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Abstract: Increased serum levels of uric acid have been associated with the onset and development
of chronic kidney disease (CKD), cardiovascular disease, and mortality, through several molecular
pathogenetic mechanisms, such as inflammation and oxidative stress. Oxidative stress is present even
in the early stages of CKD, progresses parallelly with the deterioration of kidney function, and is
even more exacerbated in end-stage renal disease patients undergoing maintenance hemodialysis.
Although acting in the plasma as an antioxidant, once uric acid enters the intracellular environment;
it behaves as a powerful pro-oxidant. Exogenous intake of antioxidants has been repeatedly shown
to prevent inflammation, atherosclerosis and oxidative stress in CKD patients. Moreover, certain
antioxidants have been proposed to exert uric acid-lowering properties. This review aims to present
the available data regarding the effects of antioxidant supplements on both oxidative stress and uric
acid serum levels, in a population particularly susceptible to oxidative damage such as CKD patients.
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1. Introduction

In humans, uric acid is the final product of purine catabolism, excreted mainly by the kidneys
through tubular transporters. The enzyme xanthine oxidase (XO) is responsible for generating uric acid
by catalyzing the oxidation process of hypoxanthine to xanthine and then to uric acid [1]. Due to its
renal excretion, any decrease in the glomerular filtration rate is accompanied by subsequent retention
of uric acid. To counteract the impaired renal function in chronic kidney disease (CKD), there is a
compensatory gut uric acid removal, though not adequate as CKD progresses. As a result, serum uric
acid increases, with approximately 50% of patients starting hemodialysis (HD) being hyperuricemic [2].
Accumulating evidence suggests that hyperuricemia is not only a result but also a risk factor for
CKD [3], through several molecular pathogenetic mechanisms. Besides impaired renal function, other
conditions associated with cardiovascular disease (CVD) and high mortality, like obesity, diabetes,
hypertension, and metabolic syndrome, have emerged as risk factors for hyperuricemia.

The mechanisms underlying the association between hyperuricemia and mortality, CVD, renal
injury, and progression of CKD are yet unclear. Recently a close relationship between uric acid and
oxidative stress (OS) has been highlighted. OS is defined as the imbalance between antioxidants and
the production of pro-oxidants in favor of the latter, with subsequent injury in tissues and organs.
Accumulation of oxidants such as reactive oxygen species (ROS) leads to oxidation of DNA, proteins,
carbohydrates, and lipids, cell apoptosis, and organ dysfunction. To counteract the hazardous effects
of oxidants, the human body excretes antioxidants that bind directly to pro-oxidants, which neutralizes
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them and prevents any damage. OS is present even in the early stages of CKD, progresses parallelly
with the deterioration of kidney function, and is even more exacerbated in end-stage renal disease
(ESRD) patients undergoing maintenance HD [4]. Moreover, it is also recognized as a novel risk
factor of mortality and CVD in this population. Therefore, the interrelationship between uric acid, OS,
and endothelial injury—especially in CKD patients—is of great importance.

Exogenous intake of antioxidants has been repeatedly shown to prevent inflammation, atherosclerosis,
and OS in CKD and dialysis patients [5,6]. Moreover, certain antioxidants have been proposed to exert
uric acid-lowering properties. This review aims to present the available data regarding the effects of
antioxidant supplements on OS and uric acid serum levels, especially in a population particularly
susceptible to oxidative damage such as CKD patients.

2. Uric Acid and CKD

There is a growing body of associative evidence suggesting causation between hyperuricemia and
progression of renal disease, through several pathogenetic mechanisms. Firstly, the precipitation of
uric crystals in the glomeruli can cause direct renal damage. However, it has been shown that increased
uric acid in serum can cause glomerular hypertrophy and systemic/glomerular hypertension through a
crystal-independent mechanism [7]. Furthermore, several researchers suggest that the deterioration
of renal function observed in hyperuricemic patients might be due to co-existing conditions such as
vascular calcification, obesity and hypertension and not to the elevated serum uric acid per se [8].
Other mechanisms include uric acid-derived hypertension, endothelial dysfunction, inflammation and
both renal and systemic OS.

In vitro, uric acid triggered a phenotypic alteration of renal tubular cells with subsequent
deterioration of renal function and production of intrarenal inflammation and OS markers [9].
In rats, chemically-induced hyperuricemia was associated with decreased renal function mainly
due to enhanced OS, systemic and glomerular hypertension, glomerular hypertrophy, and vascular
damage [10,11]. The deleterious effect of hypertension on oxidative balance and the kidney is
well-established [12]. Similarly, Johnson et al. suggested that even in the case of mild hypertension,
elevated serum levels of uric acid might lead to systemic and renal endothelial dysfunction, loss of
kidney autoregulation, and subsequently the development of albuminuria and progressive decrease in
estimated glomerular filtration rate (eGFR) [13]. The effects of uric acid in the kidney are summarized
in Table 1.

Table 1. The effect of elevated serum uric acid in the kidney.

