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Abstract

The firefly algorithm (FA) is proposed as a heuristic algorithm, inspired by natural phenom-

ena. The FA has attracted a lot of attention due to its effectiveness in dealing with various

global optimization problems. However, it could easily fall into a local optimal value or suffer

from low accuracy when solving high-dimensional optimization problems. To improve the

performance of the FA, this paper adds the self-adaptive logarithmic inertia weight to the

updating formula of the FA, and proposes the introduction of a minimum attractiveness of a

firefly, which greatly improves the convergence speed and balances the global exploration

and local exploitation capabilities of FA. Additionally, a step-size decreasing factor is intro-

duced to dynamically adjust the random step-size term. When the dimension of a search is

high, the random step-size becomes very small. This strategy enables the FA to explore

solution more accurately. This improved FA (LWFA) was evaluated with ten benchmark test

functions under different dimensions (D = 10, 30, and 100) and with standard IEEE CEC

2010 benchmark functions. Simulation results show that the performance of improved FA is

superior comparing to the standard FA and other algorithms, i.e., particle swarm optimiza-

tion, the cuckoo search algorithm, the flower pollination algorithm, the sine cosine algorithm,

and other modified FA. The LWFA also has high performance and optimal efficiency for a

number of optimization problems.

1 Introduction

Inspired by various biological systems in nature, many scholars have proposed effective meth-

ods that simulate natural evolution to solve complex optimization problems. One of the earli-

est algorithms was a genetic algorithm proposed by Professor Holland [1]. Researchers then

shifted to foraging behaviour of groups of animals, such as the ant colony optimization algo-

rithm (ACO) that simulated the behaviour of ants [2]. Eber proposed particle swarm optimiza-

tion (PSO) based on bird predation behaviour [3]. In recent years, new heuristic algorithms

have been proposed. To name a few, Yang and BED proposed the cuckoo search (CS) algo-

rithm based on the breeding and spawning of cuckoo [4]; The bat algorithm (BA) was pro-

posed based on echolocation behaviour in bats [5]; the whale optimization algorithm (WOA)
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was inspired by the hunting behaviour of humpback whales [6]; and there is also the grey wolf

optimizer algorithm [7], the sine cosine algorithm (SCA) [8], the polar bear optimization algo-

rithm (PBO) [9], etc. More swarm intelligent algorithms were created mainly because of the

no free lunch (NFL) theorem [10], which states a single swarm intelligent optimization algo-

rithm cannot solve all optimization problems. The key point of the NFL theorem is that it is

meaningless to assess whether an algorithm is good without a real problem, and the perfor-

mance of an algorithm must be verified by specific problems. Therefore, it is of great signifi-

cance to study the performance of swarm intelligent algorithms in different application fields

[11, 12].

The firefly algorithm (FA) was proposed in 2008 by Xinshe Yang, a Cambridge scholar. The

algorithm is based on the luminous characteristics and attractive behaviour of individual fire-

flies [13]. Compared with other intelligent algorithms, the FA has the advantages of having a

simple model, a clear concept, few parameters to adjust, and strong searchability. Like other

algorithms, however, it could easily fall into local optimum, resulting in slow convergence

speed and low convergence accuracy. As a result, many scholars have made improvements to

the standard FA. Yang first introduced the Levy flight into the random part of the location

updating formula of the FA and developed an FA with Levy flight characteristics [14]. Subse-

quently, Yang improved the quality of the FA by introducing chaos into the standard FA and

increased the accuracy of the standard FA by dynamically adjusting its parameters [15].

Sharma introduced the inertia weight into the FA; this strategy can overcome the tendency of

falling into local optima and can achieve a slow convergence for optimization problems [16].

