37). PMN-MDSCs are phenotypically and

morphologically similar to neutrophils, whereas M-MDSCs are

similar to monocytes (38). MDSCs in mice have two distinct

subtypes due to different markers on them in mice and humans;

In mice, MDSCs are characterized by co-expression of CD11b of

a-M integrin, which is considered to be a marker of

ubiquitination, and bone marrow differentiation antigen Gr-1

which is a glycosylphosphatidylinositol junction protein, is

composed of Ly6C and Ly6G subunits, resulting in two

subtypes: CD11b+Ly-6G+Ly-6ChighandCD11b+Ly-6G+Ly-6Clow

(39). Since the CD11b+ Ly-6G+ Ly-6 Chigh subtype is

morphologically similar to monocytes, it is termed M-MDSCs,

and the CD11b+Ly-6G+Ly-6Clow subtype displays a granulocyte-

like morphology and is termed granulocytic MDSCs (PMN-

MDSCs or G-MDSCs) (34). In human, M-MDSC expression is

characterized by CD11b, CD14, HLA-DR and CD15 (40). M-

MDSCs can be defined as CD11b+CD15-CD14+HLA-DR-/low

MDSCs, while PMN-MDSCs are usually defined as CD11b

+CD14-CD15+ (or CD66b+) MDSCs (20, 33). Recently, third

subgroup of MDSCs in humans are found to be called early

MDSCs, which lacks expression of mature blood cell markers

(including CD3, CD14, CD15, CD19 and CD56), thus it is called

Lin-HLA-DR-CD33+ (41). consisting mainly of cells with

colony-forming potential and other myeloid precursor cells

(33, 42).

In the TME, MDSCs are accumulated to suppress immune

function and promote tumor growth through inducing some

tumor-derived factors, cytokines and/or chemokines such as

interleukin (IL)-6, interferon (IFN)-g, IL-1b, granulocyte-

macrophage colony-stimulating factor (GM-CSF), tumor

necrosis factor (TNF)-a and vascular endothelial growth factor

(43, 44). In Esophageal Squamous Cell Carcinoma (ESCC), the
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increase of MDSCs is upregulated through IL-6 or other

signaling pathways mediated by aldehyde dehydrogenase (6,

45). The continuous recruitment of MDSCs to tumors is also

mediated by interactions between chemokines and chemokine

receptors, particularly the interaction between the CC

chemokine receptor 5 (CCR5) and its ligand to exaggerate

ESCC progression. In melanoma, tumor-infiltrating CCR5+

MDSCs was found to show elevated expression levels of

immunosuppressive markers such as PD-L1, Arg1, ROS and

NO, exerting stronger immunosuppressive activity compared

with its CCR5- counterparts (12). In breast cancer, BCC-Ex

induced the increase of myeloid cells by activating the STAT3

signaling pathway, promoting the expansion of MDSCs (27, 46).

In the TME, the immunosuppressive function of MDSCs is also
Frontiers in Immunology 04
mediated through endoplasmic reticulum stress and inhibitor-

related enzymes, which include cyclooxygenase 2(COX2),

NADPH oxidase 2 (NOX2), Indoleamine 2, 3-dioxygenase

(IDO) and arginase 1 (ARG-1) which induces nitrogen Nitric

oxide synthase (iNOS or NOS2) (47). MDSCs also regulate the

functional activity of other immune cells, such as macrophages,

NK cells, Treg, and B cells (48, 49). In a mouse non-T-cell

inflammatory oral cancer model (MOC2), peripheral CXCR2+

PMN-MDSCs are pathologically accumulated to enter tumors,

inhibiting the functions of NK cells (50, 51). MDSCs also

interact with other IMCs such as TAMs to promote their

immunosuppressive activities (37, 52) Tables 1, 2.

MDSCs exert its immunosuppressive function through the

induction of different cytokines or chemokines. Porta et al.
BA

FIGURE 2

(A) Classical activation of bone marrow cells occurs in response to pathogen signals, mainly in the form of Toll-like receptor (TLR) ligands,
various damage-related molecular pattern (DAMP) and pathogen-associated molecular pattern (PAMP) molecules. This results in rapid activation
of monocytes and neutrophils in the bone marrow, a significant increase in phagocytosis, respiratory bursts, production of pro-inflammatory
cytokines and upregulation of major histocompatibility complex (MHC) class II and costimulatory molecules. (B) In chronic infections and
cancer, Immature cell differentiation is blocked. They exhibit relatively weak phagocytic activity, increased levels of reactive oxygen species
(ROS) and nitric oxide (NO) production, arginase and PGE2, promoting tumor growth. Promotion: !, Inhibition: ┤.
TABLE 1 Roles of cytokine and chemokines on tumor MDSCs.