Pathogenetic Mechanisms Effects on Kidney Systemic Effects

Accumulation of uric crystals [7] Glomerular hypertension Hypertension
Stimulation of RAAS [14,15] Glomerular hypertrophy-sclerosis Diabetes mellitus

Stimulation of T-cells and macrophages [7,16] Tubulointerstitial disease Obesity
Activation of MCP-1, NkF-kB, TNF-a [16] Renal arteriolar sclerosis-ischemia Non-alcoholic fatty liver disease
Activation of NO, NADPH oxidase [10] Renal ischemia Inflammation

Mitochondrial dysfunction [10] Albuminuria Metabolic syndrome
Phenotypic change of renal tubular cells [8,9,11] Loss of eGFR Arteriosclerosis

Endothelial dysfunction [10,13,15,17] Acute kidney disease Oxidative stress

Data from animal models suggest that hyperuricemia might trigger the progression of CKD mainly
by causing glomerular and systemic hypertension. However, in CKD, this pathogenetic pathway
is secondary, since the rise of blood pressure is primarily due to water and sodium retention. That
might be the reason why, in patients with renal disease, uric acid was not found to be an independent
predictor of disease progression [18,19]. On the other hand, data from large epidemiological studies
show that even in subjects with normal kidney function, hyperuricemia is a strong risk factor for the
onset of CKD [3].

In various populations with renal dysfunction, uric acid has been associated with adverse renal
outcomes. In type 1 and 2 diabetics, high uric acid was repeatedly shown to be a strong and independent
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predictor of diabetic kidney disease progression [20–22]. Data from prospective and cross-sectional
studies suggest a clear, dose-responsive association between uric acid and the risk of progression of
diabetic nephropathy, defined as a decline in eGFR and development of albuminuria [23,24].

In IgA nephropathy patients, serum uric acid has been repeatedly shown to be closely associated
with renal prognosis. Several investigators highlighted that serum uric acid was a novel, previously
underestimated risk factor for deterioration of renal function and adverse outcomes in patients with IgA
nephropathy [25–27], predicting renal injuries associated with enhanced OS such as tubulointerstitial
injury and diffuse proliferative glomerulonephritis [28].

Akalin et al. followed 307 patients who had received a kidney transplant for 4.3 years. The authors
found that after adjustment for several risk factors including age, sex, race, and receiving a cadaveric
kidney, new onset of CKD—defined as eGFR < 50 mL/min—was strongly associated with high serum
uric acid levels. Moreover, at the end of follow-up, hyperuricemia was a strong and independent
predictor of cardiovascular events, graft failure, and chronic allograft nephropathy [29].

To investigate whether elevated serum uric acid is associated with onset of CKD, Li et al. conducted
a systematic review and meta-analysis, including 13 studies and 190,718 subjects. After long-term
(defined as over five years) follow-up of subjects without CKD, high serum uric acid levels were found
to be a strong, independent risk factor for the development of new-onset CKD with an odds ratio
of 2.35 (95% CI, 1.59–3.46), [30]. Moreover, a large population-based retrospective cohort study in
111,992 hyperuricemic patients showed that after three years of follow-up, those who achieved serum
uric acid levels below 6 mg/dL exhibited a 37% reduction in renal events (defined as a reduction in
eGFR more than 30 mL/min or onset of ESRD) [31]. Su et al. performed another systematic review
and meta-analysis to explore the effects of treatment with urate-lowering therapy on the major clinical
outcomes of kidney disease. Sixteen prospective, randomized controlled studies were included with
1211 CKD patients. The authors found that treatment with uric-acid lowering agents was accompanied
by a significant 60% reduction in relative risk (RR) for cardiovascular events (95% CI, 17–62) and a 55%
RR reduction in kidney failure related events (95% CI, 31–64) [32].

3. Uric Acid and OS

Hyperuricemia is a risk factor for the onset and development of CKD and adverse outcome in
CKD patients. One of the most crucial effects of uric acid in the kidney is the triggering of OS.

Uric acid acts as a strong antioxidant in plasma, but after entering the cell environment, it promotes
OS. In vitro and in vivo studies have shown that uric acid is one of the most selective antioxidants in
plasma, capable of neutralizing important and dangerous pro-oxidants such as peroxynitrite, hydroxyl,
and iron-containing free radicals. Furthermore, it is thought to be the most important antioxidant in
plasma, conferring about 60% to the total plasma antioxidant capacity in humans [33]. At physiological
levels, uric acid abrogates the organ injury mediated by activated polymorphonuclear blood and
erythrocyte cells, that are well-established producers of free radicals [34]. Superoxide dismutase (SOD)
is an effective antioxidant that prevents damage from free reactive oxygen species. Data from in vitro
and in vivo studies suggest that uric acid preserves the structure and function of extracellular SOD,
by preventing its oxidative neutralization mediated by atherosclerosis [35,36]. Another antioxidant
function of uric acid is that it protects DNA from oxidative damage and mediates the repair of any
nuclear area that was exposed to oxidation [37]. It has also been suggested that the presence of the
uricase gene mutation was associated with increased serum levels of uric acid, increased antioxidant
capacity, and significantly diminished OS, associated with advanced aging and carcinogenesis [38].
Data from studies in various populations, including healthy subjects, smokers, type 1 diabetics,
and patients with CVD suggested that infusion of uric acid resulted in significant improvement of total
antioxidant capacity and preservation of endothelial function [39–43].

Although there is accumulating evidence highlighting the antioxidant properties of uric acid in
the circulation, data from several clinical studies have clearly shown that uric acid is associated with
endothelial damage (the first, crucial step towards atherosclerosis), hypertension, and CVD [17,44,45].
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While uric acid is a scavenger of oxidants in the extracellular environment, once it gets inside the cell
it behaves as a pro-oxidant, via several mechanisms: activation of peroxynitrite-mediated oxidation
of lipids [46], stimulation of pro-inflammatory biomarkers, and reduction of the antioxidant nitric
oxide (NO) endothelial levels. The mechanisms underlying the paradoxical phenomenon of uric
acid inducing OS inside the cell, while acting as an antioxidant in the extracellular environment
remain unknown. Uric acid might act as a pro-oxidant in the hydrophobic environment inside the
cell, as opposed to the hydrophilic extracellular environment [46]. Another possible explanation
might be that after binding of uric acid to pro-oxidants, such as peroxynitrite, the degradation process
produces both ROS and alkylating compounds [47] that might easily dissolve into the circulation in
the extracellular environment, but in the cellular environment, they could act as free radicals.