Farahani and other scholars proposed a Gaussian distribution FA, which referred to an adap-

tive step size and improved the glow worm algorithm by improving the overall position of the

FA population through Gaussian distribution [17]. An FA based on parameter adjustment is

better than PSO in solving dynamic optimization problems. Sh. M. Farahani and other schol-

ars introduced an automatic learning machine into the standard FA to adjust the algorithm’s

parameters, so that the algorithm can adjust the parameter values at any time according to the

environment [18]. Adiland and other scholars improved the self-adaptation of the search

mechanism and parameters of individual fireflies and embedded chaotic mapping to solve a

mechanical design optimization problem [19]. Carbas also used the FA to solve a steel con-

struction design problem [20]. Tahereh and other scholars used fuzzy coefficients to adjust the

parameters of the FA and balanced the local and global search capabilities of the FA [21]. A

number of optimization problems of test functions and engineering optimization problems

have been verified for performance of the improved FA [22]. The FA is widely used in many

fields, especially in computer and engineering fields, such as routine optimization [23, 24],

robot path planning [25] and image processing [26–28]. Many scholars around the world have

conducted in-depth studies on the theory and application of the FA and are continuously

expanding its application fields.

To improve the performance of the FA, this paper proposes an improved FA based on self-

adaptive inertia weight logarithmic and dynamic step-size adjust factor (LWFA). Self-adaptive

logarithmic inertial weight is also introduced in the updating formula. This strategy can effec-

tively balance the exploration and exploitation capabilities and also improve the convergence

speed of the algorithm. A step-size adjust factor is also added into the LWFA to randomly

change the algorithm’s step-size, preventing the FA from falling into a local optimum.

Section 2 discusses the standard FA. The proposed LWFA is introduced in Section 3. In

Section 4, the complexity analysis and convergence analyses are conducted to calculate the sta-

bility and validity of the LWFA. In Section 5, ten benchmark optimization test functions and

IEEE CEC2010 test functions are used to evaluate the performance of the proposed algorithm.
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Experimental function curve results are shown in Section 5. Lastly, the work is summarized in

Section 6.

2 Standard firefly algorithm

The firefly algorithm (FA) was proposed by a Cambridge scholar Xinshe Yang in 2008 [13].

The FA is a random search algorithm based on swarm intelligence that simulates the attraction

mechanism between individual fireflies in nature. To idealize certain characteristics of fireflies

when constructing mathematical models of FA, the following idealization criteria are used:

1. Fireflies, both male and female, are attracted only by light intensity between groups regard-

less of gender;

2. The attraction of fireflies to each other is proportional to the brightness of the light;

3. The brightness of fireflies is related to the objective function value that is to be optimized.

2.1 Mathematical description and application

In the firefly algorithm, fireflies have a unique lighting mechanism and behavior, and the light

they emit can only be perceived by other individual fireflies within a certain range for two rea-

sons: the light intensity I and the distance from the light source r are in inverse proportion,

and the light can be absorbed by air. The basic principle of the standard FA is that in a ran-

domly distributed firefly population, fireflies with high brightness attract fireflies with low

brightness toward them, and each firefly approach a firefly with high absolute brightness in a

solution space, update its position, complete an iteration of positions, and find an optimal

position to achieve optimization. The brightness of fireflies is related to the objective function

value. If fireflies have higher brightness and better positions, they will attract more fireflies.

The brightest fireflies move randomly because they cannot be attracted to any other fireflies.

The relationship between fireflies and the objective function value should be established. The

absolute brightness of the algorithm is expressed by the objective function value, that is, the

absolute brightness Ii of a firefly set at the location xtiðxi1; xi2; xi3; . . . ; xiDÞ is equal to the objec-

tive function value at the location xti , that is

Ii ¼ f ðx
t
iÞ ð1Þ

Supposing a brighter firefly attracts a firefly with low brightness, the relative brightness

between the two fireflies is IijðrijÞ ¼ Iie
� gr2ij . Ii is expressed as the absolute brightness of firefly i;

γ is the light absorption coefficient, generally set as a constant; rij is the cartesian distance from

firefly i to firefly j. That is

rij ¼ kx
t
j � x

t
ik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
k¼1
ðxtj � xtiÞ

2
q

ð2Þ

Supposing that the brightness between fireflies is proportional to the attraction, the attrac-

tion is βij,

bijðrijÞ ¼ b0e
� gr2ij ð3Þ

β0 is the largest attraction, and generally β0 = 1.

The updating formula of the algorithm is as follows:

xtþ1

i ¼ x
t
i þ bijðrijÞ � ðx

t
j � x

t
iÞ þ a � di ð4Þ
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Where, t is the number of iterations, δi is a random number derived from a uniform distribu-

tion, Gaussian distribution, or other distribution, and α is a random term coefficient.