Tumor Cytokines/Signaling pathways Functions Ref

BC
BC
ESCC
Melanoma

BCC-Ex/CXCR4
BCC-Ex/STAT3
IL-6
CCR5

To increase MDSC and inhibit T cells
To promote MDSC expansion
To regulate the activation of MDSC
To inhibit immune activity

(27)
(46)
(44)
(12)
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found that inhibition of PGE2/P50/NO axis could prevent the

inhibitory function of MDSC and restore the functional effect of

anticancer immunotherapy. IFNg treatment block M-MDSC to

produce the tumor-promoting molecule nitric oxide (NO) and

PGE2, which promote nuclear accumulation of P50 NF-kB in

M-MDSCs, indicating that IFNg treatment may reverse NO-

mediated immunosuppression of MDSCs through PGE2/NO/

P50 pathways (53). It has been found in prostate cancer studies

that IL-23 produced by MDSCs can promote the development of

prostate cancer through activating androgen receptor pathways

in castration-resistant prostate cancer (CRPC), promoting cell

survival and proliferation in androgen deficiency. Therefore, IL-

23 blockage can resist MDSC-mediated castration resistance and

produce synergistic effects (54). The expansion of MDSCs is

induced in melanoma through NLRP3/IL-1 signaling, suggesting

that NLRP3 inhibitors may restore T cell function through

reducing the numbers of tumor MDSCs, and the combined

treatment with NLRP3 inhibitor and anti-PD-1 is more effective

(55). Therefore, Immunotherapy targeting related cytokines or

chemokines reverses the suppressive roles of MDSCs on T cells.
Therapeutic effects of MDSCS
on immunotherapy

In tumor treatment, the durable effects of surgery,

radiotherapy, and chemotherapy are relatively low, and

immunotherapy has a relatively higher and long-lasting

treatment outcome. However, Our data have demonstrated

that drug res i s tance i s common in most current

immunotherapies due to the immunosuppressive cells in the

TME, where MDSC-mediated immunosuppression represents a

potential mechanism of resistance to immunotherapy (36).

Targeting MDSCs may be an important strategy to overcome

immunotherapeutic resistance. In renal cell carcinoma (RCCs),

it was found that the recruitment of MDSCs into the tumors

induced by a tumor-promoting factor, IL-1b led to immune-

suppression on cancer cells. After combined treatment with both

anti-IL-1b and anti-PD-L1 antibodies, the number of PD-L1

+PMN-MDSCs was reduced in the tumors, blocking tumor

progression (56). In an LKB1-deficient NSCLC mouse model,

ELR+CXC chemokine promoted NSCLC development and
Frontiers in Immunology 05
increased levels of ELR+CXC chemokines were positively

correlated with the abundance of G-MDSCs in the TME. The

depletion of G-MDSCs by anti-Gr-1 antibodies or functional

blockade of G-MDSCs by ATRA reverses immunosuppression

and made LKB1-deficient tumors sensitive to anti-PD-1

treatment (27, 57).

In head and neck squamous cell carcinoma (HNSCC), the

infiltration numbers of CXCR1/2+CD15+ PMN-MDSCs and

CD14+ M-MDSCs with immunosuppressive function are

significantly increased. Researchers inhibit the infiltration of

CXCR2+ PMN-MDSCs into MOC2 tumors through dual

inhibitors of CXCR1/2 and SX-682 to enhance the CTL

infiltration and increase the therapeutic effects of adoptive

transfer of NK cells (12). In neuroblastoma patients,

researchers have developed genetically modified NK cells with

chimeric receptors NKG2D, which is a cytotoxic receptor

activated by non-classical MHC molecules expressed during

stressful events such as DNA damage, hypoxia or viral

infection. NKG2D is fused to the z chain of the cytotoxic T

cell receptor (NKG2D.z) to become NKG2D.z-NK cells (58).

Targeting MDSCs with NKG2D.z-NK cells inhibits the function

of MDSCs and improves the anti-tumor role of tumor-directed

chimeric antigen receptor (CAR)-modified T cells (CAR-T) in a

xenograft tumor model (59). The liver X nuclear receptor (LXR)/

apolipoprotein E (ApoE) axis has been implicated in enhancing

anti-tumor activity. LXRb and LXRa are two members of the

nuclear hormone receptor transcription factor family that drive

the transcriptional activation of ApoE and other genes involved

in cholesterol, fatty acid, and glucose metabolism. Studies have

confirmed that LXR and its transcriptional target ApoE can

reduce the abundance of MDSCs to inhibit melanoma

development (60). Therapeutic LXR agonists reduced the

abundance of MDSCs in a mouse tumor model (61).