After incubation of human aortic cells with soluble uric acid, there was a stimulation of
nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, with a subsequent release of
free radicals that led to the excessive OS in the mitochondria [10]. Another study showed that after
exposure of rat vascular smooth muscle cells to uric acid, there was an excessive accumulation of
OS biomarkers, such as 8-isoprostanes and hydrogen peroxides that was partially reversed after
incubation with renin-angiotensin-aldosterone system (RAAS) blockers (antihypertensive drugs), such
as losartan or captopril [14]. The authors suggested that uric acid triggers OS and vascular damage
through the stimulation of the RAAS. In agreement with these results, uric acid triggers excretion
of angiotensin II from vascular cells in vitro and stimulates expression of renin in experimental
models [7,14,15]. Similarly, Yu et al. found that exposure of human, umbilical vein endothelial cells
to uric acid (even at physiological levels of 6 mg/dL) triggered time and dose-dependent oxidative
burst-assessed by overproduction of ROS- and subsequent oxidative cell damage leading to apoptosis.
Moreover, hyperuricemia-mediated OS activated RAAS to induce further endothelial damage and
was successfully abrogated by probenecid, a urate-lowering agent that blocks entry of uric acid into
cells [15]. The authors concluded that OS triggered by uric acid in vascular cells might play a role in
aging and apoptosis of endothelial cells.

However, uric acid might trigger OS through other molecular pathways, as well, such as renal and
systemic inflammation. Inflammation and OS are tightly linked entities, with one causing the other,
especially in CKD [48]. Zhou et al. found that induction of hyperuricemia in mice was accompanied by
infiltration of the inflammatory macrophages and T-cells in the kidneys and activation of inflammatory
biomarkers, such as tumor-necrosis factor alpha (TNF-a), nuclear factor kappa-B (NF-kB), and monocyte
chemoattractant protein-1 (MCP-1) [16]. Since it is well established that inflammation triggers the
formation of ROS [49], uric acid might induce OS through its pro-inflammatory action. In agreement
with these results, another in vitro study showed that the exposure of human endothelial and vascular
smooth cells to uric acid was accompanied by upregulation of the inflammation status and the
subsequent increase in C-reactive protein (CRP) in the intracellular environment. Moreover, uric acid
abrogated the release of the antioxidant NO in human vascular smooth cells. The authors suggested
that the entry of uric acid into cells is responsible for the reduction of antioxidant mechanisms and
activation of CRP [50].

Data from animal models also showed that hyperuricemic rats developed excessive OS with
subsequent damage of renal mitochondrial integrity and the vasculature [10,51]. In another study,
normal and nephrectomized rats were treated with oxonic acid (an inducer of hyperuricemia) in order
to develop hyperuricemia with or without allopurinol, a uric acid reducer. In normal rats, elevated
serum uric acid levels were accompanied by glomerular hypertension, thickening of the afferent renal
arteriole, and a 35% decrease in the single nephron glomerular filtration rate, while treatment with
allopurinol successfully prevented all morphological and functional changes. Compared to normal,
the nephrectomized rats exhibited significantly greater hyperuricemia-induced damage in the renal
vasculature. In these animals, treatment with the urate-lowering agent allopurinol could not fully
prevent renal vascular injury. The authors of the study suggested that thickening of the renal arteries
resulting in glomerular hypertension, ischemia, and tubulointerstitial inflammation and subsequently
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enhanced OS could be a mechanism explaining the linkage between uric acid, hypertension and
CKD [52]. In another study with a similar design, after mild hyperuricemia was induced in normal and
5/6 nephrectomized rats, the authors found that hyperuricemia caused significant changes in systemic
and renal hemodynamics, with subsequent loss of renal autoregulation and onset of inflammation and
OS in the nephrectomized animals [53]. Similarly, Sanchez-Lozada et al. showed that experimental
hyperuricemia in rats triggered the accumulation of free radicals and significantly reduced the
synthesis of the antioxidant scavenger NO, as documented by the reduced levels of NO in urine [54].
The authors concluded that even mild hyperuricemia is accompanied by enhanced OS and accelerated
endothelial dysfunction.

Moreover, in various settings, several investigators have found that the treatment with XO
inhibitors (urate-lowering agents) might also abrogate the development of endothelial dysfunction,
a well-known precursor of OS and atheromatosis [55–57].

Data from experimental studies suggest that uric acid and hyperuricemia lead to inflammation
and OS, activate RAAS, and cause cell apoptosis, hypertension, endothelial, and severe structural
injury in the kidney of animals in vivo. Although acting as an antioxidant in the plasma, once it enters
the cell, uric acid promotes oxidation of lipids, proteins, DNA, and carbohydrates [47]. Lowering of
uric acid can abrogate and partially reverse the OS and uric acid-induced cellular damage.

4. The Effect of Antioxidant Supplements in the Reduction of Uric Acid and OS

It is well-established that dietary interventions are crucial for lowering serum uric acid. Similarly,
diets rich in antioxidants could reduce OS. Following this path, several investigators proposed
supplementation with exogenous antioxidants to counteract the deleterious synergistic effects of
hyperuricemia and OS.