The flow chart of the standard firefly algorithm (FA) is shown in the Fig 1:

3 The proposed firefly algorithm

Due to the shortcomings of the standard FA, Yang optimized a test function with singularities

with FA to achieve better optimization performance. The results show that the FA can effec-

tively solve this kind of global optimization problem, and the FA was successfully applied to

the global optimization problem of pressure piping design. However, the parameters in the

standard FA are set in advance, which will lead to premature convergence of the algorithm, or

the algorithm cannot converge due to improper parameter settings. Hence, the standard FA

needs to be improved to achieve better optimization performance.

3.1 Parameter analysis of firefly algorithm

The standard FA updates positions based on the attraction between high-brightness fireflies

and low-brightness fireflies. Since the visual range of fireflies is limited, low-brightness fireflies

can only find mobile higher brightness fireflies within their visual range. It should be noted

that the light absorption coefficient γ is an important parameter affecting the degree of

Fig 1. The flow chart of the FA.

https://doi.org/10.1371/journal.pone.0255951.g001

PLOS ONE An improved firefly algorithm with dynamic self-adaptive adjustment

PLOS ONE | https://doi.org/10.1371/journal.pone.0255951 October 7, 2021 4 / 24

https://doi.org/10.1371/journal.pone.0255951.g001
https://doi.org/10.1371/journal.pone.0255951


attraction between fireflies. When γ!0, the attraction β!β0. The attraction between fireflies

will not change with a change in distance, that is to say, a flash firefly can be seen from any-

where. When γ!1, β!0. When the attraction between fireflies is almost zero, individual fire-

flies move randomly, that is to say, individual fireflies are myopia, which is equivalent to flying

in a fog environment; they cannot see each other. The attraction algorithm of fireflies is

between these two extremes. When the light absorption coefficient gets a better value (usually

1.0), the distance between two fireflies is the distance that affects the attraction between the

two fireflies. If the distance rij!1 between two fireflies that are attracted to each other, the

attraction β!0. Therefore, the basic conditions of the FA in the optimization process are as

follows:

1. The distance between attracted low-brightness fireflies and actively high-brightness fireflies

should not be too large;

2. There must be a difference in brightness between individual fireflies, with at least one firefly

having a higher brightness to attract other fireflies for location updates. There is greater

randomness in the distance between individual fireflies that are attracted to each other.

3.2 The improvement of firefly algorithm

3.2.1 The minimum attraction. By analysing the parameters of the FA, where the light

absorption coefficient γ is too large or where the light absorption coefficient γ is a fixed value,

the optimization interval become too large, which will easily result in the attraction between

individual fireflies to approach zero and individual fireflies to lose attraction between each

other. To avoid the distance between individual fireflies from being too far, the attraction

between them may be almost zero. This paper introduces a minimum attraction to improve

the standard FA to prevent individual fireflies from randomly moving. At this time,

bijðrijÞ ¼ bmin þ ðb0 � bminÞe
� gr2ij ð5Þ

β0 = 1.0, βmin2[0,1]. So, even if the distance between fireflies is too far, e� gr
2
ij ! 0, the attrac-

tion between them can be the βmin.
To validate the minimum attraction strategy can solve the shortcomings of the firefly algo-

rithm, some test functions (D = 30) are selected to compare the FA with the algorithm which

only obtain the minimum attraction strategy (LWFA-1). The comparison results of best value

are shown in Table 1, and this paper also selects two benchmark functions for experiments

and draws some conclusions. Fig 2 is the convergence curves of unimodal functions f2. Fig 3 is

the convergence curves of multimodal functions f7. The population number (N) is 30, and the

maximum number of iterations (T) is 1000. All algorithms ran 30 times independently on the

test functions.

In the Table 1, the accuracy of the LWFA-1 is greatly reduced. Compared with FA, the

LWFA-1 have better performance to solve optimization problems. The comparison results can

Table 1. The comparison results of LWFA-1 and FA with D = 30.