Therefore, Targeting MDSCs treatment may improve the

immunotherapy results on the TME.

In the TME, some immunoglobulins are co-expressed in

immunosuppressive cells, influencing their immunosuppressive

roles (62). The tandem action of CD39 and CD73

ectonucleotidases expressed on MDSCs can convert ATP to

adenosine on Tregs which is thought to be important

mediators of immunosuppression in the TME (63, 64). In

NSCLC and melanoma, it was found that high expression
TABLE 2 Function of target protein on tumor MDSCs.

Tumor Target Function Ref

RCC
NSCLC
MOC2
HNSCC
Neuroblastoma
Melanoma

IL-1b/PD-1
Gr-1/ATRA
CXCR2
CXCR1/2
NKG2D
LXR/Apoe

To reduce the PMN-MDSCs
To block G-MDSC
To regulate NK cell function
To modulate immune activity
To improve the ability of T cells
To change the number of MDSCs

(56)
(57)

(50, 51)
(59)
(60)
(61)
frontie
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levels of CD39 and CD73 on tumor MDSCs are positively

correlated with tumor progression (65, 66). TGF-b was found

to trigger the phosphorylation of mammalian targets of

rapamycin, which subsequently activated hypoxia-inducible

factor-1a (HIF-1a) that induced CD39/CD73 expression on

MDSC to inhibit T cell function. Therefore, CD39/CD73 on

MDSCs may be the novel therapeutic target for tumor treatment

(67, 68). Their expression levels on MDSCs are reduced to slow

down the tumor progression (69). In the TME, the myeloid cell

receptor tyrosine kinases (RTKs) (i.e., TYRO3, AXL, and

MERTK) and their ligands (i.e., Gas 6 and protein S) suppress

immune responses. In tumor-bearing mice, the expressions of

TYRO3, AXL, and MERTK, and their ligands increased >20

folds in M-MDSCs and >15 folds in PMN-MDSCs. Mertk-/-,

Axl-/- and Tyro3-/- tumor models were revealed to reduce RTK

enzymatic activity, exhibit defective MDSC roles, and display

poor tumor migration capacity to tumor-draining lymph nodes

(TDLN) (70). The inhibition of TYRO3, AXL, and MERTK

reduced the immune suppression function of MDSCs in a

STAT3-dependent manner, increased CD8+ T cell infiltration

and enhanced treatment efficacy of anti-PD-1 treatment on

melanoma (71, 72). These findings suggest that TYRO3, AXL

and MERTK, are immunosuppressive and innate immune

checkpoint protein, whose inhibitors may improve the TME

through downregulating the roles of MDSCs.

CD33 is composed of type 1 membrane proteins and is a

transmembrane sialic acid-binding immunoglobulin-like lectin

(SIGLEC) possessing two immunoglobin domains that bind to

sialic acid and intracellular immunoreceptor tyrosine inhibitory

motif (ITIM) (73). CD33 is pathologically overexpressed on

MDSCs in blood and tumor tissues from cancer patients to

promote tumor growth. Therefore, targeting CD33+ MDSCs can

effectively reduce the immunosuppression of MDSCs, slowing

down tumor growth (74).
Synergistic roles of ICB and
targeting MDSCs

ICB and CAR-T therapies have provided further advantages

for cancer immunotherapy (75). Immune checkpoint inhibitors

target immune checkpoint molecules, primarily PD-1, PD-L1,

and CTLA-4 to restore anti-tumor immune function. Even

though some of checkpoint proteins (such as PD-L1) are

expressed on the surfaces of both tumor and MDSCs and a

few cancer patients show good long-lasting clinical effects after

ICB treatment, immunotherapeutic resistance develops in the

late stage of most solid tumors.

MDSCs in the TME induced by chemokines or cytokines

become major obstacle to compromise the effect of ICB (76, 77).