5. Vitamins C and E

Vitamin E is a fat-soluble vitamin containing eight compounds, four tocopherols and four
tocotrienols with pleiotropic health benefits and strong antioxidant capacity. Vitamin C (or ascorbic
acid) is an essential nutrient with scavenging activity. It binds directly to the superoxide anion and
hydroxyl radicals and de-activates them. It is known from epidemiological studies that one of the
first lifestyle changes suggested for hyperuricemic patients is increased dietary intake of fruits and
vegetables that are rich in Vitamin C [58]. Vitamin C, uric acid, and OS are involved in a complex
interrelationship. Every time uric acid prevents oxidative neutralization of the antioxidant SOD,
a urate radical is formed. This compound does not bind with oxygen like other free radicals [37] and
is regenerated to urate by ascorbic acid [59]. Therefore, ascorbic acid has been suggested to enhance
the antioxidant effects of uric acid [59,60] and serum urate has been shown to stabilize ascorbic acid
in the tissues [61]. Data from in vitro and in vivo studies suggest that Vitamin C reduces serum uric
acid levels through several mechanisms by inhibiting uric acid synthesis [62], by increasing urinary
excretion [63] and fractional renal clearance of uric acid [64], and by directly decreasing ROS-derived
cell damage [65,66]. Moreover, Vitamin C is able to regenerate the active form of the antioxidant
Vitamin E and therefore combined therapy with both vitamins results in a synergistic antioxidant,
anti-inflammatory and anti-atherogenic effect [67]. Vitamin E is a lipid-soluble nutrient that protects
the integrity of cell membranes by scavenging ROS and blocking the chain of oxidative reactions
leading to OS injury of cells. It has been shown in diabetics that after a standardized meal, there is an
overproduction of free radicals -assessed by malondialdehyde (MDA)- in plasma, accompanied by
a reduction in Vitamin E levels. Therefore, dietary supplementation of Vitamin E could ameliorate
meal-generated OS in these high-risk patients [68].

5.1. Combination of Vitamin C and E

In vivo, after rats were subjected to ethanol (a pro-oxidant chemical compound also known as ethyl
alcohol)-derived OS, uric acid serum levels were elevated, and local and systemic OS status significantly
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enhanced. However, these effects of ethanol were successfully reversed after three days of supplementation
with a combination of antioxidants (ascorbic acid, a-tocopherol and, selenium). The authors found that the
intake of these antioxidants improved the ethanol OS-induced hyperuricemia, probably through their
antioxidant activity [69]. Similarly, Rodrigues et al. found that hypoxanthine (a key enzyme responsible
for the generation of uric acid in the metabolism of purines) triggered an acute oxidative burst in the
renal cortex and medulla of rats, by reducing the antioxidant defense mechanisms and promoting
lipid peroxidation. Administration of the urate-lowering agent allopurinol alone or together with the
antioxidant Vitamins C + E abrogated most of the OS alterations observed [70]. Moreover, allopurinol
seemed to improve OS status to a greater extent compared to exogenous antioxidant vitamins. This was
probably due to the fact that allopurinol abrogates the production of these superoxide anions by directly
blocking XO, while the antioxidant Vitamins C + E merely try to sweep up the excessive ROS that
has been formed and released to the circulation. Since both allopurinol and the antioxidant vitamins
ameliorated the oxidative damage elicited by hypoxanthine, via different mechanisms, the authors
proposed supplementation with antioxidants in addition to standard therapy with allopurinol for the
treatment of hyperuricemic OS. On the other hand, data from the Nutrition and Health Survey in
Taiwan (NAHSIT), a large cohort, a nationwide survey on 2176 adults from the general population
showed that there was no association between dietary intake of Vitamin C and E and serum levels of
uric acid [71]. This lack of association could be attributed to several reasons, such as the observational
design of the study and the fact that the plasma levels of Vitamins C + E were not determined.
Furthermore, the dietary intake of the vitamins was evaluated by food questionnaires and 24-h diet
recall, and therefore, the data collected might not be precise.

5.2. Vitamin C

Epidemiological data from a cross-sectional study in 9010 subjects from the general population
showed that the dietary intake of Vitamin C was significantly lower in hyperuricemic subjects,
compared to those with normal serum uric acid [72]. Another large, prospective study proposed
a close relationship between high dietary Vitamin C intake and low future risk of gout in men.
The increased dietary Vitamin C intake of 1.5 g per day conferred a 45% lower risk of incidence of
gout [73]. Several investigators have suggested that Vitamin C has uricosuric properties, and therefore,
might be considered for the management of hyperuricemia. Stein et al. first showed that an increased
dose of ascorbic acid (4 g orally) doubled the urinary excretion of uric acid in 14 healthy volunteers [64].
Similarly, large doses of 3 g per os daily intake of ascorbic acid in six healthy subjects for a week
resulted in a transient increase in urinary removal of uric acid [74]. Since ascorbic and uric acid are
both reabsorbed by the kidney in the proximal tubule, it is hypothesized that ascorbic acid intake
induces increased urine excretion and decreased renal reabsorption of uric acid due to the competition
by ascorbic acid for the renal transport at a common proximal tubular site [75].