Function LWFA-1 FA Function LWFA-1 FA

f1 0.1782 0.3122 f6 0.0556 1508.42

f2 3.3580E-04 103.77 f7 9.4238E-05 177.31

f3 60.6925 288.38 f8 0.5163 446.17

f4 0.0075 1.1068 f9 0.0502 6.6831

f5 0.0050 11.782 f10 0.0666 190.87

https://doi.org/10.1371/journal.pone.0255951.t001
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illustrate the minimum attraction strategy is effect in the LWFA-1. From the Figs 2 and 3, the

convergence curve of the FA is basically a straight line and will not change with the increase of

iteration times, which indicates that the FA cannot jump out of the local optimal solution. By

contrast, converge curve of LWFA-1 is smoother.

Therefore, this strategy can help the original firefly algorithm jump out of the local optimal

solution and improve the convergence accuracy of the FA.

3.2.2 Self-Adaptive inertia weight based on logarithmic decrement. The setting of iner-

tia weight w can balance the global search ability and local optimization ability to some extent

in the iterative process of FA. Initially, the setting of inertia weight is generally linear inertia

weight. Based on the motion rule of a firefly in the FA, when a low-brightness firefly is

attracted by a brighter individual firefly, the early motion amplitudes of the individual firefly is

larger with strong global searchability so that it can enter the process of local optimization at a

faster speed. An increase in iteration time helps to bring a firefly closer to the optimal value,

and its moving speed should be decreased to improve its local optimization ability and should

converge quickly to avoid oscillation state in the vicinity of the optimal value, thus improving

the optimization ability of the FA.

As shown in Fig 4, compared with the linear decreasing inertia weight [29], the inertia

weight of sinusoidal adjustment strategy [30], and the Gaussian decreasing inertia weight [31],

the logarithmic decreasing self-adaptive inertia weight can be rapidly reduced in the early

stages of iteration so that the local search stage can be quickly started and the search speed can

be increased. Similarly, compared with the Gaussian decreasing strategy of inertia weight, in

the late stages of iteration, the value of inertia weight changes more slowly, and individual fire-

flies can perform local searches to reduce the occurrence of oscillation. However, Gaussian

Fig 2. Convergence curves of unimodal functions f2.

https://doi.org/10.1371/journal.pone.0255951.g002
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decreasing inertia weight is almost unchanged after 500 iterations. If a firefly at this time falls

into local optimum, it cannot easily jump out of the local optimum position. Therefore, the

logarithmic self-adaptive inertia weight strategy is more suitable for individual firefly move-

ment in the FA.

Fig 3. Convergence curves of multimodal functions f7.

https://doi.org/10.1371/journal.pone.0255951.g003

Fig 4. Inertia weight curves for different strategies.

https://doi.org/10.1371/journal.pone.0255951.g004
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In this paper, logarithmic decreasing self-adaptive inertia weight [32] is used to meet the

above requirements. The formula of logarithmic decreasing self-adaptive inertia weight is as

follows:

wt ¼ w1 � b� ðw1 � w2Þ � logTt ð6Þ

b is a logarithmic adjustment factor, w1 is an initial value of inertia weight, w2 is a final

value of inertia weight, t is the current number of iterations, and T is the highest number of

iterations.

The variation range of the inertial weight coefficient may have an impact on the result of

function optimization. In this paper, by reading literature and simulation experiments, the

parameter is set to b = 1.0 w1 = 0.9 w2 = 0.4. In this case, the optimize of the firefly algorithm is

better.

To prove the inertial weight can also solve the shortcomings of the firefly algorithm, some

test functions (D = 30) are selected to compare the FA with the algorithm which only obtain

the inertial weight (LWFA-2). The comparison results of best value are shown in Table 2, and

this paper also selects two benchmark functions for experiments and draws some conclusions.

Fig 5 is the convergence curves of unimodal functions f2. Fig 6 is the convergence curves of

multimodal functions f7. The parameter Settings are the same as in Section 3.2.1.

In the Table 2, compared with FA, the LWFA-2 have better performance to solve optimiza-

tion problems. From the Figs 5 and 6, the converge curve of LWFA-2 is smoother. Therefore,

this strategy also can help the original firefly algorithm jump out of the local optimal solution

and improve the convergence accuracy of the FA.