Targeting MDSCs may be a potential breakthrough for ICB (78). It

is reported that single immunotherapy treatment on the malignant

cholangiocarcinoma (CCA) is not effective due to complex TME.
Frontiers in Immunology 06
In a mouse model of CAA, PD-L1 is found to be mainly derived

from TAMs and MDSCs, promoting tumor progression (79). The

response rate for anti-PD-1 treatment is less than 10%. One of the

reasons is that the compensatory G-MDSCs mediate immune

evasion by impairing the T cell response, and the blockage of

TAM alone fails to slow down tumor progression (80). Indeed, the

survival time in mice with CCA was longer after combined

treatment of G-MDSCs-specific antibodies (i.e., anti-Ly6G

antibody, anti-PD-1 antibody and anti-CSF1R antibody),

compared with single-antibody treatment (81). In an advanced

gastric cancer mouse model, it was found that anti-PD-1 treatment

alone was ineffective, since strong infiltration of PMN-MDSCs into

tissues inhibited the immune function of CD8+ T cells by

increasing the expression of some chemokines or cytokines (i.e.,

ROS, NO, arginase-1, PGE-2) and interacting with PD-L1/PD-1.

Therefore, combination therapy of both blocking PD-1 and

targeting MDSCs may overcome the drug resistance in the single

immune checkpoint inhibitor treatment (82). In the TME, hypoxia

attracts immunosuppressive cells such as MDSCs and TAMs,

which are important components of TME, upregulated the

expressions levels of both immune checkpoint receptors (such as

PD-1 and CTLA-4) and their ligands (such as PD-L1, PD-L2,

CD80, and CD86), and induced rapid and selective upregulation of

PD-L1 on MDSCs, which is mainly dependent on hypoxia-

inducible factor 1a (HIF-1a) rather than HIF-2a. The blockage

of PD-L1 under hypoxia reverses the immunosuppressive roles of

MDSCs on T cell activation, accompanied by down-regulation of

IL-6 and IL-10 in MDSCs. Thus, co-blocking of PD-L1 and HIF-

1a reduces the immunosuppressive activity of both MDSCs and

TAMs to inhibit tumor development (83). In HNSCC, it was found

that the efficacy of anti-CTLA-4 treatment was not significant,

mainly due to the recruitment and accumulation of MDSCs. The

combined treatment of both G-MDSCs depletion and CTLA-4

inhibitor can achieve an excellent anti-tumor treatment (50). In

triple-negative breast cancer (TNBC), aberrant SMAD3 activation

promotes metastasis of TNBC through the recruitment of MDSCs.

SMAD3 is identified as a non-histone substrate of lysine

acetyltransferase 6A (KAT6A). Targeting KAT6A in

combination with anti-PD-L1 therapy in TNBC-bearing

xenografts models reduced MDSC recruitment, significantly

alleviated metastasis potential and increased overall survival (84).

For advanced prostate cancer (PCa), the majority of patients are

resistant to ICB, due to the accumulation of MDSCs. ICB

synergizes with targeting MDSCs therapy with multikinase

inhibitors (such as cabozantinib and BEZ235) exhibited stronger

anti-tumor activity (85). The inhibition of CXCR4 can promote T-

cell infiltration through diminishing the immunosuppressive roles

of MDSCs in pancreatic ductal adenocarcinoma (PDAC) (86, 87).

Indeed, a clinical study using the combined treatment, including

CXCR4 antagonist BL-8040 (motixafortide), Pembrolizumab and

chemotherapy has been displayed to increase CD8+ effector T cell

infiltration and decrease MDSC infiltration, leading to tumor

suppression (88). Therefore, the combination immunotherapy of
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ICB and targeting MDSCs may provide some evidence for their

clinical efficacy Table 3.

Recent studies found that serine/threonine kinase PIM1 was

upregulated in MDSCs in melanoma, which was closely associated

with increased FAO and PPARg-driven lipid metabolism in

MDSCs. the increased expression of PIM is negatively related to

the therapeutic effect of ICB (89, 90). The inhibition of PIM1 on

MDSCs led to the reduced number of MDSCs in the TME,

restoring the anti-tumor function of cytotoxic T cells, improving

the efficacy of PD-L1 blockade, and overcoming the resistance in

ICB-resistant patients (91). In PDAC, CD200 (OX-2; OX-90), a

regulator of myeloid cell activity, whose expression is upregulated

(92). In preclinical studies, the expression levels of CD200 were

elevated in MDSCs in PDAC. The blockade of anti-CD200

antibody reduced the number of intra-tumoral MDSCs,

restricting PDAC tumor growth and significantly enhancing the

anti-tumor efficacy of ICB and anti-PD-1 antibody (92, 93).