Huang et al. conducted a randomized, double-blind, placebo-controlled study to investigate
the possible impact of Vitamin C intake on serum uric acid levels. One-hundred and eighty-four
healthy volunteers were randomized to receive either placebo or Vitamin C (500 mg orally daily) for
two months. At the end of the study period, supplementation with Vitamin C decreased serum uric
acid levels and increased eGFR [76]. Similarly, two observational general population-based studies
in 1387 and 68 men, respectively, showed a significant inverse association between serum uric acid
levels and plasma ascorbic concentration [77] or dietary intake of Vitamin C [65]. To assess the effect of
Vitamin C supplementation on serum acid concentrations in dialysis patients, Biniaz et al. performed
a randomized, multicenter, placebo-controlled study on 172 patients undergoing maintenance HD.
At baseline, nearly half (46.75%) of the patients included in the study had uric acid serum levels above
6 mg/dL. All patients were randomly allocated to the treatment group that received intravenous 250 mg
of Vitamin C thrice weekly after every HD session for two months and the two control groups that
received either nothing or placebo intravenous normal saline. After the study period, compared to
controls, the Vitamin C group exhibited a significant decrease in serum uric acid concentrations [78].



Nutrients 2019, 11, 1911 7 of 18

Moreover, Vitamin C supplementation resulted in a significant decrease of circulating CRP levels [79].
The authors concluded that since HD is a state of enhanced OS and inflammation characterized by
decreased antioxidant activity and high incidence of hyperuricemia, Vitamin C supplementation
could have multiple beneficial effects in chronic HD patients. Another randomized study found
that compared to placebo, daily intravenous administration of Vitamin C (500 mg for 10 days) in
patients with acute ischemic stroke resulted in a significant reduction of OS biomarkers and uric acid
serum levels [80]. In disagreement with these results, another randomized controlled trial enrolled
40 patients with gout and serum uric acid above 6 mg/dL and found that compared to allopurinol,
Vitamin C (500 mg/day for eight weeks) supplementation had no significant effect on serum levels
of uric acid and uric acid urinary excretion [81]. These findings could be explained due to several
factors: firstly, the uricosuric effect of Vitamin C could be weak, secondly the dose of Vitamin C was
relatively small, and thirdly, several of the study participants received other medications, such as
diuretics and acetylsalicylic acid that could interact with Vitamin C. To investigate the effect or oral
Vitamin C administration on serum levels of uric acid, Juraschek et al. performed a meta-analysis
that included 13 randomized controlled trials on 556 subjects [63] and concluded that Vitamin C
supplementation was accompanied by a significant decrease in serum uric acid levels. Moreover, trials
that administered Vitamin C at a dose of 500 mg/day or higher showed a more pronounced effect on
serum uric acid levels.

5.3. Vitamin E

Animal models of experimental hypertension exhibited hyperuricemia and a decrease in urinary
excretion of uric acid within a week. However, treatment with Vitamin E lowered blood pressure,
decreased uric acid in the serum, and had a significant uricosuric effect [82]. The combined treatment
of Vitamin E and allopurinol successfully abrogated the oxidative response that was triggered in rats’
liver and brain after exposure to cypermethrin (a broad-spectrum insecticide, highly toxic to human
and animals) [83].

Kuroda et al. failed to show any association between serum uric acid and vitamin E levels
(well-known antioxidants) and the total antioxidant capacity in a cohort of 111 patients with CKD
(13 in stage 1–4, 11 ESRD and 87 HD) [84]. Since OS is progressively enhanced in CKD and further
exacerbated in dialysis patients, several investigators explored whether supplementation with Vitamin
E could have antioxidant and hypouricemic effect in dialysis patients. In a recent systematic review
and meta-analysis, D’Arrigo et al. investigated the effects of Vitamin E coated versus conventional
membranes in HD patients. Sixty studies and 2118 patients were included. Although the use of
Vitamin E membranes was found to decrease inflammation and OS significantly, it had no impact on
serum uric acid levels [85]. However, in a small cohort of 14 PD patients, daily oral intake of 400 mg of
Vitamin E reduced the plasma MDA levels but failed to alter the uric acid serum concentration [86].
This could be attributed to the fact that serum levels of uric acid were within the normal range during
the whole study.

Vitamin C is the most studied dietary antioxidant. Through several mechanisms, Vitamin C
can abrogate OS and reduce serum uric acid levels. There is a growing body of evidence suggesting
that daily supplementation of Vitamin C combined with a standard urate-lowering therapy could be
beneficial for hyperuricemic patients.

6. Polyphenols

Plant-derived polyphenols are compounds offering protection against aging, cancer, atherosclerosis,
and diabetes, probably due to their antioxidant and anti-inflammatory properties [87]. Cicero et al.
conducted a randomized, double-blind, placebo-controlled clinical trial to investigate the effect of apple
polyphenols on uric acid, compared with the standard urate-lowering agent, allopurinol. Sixty-two
overweight subjects were randomly allocated to either receiving 300 mg of apple polyphenols daily via
oral intake or placebo for two months. Treatment with polyphenols significantly reduced circulating
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uric acid and had a protective effect against vascular OS, probably through inhibition of the enzyme
XO [88]. There is accumulating data suggesting that bergamot derived polyphenols, could be used for
management of hyperuricemia and amelioration of uric acid-derived OS, through their dual effect as
XO inhibitors and antioxidants as ROS scavengers [89].

7. Flavonoids

Flavonoids are natural substances included in polyphenolic structures, found in vegetables, fruits,
tea, grains, and wine. They are the most studied group of polyphenols. Besides their anti-inflammatory
and anti-oxidative properties, flavonoids are involved in the activity of important enzymes, such as
XO. Due to their molecular structure, these natural antioxidants act as direct superoxide scavengers
and XO inhibitors, resulting in the suppression of ROS and uric acid formation [90,91].