3.2.3 Self-adaptive and dynamic step-size. The random step in the updating formula of

the standard FA is generally a random number vector of Gaussian distribution, uniform distri-

bution, or other distribution. Yang introduced a Levy flight into the random part of the updat-

ing formula of the FA, which to a certain extent reduces the possibility of individual fireflies

falling into local optimal and improves the search performance of the standard FA. At the

same time, an increase in the search dimension of an individual firefly decreases the optimiza-

tion accuracy of the standard FA. For high-dimensional test functions, random turbulence will

easily occur and the convergence speed will decrease, and the algorithm cannot converge to an

optimal value. Inspired by references [17, 33], this paper introduces the step adjustment factor

c.

c ¼ yD � T � eð� t=TÞ ð7Þ

T is the largest iteration, t is the current iteration, D is the dimension of an individual firefly,

and θ2[0,1]. In this paper, θ = 0.1. In the operation of the algorithm, the random step size

decreases with an increase in the search dimension of an individual firefly or iteration number.

This can ensure that the individual firefly’s random step size change is small in a high-dimen-

sional environment, and accurate explosion can be in a small range to find the optimal value

Table 2. The comparison results of LWFA-2 and FA with D = 30.

Function LWFA-2 FA Function LWFA-2 FA

f1 7.0072E-07 0.3122 f6 1.1595E-05 1508.42

f2 7.5761E-05 103.77 f7 5.3248E-07 177.31

f3 5.0291E-05 288.38 f8 1.3483E-06 446.17

f4 3.7239E-06 1.1068 f9 0.0035 6.6831

f5 0.0022 11.782 f10 0.0043 190.87

https://doi.org/10.1371/journal.pone.0255951.t002
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Fig 5. Convergence curves of unimodal functions f2.

https://doi.org/10.1371/journal.pone.0255951.g005

Fig 6. Convergence curves of multimodal functions f7.

https://doi.org/10.1371/journal.pone.0255951.g006
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with high precision. To prove that the dynamic step-size strategy can improve the effectiveness

of the FA in different dimensions, three dimensions (D = 10/30/100) are used for comparative

experiments. This paper selects multimodal function f2 and unimodal function f7 for simula-

tion test on the three dimensions; the population number (N) is 30, and the maximum number

of iterations (T) is 1000. Experimental results show that the step adjustment factor can greatly

improve the optimization accuracy of the FA. The experimental results are shown in Fig 7.

3.3 The procedures for the realization of LWFA

1. In the initial stage, set the following parameters γ β0 βmin and α, firefly population number

N, and maximum iteration number T, and randomly generate the initial position xtiði ¼
1; 2; . . . ; nÞ of fireflies in the optimization interval;

2. Substitute the position vector xtiði ¼ 1; 2; . . . ; nÞ of fireflies into the objective function f(x)

to obtain the initialization brightness Ii of fireflies, and compare and analyze results to

obtain the current global optimal brightness Ibest and individual optimal positions.

3. Update the phase of the fireflies’ locations. The attraction between individual fireflies βij.

4. Update the formula according to the position of fireflies. A firefly with high initialization

brightness attracts a firefly with low initialization brightness to finalize position updating.

The updated formula after improvement is as follows:

xtþ1

i ¼ wt � x
t
i þ bijðrijÞ � ðx

t
j � x

t
iÞ þ a � dij ð8Þ

dij ¼ c � randð1; dÞ

c ¼ yD � T � e� t=T
ð9Þ

Fig 7. The convergence curves of the function in different dimensions.

https://doi.org/10.1371/journal.pone.0255951.g007
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5. After updating its position, a firefly generates a new position vector that replaces the old

position vector in an objective function, completes the brightness update, and reorders its

current brightness to obtain the current global optimal value.

6. Update wt c and t. Generally, the stop condition for the iteration in the FA is that the num-

ber of iterations reaches a predefined number or that the global optimal result is sought to

achieve the required accuracy.