Therefore, in the TME, targeting both MDSCs and their surface

proteins may reverse the immunotherapy resistance to tumor,

providing the theoretical basis and potential breakthrough for

clinical treatment of cancer using immunotherapies.
Potential of immunometabolic
therapy in MDSC

During tumor development, competent metabolic programs

promote the proliferation and migration of tumor cells and

enhance the immunosuppressive tumor microenvironment

(TME) (94, 95). In addition, the exaggerated metabolic activity

allows cancer cells to hijack essential nutrients and outcompete

neighboring invasive immune cells, thereby weakening anti-tumor

immunity (96). As the main heterogeneous population of

immunosuppressive cells, MDSCs can be regulated by various

mechanisms to affect tumor development, and can also change the

metabolic environment of its surrounding environment to exert

immunosuppressive function (97, 98). It has been found that the

combination of bone marrow (BM) precursors with GM-CSF and

IL-6 in vitro has been found to activate L-arginine metabolic

enzymes responsible for the immunosuppressive potential of

MDSC. The inhibition of L-arginine metabolism enzymes in
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MSC-1 cells, one cell line derived from primary MDSC, was

found to reduce AMPK activity in MSC-1 cells. Subsequently,

the inhibition of AMPK activity by specific inhibitor compound C

(COMP-C) resulted in the inhibition of L-arginine metabolic

enzyme activity to eliminate the immunosuppressive activity of

MDSCs (99, 100). The glycolytic metabolite phosphoenolpyruvate

(PEP), an important antioxidant, can prevent excessive ROS

production, thus reducing the accumulation of MDSCs and

inhibiting their immunosuppressive roles. These findings suggest

that glycolytic metabolites play an important role in regulating

MDSC and may be a potential target (101). In addition, fatty acid

metabolism is also proved to be an important part of the

development and functional role of MDSC (100, 101).

Polyunsaturated fatty acids (PUFA) promote the accumulation

of MDSC and enhances the immunosuppressive function of

MDSC on T cells through activating the JAK/STAT3 pathway.

JAK inhibitor JSI-124 almost completely prevented the effect of

PUFA on MDSCs, indicating that fatty acid metabolism may play

an important role in the function of MDSC (102, 103). Similar

increases in fatty acid uptake and FAo-related enzyme expression

are also observed in MDSCs from blood and tumors in Lewis lung

cancer (LLC) and McA-38 colorectal adenocarcinoma mouse

models. It was also found that MDSCs promoted the increased

fatty acid uptake and activated fatty acid oxidation (FAO) (104).

The inhibition of FAO alone delays tumor growth and plays an

anti-tumor role. FAO inhibition combined with low-dose

chemotherapy can completely inhibit the immunosuppressive

effect of MDSC, providing better treatment for anti-tumor

therapy (105). Therefore, immune-metabolic therapy is now

emerging as a major breakthrough direction in the study of

MDSCs, which will provide a new strategy for anti-tumor therapy.
Conclusion and prospects

The review focuses on immunotherapies against MDSCs and

their therapeutic efficacy. In the TME, MDSCs have become the

main obstacle to immunotherapy, since they lead to

immunotherapeutic resistance. The accumulation of MDSCs can

be reduced after targeting chemokines or inflammatory factors,

improving the TME and suppressing tumor growth. Moreover,
TABLE 3 Combination immunotherapy of targeting MDSCs and ICB .

Tumor ICB Target Synergistic roles Ref

CCA
GC
Cancer
HNSCC
TNBC
PCa
PDAC

ly6G/PD-1/CSF1R
PD-1
PD-L1/HIF-1a
CTLA-4
KAT6A/PD-1
BEZ235/mCRPC
CXCR4/PD-1

To inhibition G-MDSC
To inhibition resistance of ICI
To inhibit tumor development
To enhance sensitivity of CTLA-4 inhibition
To reduce the recruitment of MDSCs
To antitumor activity
To reduce MDSC

(78)
(80)
(83)
(84)
(84)
(85)

(86, 87)
frontie
CCA, Cholangiocarcinoma; GC, Gastric carcinoma; HNSCC, Headneck squam ous Cell Carcinoma; TNBC, Triple-Negative Breast Cancer; PCa, prostate cancer; PDAC, Pancreatic
ductal adenocarcinoma.
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combination treatment with both ICB and targeting MDSCs can

effectively inhibit tumor development and progression. These data

suggest the effectiveness of targeting MDSCs in TME. Many

scientists have conducted in-depth explorations of the

immunoglobulins expressed on MDSCs to reveal the regulatory

mechanism of these immunoglobulins on the function of MDSCs.

However, the functional mechanisms of many immunoglobulins

expressed on MDSCs need to be investigated further. In

conclusion, immunotherapies targeting MDSCs have significantly

increased efficacy and can suppress tumor activity, showing a

strong potential to be a new therapeutic strategy for the

immunotherapeutic treatment of cancer.
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