There is a growing body of evidence showing that flavonoids exert significant antioxidant and
hypouricemic activities in vitro and in vivo. In vitro, the flavonoids luteolin, silibinin and quercetin
were found to be competitive inhibitors of bovine XO. Moreover, quercetin and luteolin decrease the
rate of superoxide anion formation by XO and lower uric acid levels [92]. In vitro, supraphysiological
doses of quercetin were also found to be 100 times more powerful in scavenging ROS and inhibiting XO
activity compared to allopurinol (a uric acid reducer) [93]. In vivo, it has been shown that flavonoids
can reduce uric acid levels, through inactivation or downregulation of the enzyme XO [94,95].
Moreover, the inhibitory activity of flavonoids on XO is stronger than their direct scavenging ability
of free radicals [96]. However, Huang et al. suggested that flavonoid-including quercetin might
not affect uric acid levels in normal and hyperuricemic mice [97]. Of all 15 flavonoids, quercetin
was able to exert urate-lowering properties even at very low doses, in experimental models [95].
Similarly, oral administration of quercetin to chemically-induced hyperuricemic mice was accompanied
by a dose-dependent hypouricemic effect, through inactivation of xanthine dehydrogenase/XO
activities [98]. Moreover, in mice subjected to chemically induced hyperuricemia, administration of
quercetin lowered uric acid levels by increasing its urine excretion and protected the kidney from
hyperuricemic damage. The authors suggested another molecular pathway underlying the uricosuric
and nephroprotective functions of quercetin, through regulation of organic ion transporters and
uromodulin expression [99]. A recent study showed that supplementation of the flavonoid-rich fraction
of a Chinese herb, Smilax glabra Roxb, in Sprague Dawley rats with uric acid nephropathy for five
weeks resulted in either reduction of uric acid generation or enhanced urinary excretion, by activating
organic anion transporters [100]. Similarly, quercetin exhibited increased urinary removal, decreased
serum urate levels, and upregulation of organic anion renal transporters, in hyperuricemic rodents.
The results of this study highlighted that this dietary flavonoid might be beneficial for the management
of hyperuricemia with kidney damage [101]. Moreover, in another similar animal study, the treatment
with this flavonoid supplement significantly reversed urate-induced renal injury and inhibited renal
and systemic OS and inflammation status. The authors concluded that due to their effect on urate
excretion through the urine, flavonoids could suppress renal OS, inflammation and damage in uric
acid nephropathy rats [100]. Haidari et al. randomized 30 normal and 30 hyperuricemic Wistar rats to
receive standard diet (controls), allopurinol, or quercetin once daily per os for two weeks. Although
quercetin had no effect on the uric acid of normal rats, it significantly decreased serum uric acid
levels of the hyperuricemic animals in a time-dependent pattern, through the inactivation of XO.
Moreover, the treatment with flavonoids was accompanied by a significant rise in total antioxidant
capacity and reduction of malondialdehyde levels of hyperuricemic rats. Although the urate-lowering
effect of allopurinol was much stronger than that of quercetin, it had no beneficial effect on OS
biomarkers [102]. In animal models with induced diabetic nephropathy and hyperuricemia, quercetin
and allopurinol were found to ameliorate OS, prevent kidney damage and suppress renal inflammation,
via their hyperuricemic effect [103]. In another study, Renugadevi et al. induced cadmium (a divalent
metal highly toxic to humans and animals) nephrotoxicity in rats. Uric acid levels were significantly
elevated in serum and decreased in urine. Cadmium-mediated OS in the kidney and circulation was
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documented by a significant and acute increase of pro-oxidative biomarkers and a decrease of enzymic
antioxidants. The kidneys of the rats that received cadmium exhibited severe tubulointerstitial necrosis
and glomerular damage. Quercetin treatment prevented renal structural and functional damage caused
by cadmium, restored uric acid levels to normal and suppressed OS status. The authors concluded
that this flavonoid, through its antioxidant properties, could decrease the OS-induced elevated uric
acid in the serum of rats [104]. Shi et al. conducted a randomized, double-blind, placebo-controlled,
cross-over trial to investigate the effect of quercetin on uric acid. Twenty-two pre-hyperuricemic
patients (i.e., with uric acid in the high normal levels) were randomly divided to 500 mg of daily oral
quercetin or placebo for four weeks, with a wash-out period of one month between treatments and
the change in serum uric acid was assessed [105]. The authors found that treatment with quercetin
significantly lowered plasma uric acid levels by −26.5 µmol/L (95% CI, −7.6 to −45.5, p = 0.008).

Dietary flavonoids reduced uric acid levels, suppressed OS, and protected from kidney damage
in multiple animal studies. Since allopurinol failed to exert antioxidant properties, it is interesting to
hypothesize that combination therapy of allopurinol and selected flavonoids (such as quercetin) might
have pleiotropic effects on hyperuricemic CKD patients.