The flow chart of the LWFA is shown in the Fig 8:

Fig 8. The flow chart of the LWFA.

https://doi.org/10.1371/journal.pone.0255951.g008
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4 Theoretical analysis of improved firefly algorithm

4.1 The complexity analysis

The complexity of a swarm intelligence algorithm reflects the performance of the algorithm

from other different aspects. If the algorithm needs an infinite amount of time to find a global

optimal solution, the uptime availability is not included. Therefore, the computational com-

plexity of the algorithm is very significant and crucial. Suppose the population size of the SCA

is N, the maximum number of iterations is T, and the dimension of the decision variable is D.

In the standard FA, the computational complexity of the initialization phase is O (N), the

positions update of fireflies isO (T�N�D), and checking for fireflies positions outside the search

space is O (T�N). Hence, the computational complexity of the FA for the global search for an

optimal position is O (N) + O (T�N�D) + O (T�N).
Similarly, the computation complexity of the improved FA in the initialization phase is O

(N). The improvement of the minimum attraction is O(T�N), inertia weight based on logarith-

mic decrement w(t)i is O(T�N), and self-adaptive and dynamic step-size is O(T�N�D). The par-

ticle positions update is also O(T�N�D), and checking for particle positions outside the search

space is O (T�N). Therefore, the computational complexity of the LWFA to achieve an optimal

particle position is O (N) + O (3�T�N) + O (2�T�N�D).
Although the computation complexity of the improved FA (LWFA) is higher than that of

the standard FA, both of them are in the same order of magnitude.

4.2 The convergence analysis

Convergence analysis is a key factor to evaluate the convergence of swarm intelligence algo-

rithms. As the number of iterations increases, errors between optimal results and theoretical

optimal values become minute; eventually, swarm intelligence algorithms approach a fixed

value. In the FA, the position update phase of fireflies determines whether the algorithm can

converge to a global optimal. Many scholars have used different methods to analyze the con-

vergence of swarm intelligence algorithms. In this paper, the LWFA is analyzed using a sec-

ond-order nonhomogeneous differential equation.

Using the updating mechanism of the LWFA, we can easily find that the position update of

the FA is conducted on a dimension-by-dimensional basis, and each dimension is indepen-

dent. For the convenience of analysis, this paper simplifies the algorithm by choosing a one-

dimensional analysis. From the updating formula (8), weight w is the constant coefficient a, βij
is the constant coefficient b, and α�δij is the constant coefficient d; xj(t) is the current optimal

position of a firefly, denoted as gb, and the optimal location of the next iteration is denoted as

pb. Thus, the updating formula (8) is reduced as follows:

xðt þ 1Þ ¼ axðtÞ þ bðgb � xðtÞÞ þ d ð10Þ

xðt þ 2Þ ¼ axðt þ 1Þ þ bðpb � xðt þ 1ÞÞ þ d ð11Þ

Formulations (10–11) can be obtained as:

xðt þ 2Þ þ ð1þ rÞxðt þ 1Þ þ rxðtÞ ¼ bgb þ bpb þ 2d ð12Þ

r ¼ b � a ð13Þ

Its characteristic equation is λ2+(1+r)λ+r =0, Δ = (1+r)2−4r = (r−1)2�0.

Therefore, the convergence process of LWFA needs to consider the following two

conditions:
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1) When Δ = 0, the characteristic equation has two same real roots, l1 ¼ l2 ¼
� ð1þrÞ

2
¼ � 1,

and x(t) = (A0+A1t)λt, A0, A1 are undetermined coefficients, the result is calculated as:

A0 ¼ xð0Þ

A1 ¼ ðr � 1Þxð0Þ � bga � d

(

2) When Δ>0, the characteristic equation has two different real roots, l1 ¼ l2 ¼
� ð1þrÞ�

ffiffi
D
p

2
,

and xðtÞ ¼ A0 þ A1l
t
1
þ A2l

t
2
; A0, A1, and A2 are undetermined coefficients, and the result is

calculated as follows:

A0 ¼ xð0Þ � A1 � A2

A1 ¼
l2xð0Þ � ð1þ l2Þxð1Þ þ xð2Þ

ðl2 � l1Þð1 � l1Þ

A2 ¼
l1xð0Þ � ð1þ l1Þxð1Þ þ xð2Þ

ðl2 � l1Þð1 � l2Þ

8
>>>>><

>>>>>:

Based on the convergence analysis, if the LWFA converges iteratively, the following two

conditions must be met [34].

➀ If t!1, x(0) has its maximum and tend to finite value.

➁ kλ1k<1, and kλ2k<1

The calculated results are as follows:

When Δ = 0, the convergent domain is r = 1;

When Δ>0, the convergent domain is j
� ð1þrÞ�

ffiffi
D
p

2
j < 1) � 1 < b � a � 1, Thus,

b � a � 1

b � a > � 1
)

a � b � 1

a < 1þ b

((

. According to Eq (5), (6) and (8), the b2(0,1), a2(−1,2))w

(t)2(−1,2).

In the whole iteration process of the improved algorithm, the inertia weight region is

between 0.4 and 0.9. Therefore, the range of inertia weight conforms to the convergent domain

(−1,2), thus the LWFA can converge to a global optimal solution in the iteration.

5 Application of improved firefly algorithm in function optimization

To evaluate whether the improved FA has advantages in various applications, two sets of

benchmark test functions, ten classical benchmark functions with different dimensions

(D = 10, 30, and 100) and standard IEEE CEC2010 functions have been used. In this paper,

PSO, CS SCA, FPA, FA, the other improved FA and the LWFA are respectively used to con-

duct simulation experiments, and the experimental results are compared. Based on the experi-

mental results, the improved FA in this paper shows good optimization performance in terms

of optimization accuracy and convergence speed.

5.1 The benchmark test functions set 1

In this section, ten classical benchmark functions are used as test functions to evaluate the per-

formance of the improved FA algorithm [35]. These functions represent different optimization

problems. The specific test functions are as follows:
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1. Schaffer function:

f1 xð Þ ¼ 0:5þ
sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PD

i¼1
xi2

q

� 0:5

½1þ 0:001�
PD

i¼1
xi2�

2
; x 2 � 10; 10½ � ð14Þ

This function’s theoretical optimal value is 0, and the optimal position is at (0,. . .,0). This

function is continuous, differentiable, non-separable, non-scalable, and unimodal.

2. Sphere function:

f2ðxÞ ¼
PD

i¼1
x2

i ; x 2 ½� 100; 100� ð15Þ

This function’s minimum value is 0. This function is a classical high-dimensional unimodal

function. Its optimal position point (0,. . .,0) is in the center of the brim, and the relative

exploration area is very limited.

3. Rastrigin function:

f3ðxÞ ¼
PD

i¼1
½x2

i � 10 cosð2pxiÞ þ 10�; x 2 ½� 5:12; 5:12� ð16Þ

This function obtains its optimum value 0 at (0,. . .,0). This function is a multimodal func-

tion, which has ten minimum values in solutions. The peak shape of the function fluctuates

in volatility. It is rather difficult to explore global search.

4. Griewank function:

f4 xð Þ ¼
1

4000

PD
i¼1
x2

i �
QD

i¼1
cos

xiffiffi
i
p

� �

þ 1; x 2 � 100; 100½ � ð17Þ

This function obtains its minimum value 0 at (0,. . .,0). This function is continuous, differ-

entiable, non-separable, scalable, and multimodal.

5. Ackley function:

f5 xð Þ ¼ � 20exp � 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD

i¼1
x2

i

r !

� exp
1

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1
cosð2pxi

q� �

þ 20þ e;

x 2 ½� 35; 35�

ð18Þ

This function obtains its minimum value 0 at (0,. . .,0). This function is continuous, differ-

entiable, non-separable, scalable, and multimodal. It has several local optimal values in its

search space.

6. Sum-Squares function:

f6ðxÞ ¼
PD

i¼1
ix2

i ; x 2 ½� 10; 10� ð19Þ

This function’s theoretical optimal value is 0, and its optimal position point is at (0,. . .,0).

This function is continuous, differentiable, separable, scalable, and unimodal.
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7. Zakharov function:

f7 xð Þ ¼
XD

i¼1
x2
i þ

1

2

XD

i¼1
ixi

� �2

þ
1

2

XD

i¼1
ixi

� �4

;

x 2 ½� 5; 10�

ð20Þ

This function obtains its minimum value 0 at (0,. . .,0). This function is continuous, differ-

entiable, non-separable, scalable, and multimodal.