8. Tea

Tea, the leaf of Camelia sinensis, remains the most widely consumed drink worldwide, excluding
water. Of the six types of processed tea, consumption of black and green tea has been shown to
exert certain beneficial health effects. The main chemical components of tea are flavonoids (phenolic
compounds, mainly catechins), well known ROS scavengers. After tea consumption, tea catechins cause
a significant increase in antioxidant capacity in both plasma and gut [106]. Moreover, five catechins
and two flavonoid compounds that are found in tea can successfully inhibit the activity of the enzyme
XO [107]. Data from animal studies have shown that in hyperuricemic mice, green tea polyphenols
could decrease the serum concentration of uric acid in a dose-dependent manner, through the inhibition
of XO liver expression and modification of renal urate-anion transporters [108]. Since XO is involved
in purine metabolism and generates ROS and uric acid, it is suggested that besides antioxidant, tea
might also exert hypouricemic properties.

However, epidemiological data from the National Health and Nutrition Examination Survey
(NHANES) study in 14,758 general population subjects showed that only coffee and not tea consumption
was associated with decreased serum uric acid levels and a lower incidence of hyperuricemia [109].
In agreement with these results, a Korean epidemiologic study in 9400 general population participants
showed no effect of coffee or tea consumption on the risk of hyperuricemia [110]. Similarly, a cross-sectional,
multicenter study in 2240 middle-aged adults showed that only coffee and not green tea consumption
was inversely related to decreased serum acid levels [111]. In disagreement with these results,
in 483 general population subjects, Teng et al. found that compared to non-drinkers, those who
consumed green tea daily presented a dose-dependent and two-fold increase with hyperuricemia [112].
However, black tea or coffee consumption failed to show any association with hyperuricemia.
To investigate the possible hypouricemic and antioxidant effects of green tea in 30 healthy volunteers,
Jatuworapruk et al. conducted a randomized study with seven days wash-out, 14 days intervention,
and seven days follow-up design. The authors found that green tea caused a modest decrease in both
serum uric acid levels and uric acid clearance. Moreover, green tea significantly increased circulating
antioxidant capacity in a dose-dependent manner [113]. Furthermore, black tea intake was found to
cause a significant reduction in uric acid serum levels and serum CRP levels in patients susceptible
to cardiovascular disease [114]. However, a systematic review and meta-analysis of 15 observational
studies reported that green tea intake was not related to the incidence of gout and hyperuricemia or
serum uric acid levels [115].

The catechins in black and green tea scavenge free radicals and exert multiple beneficial health
effects. Although in vitro and in vivo studies showed that tea seemed to inhibit the activity of XO,
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and therefore, decrease serum uric acid levels, the hypouricemic effect of tea was not established in
human trials, and therefore, no recommendation could be established.

9. Curcumin

Curcumin is a natural polyphenol, extracted from the herbal spice turmeric. During the past
decade, it has gained scientific interest due to its beneficial antioxidative and anti-inflammatory
properties. In CKD and HD patients, curcumin has been shown to act as a scavenger of free radicals,
resulting in a significant suppression of OS [5]. Since XO (the enzyme responsible for the formation
of uric acid) is involved in generating ROS, it has been hypothesized that administration of the
antioxidant curcumin could have a urate-lowering effect. In vitro, the local administration of curcumin
significantly and directly inhibited XO activity, and therefore, caused a subsequent reduction in uric
acid levels [116,117]. More recent studies proposed that not only curcumin binds directly to XO, but
also its degradation by-products exhibit important inhibitory properties against XO [117]. However,
another study failed to show any effect of curcumin on purified bovine XO activity [92]. Data from
in vivo studies regarding the urate-lowering effect of curcumin are limited. Al-Rubaei et al. randomly
assigned rats to three groups. Group A was the control group. Group B was subjected to chemically
induced OS for 60 days. Group C also experienced OS for two months, followed by daily treatment with
curcumin for another 30 days. Compared to controls, group B rats had significantly increased levels of
pro-oxidative biomarkers (such as MDA, 8-hydroxy-2-deoxyguanosine), decreased concentrations of
the antioxidants superoxide dismutase, catalase, and reduced glutathione. Moreover, compared to
group A, group B animals had significantly increased levels of uric acid and the pro-inflammatory
marker, TNF-a. Treatment with curcumin successfully improved all OS and inflammation parameters
and lowered uric acid to nearly normal levels. The authors concluded that the urate-lowering effect
of curcumin could be due to its strong antioxidant capacity [118]. In a randomized, controlled study,
100 patients with non-alcoholic fatty liver disease (NAFLD)—a condition characterized by an enhanced
OS and inflammation state—were randomly allocated to either receive curcumin (500 mg twice daily)
or nothing for two months. Compared to controls, the group that was treated with curcumin exhibited
significantly lower serum levels of uric acid. Even after adjustment for several co-founders, treatment
with curcumin remained a significant strong predictive factor of uric acid reduction [119].

Curcumin, a natural antioxidant might have a urate-lowering effect, through direct binding to XO
or by suppressing inflammation and OS. The data regarding the effect of curcumin on uric acid levels
are very limited but seem quite promising.

10. Probiotics

Probiotics are yeasts and live bacteria that are thought to exert various beneficial health effects.
During the past decade, there is a growing body of evidence suggesting that the disruption of
natural bacteria balance in the gastrointestinal system (known as the gut microbiome) could lead
to multiple adverse events. Dietary supplements containing probiotics are thought to restore the
gut microbiome balance when it is disrupted by conditions such as CKD. In renal impairment,
the excretion of uric acid is directly associated with gut uricolysis by the gut microbiome. A recent
randomized controlled animal study aimed to investigate the effect of probiotic supplements on uric
acid levels and uric acid-derived kidney injury. Thirty rats were randomly divided to the following
five groups: control, induced hyperuricemia and standard diet, induced hyperuricemia and placebo,
and induced hyperuricemia treated with two different probiotic formulas containing uricolytic bacteria.
After five weeks of follow-up, the authors found that chemically-induced hyperuricemia caused
hypertension, functional, and morphological changes in the kidney, and alterations in fecal microbiota.
Probiotic supplements successfully inhibited hyperuricemia, prevented the accumulation of uric acid
in the kidneys, decreased uric acid urine excretion, and prevented systemic and renal cortex OS
induced by hyperuricemia. Moreover, the inhibitory effect of probiotics on OS and uric acid was
accompanied by the prevention of the renal damage and hypertension caused by hyperuricemia [120].
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Two prospective, randomized, double-blind, placebo-controlled crossover trials investigated the effect
of probiotic supplements—that included bacteria selected to metabolize uric acid and nitrogenous
wastes—to CKD progression and hyperuricemia in patients with renal impairment. The first was
a single-center trial and showed that six months of daily, oral supplementation with probiotics in
16 patients with CKD stage 3 and 4, successfully reduced urea and uric acid serum levels [121].
The second study was carried out in multiple centers across four countries, included 46 patients with
CKD stages 3 and 4, and showed that six months treatment with probiotics (daily, orally) significantly
decreased serum urea levels in 63% of the patients and reduced uric acid levels in 33% of them; however,
without statistical significance [122]. In disagreement with these results, Asemi et al. performed a
randomized, double-blind, placebo-controlled study on 54 diabetics and found that although the
intake of probiotic supplements for two months was accompanied with a significant decrease of OS
and inflammatory biomarkers, the levels of uric acid remained unchanged [123]. Similarly, another
randomized, double-blind, placebo-controlled, cross-over trial in HD patients showed that a two-month
treatment with probiotics was safe, well-tolerated, reduced pro-inflammatory markers but failed to
decrease uric acid serum levels [124].

In CKD settings, probiotic supplements containing uricolytic bacteria have been associated with
reduced OS. However, the data on the effect of probiotics on uric acid levels remains controversial.
Since probiotic supplements are thought to be well-tolerated and safe in these patients, further trials in
large cohorts are needed in order to elucidate this relationship.

11. l-Arginine

NO, through its antioxidant properties, protects renal function by preserving tubuloglomerular
balance, raising renal blood flow, and ensuring homeostasis of electrolytes and fluids. NO availability
in the endothelium defines a healthy and well-functioning vasculature. Free radicals lead to the
inactivation of NO, and therefore, affect its availability directly, causing vascular damage. NO deficiency
is a well-established promoter of OS and has been repeatedly associated with progression of CKD
and onset of endothelial dysfunction in uremic patients [4]. L-Arginine is an amino acid with
antioxidant properties, scavenging ROS directly, and acting as a substrate for NO synthesis. Several
investigators showed both, in uremic animal models and humans that supplementation of l-arginine
successfully reduces OS status and inhibits vascular calcification, through upregulation of NO [125,126].
Sanchez-Lozada et al. investigated the possible effect of chronic and acute supplementation of
l-arginine on the structural and functional changes in renal hemodynamics that was caused by induced
hyperuricemia in rats [54]. To induce hyperuricemia, oxonic acid was administered in thirty-one rats,
once daily, and they were followed for five weeks. All hyperuricemic rats were divided into four
groups: the control group that did not receive any supplement (n = 8), those who were infused acutely,
once with 15 mg/kg/min l-arginine (n = 9) and the chronic treatment groups that received l-arginine at
low (1%) and high (2.5%) dosages for five weeks. Acute infusion of l-arginine reversed the injury of
the renal arteries and caused vasodilation with a subsequent rise in single nephron GFR. However,
glomerular hypertension was not abrogated, and therefore, the autoregulation of the kidney was
significantly impaired. Chronic supplementation of l-arginine, especially at the high dose, successfully
prevented all glomerular and systemic alterations induced by hyperuricemia. The beneficial effects of
l-arginine were attributed to the stimulation of NO production that was documented by increased NO
in urine.

12. N-Acetylcysteine (NAC)

NAC is a powerful scavenger of ROS that protects cells and tissues from oxidative damage and
has repeatedly been shown to be an effective antioxidant in CKD patients [5]. Data from in vitro
and in vivo trials suggest that NAC might also prevent the OS caused by hyperuricemia. In human
vascular endothelial cells, uric acid stimulated overproduction of ROS, intracellular OS, and subsequent
cell death. Treatment with the antioxidant NAC (even at a small dose of 10 mmol/L) successfully
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ameliorated the apoptotic procedure mediated by hyperuricemia and oxidative stress [15]. Similarly,
hyperuricemic mice exhibited enhanced OS and increased insulin resistance. Administration of NAC
directly blocked the hyperuricemic-induced insulin resistance and suppressed both OS and uric acid
levels [127].

13. Conclusions

Although acting in plasma as an antioxidant, once it enters the intracellular environment, uric acid
behaves as a pro-oxidant. Uric acid is tightly linked with the onset and development of OS, especially
in subjects susceptible to oxidative damage, such as CKD patients. Besides standard uric-acid lowering
therapy, several antioxidants have been proposed to reduce both OS and uric acid serum levels further.
The data regarding the effects of antioxidants on uric acid and OS biomarkers are limited and mainly
derived from animal studies or small observational trials. The daily intake of curcumin, l-arginine,
and Vitamin C, in combination with standard therapy, might act synergistically and ameliorate the
deleterious effects of OS and hyperuricemia. Further, large, prospective, randomized controlled studies
are needed in order to draw definite conclusions.
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