8. Schwefel’s problem 1.2 function:

f8ðxÞ ¼
PD

i¼1
ð
Pi

j¼1
xjÞ

2
; x 2 ½� 10; 10� ð21Þ

This function obtains its minimum value 0 at (0,. . .,0). This function is continuous, differ-

entiable, non-separable, scalable, and unimodal.

9. Schwefel’s problem 2.21 function:

f9ðxÞ ¼ maxifjxij; 1 � i � Dg; x 2 ½� 100; 100� ð22Þ

This function gets the minimum value 0 at (0,. . .,0). This function is continuous, non-dif-

ferentiable, separable, scalable, and unimodal.

10. Schwefel’s problem 2.22 function:

f10ðxÞ ¼
PD

i¼1
jxij þ

QD
i¼1
jxij; x 2 ½� 10; 10� ð23Þ

This function obtains its minimum value 0 at (0,. . .,0). This function is continuous, differ-

entiable, non-Separable, scalable, and unimodal.

5.2 Comparison with other improved firefly algorithms on set 1

In this section, some improved firefly algorithms are selected to prove the optimization ability

of LWFA. The results of other improved FA are extracted from the original literatures. The

comparison results of LWFA, VVSFA [36], IWFA [37], and CLFA [38] are shown in the

Table 3.

From the Table 3, the average value is contained. In the same dimension D = 100, the accu-

racy of LWFA is obviously higher than other improved algorithms. When solve the high

dimension optimization problems, compared with other FA, the LWFA can overcome the

curse of dimensionality. Therefore, the LWFA is competitive in solving optimization

problems.

Table 3. Comparison results of LWFA and other improved FA with D = 100.

Function VVSFA IWFA CLFA LWFA

f2 84.843 1.0028 7.5021 5.42E-201

f3 470.286 177.324 561.675 0

f4 0.74506 0.02078 0.16899 0

f5 4.84312 0.84394 3.60037 0

f6 3853.70 51.513 364.380 2.04E-199

f8 3828.88 50.2529 374.359 2.02E-101

f10 64.584 1.64239 9.0614 5.81E-100

https://doi.org/10.1371/journal.pone.0255951.t003
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5.3 Comparison with other state-of-art algorithms on set 1

For the ten test functions, f2, f6, f8, f9, and f10 are unimodal functions, and f1, f3, f4, f5, and f7 are

multimodal functions. The dimensions of the test functions are set to 10, 30, and 100, respec-

tively. The test results are obtained using PSO, CS algorithm, SCA, FPA, FA, and LWFA.

The experimental environment is MATLAB 2014a, the operating system is windows 7 flag-

ship, 4.00 GB of running memory and the processor is Intel (R) Core (TM) i3 – 2350M CPU @

2.30 GHz. The parameters of the six algorithms PSO [33], the CS [34], the FPA [35], the SCA

[8], the FA [36], and the LWFA are as shown in Table 4.

To ensure fairness and comparability in the simulation experiments, the same experimental

parameters are defined for all the algorithms. Each algorithm will run 30 times to solve each

test function, and the test results will be recorded; the optimal solution of the objective func-

tion value, the worst solution, the average value, and standard deviation are obtained in this

dimension, as shown in Tables 5–7.

Based on Tables 5–7, when D = 10/30/100, the LWFA significantly improves convergence

accuracy. For either unimodal functions or multimodal functions that have multiple

extreme points, as the dimension increases, the LWFA obtains better optimal performance.

When D = 100, the accuracy of LWFA is more than 100 magnitudes higher than when

D = 10. The LWFA can also solve optimization problems with a small standard deviation,

indicating that the improved algorithm has greater robustness to solve high-dimension

problems.

By comparing Tables 5–7, we can find that when D = 10, the LWFA can obtain optimal

value 0 for functions f1, f3, and f4, while the optimization accuracy of the other four algorithms

(PSO, the CS, FPA, and FA) is not high. For functions f2, f5–f10, the LWFA proposed in this

paper is more accurate than PSO, the CS, and FA in terms of optimal values and standard devi-

ation. The LWFA has higher convergence accuracy than the SCA except for the functions f2,
f5–6. When D = 30, the standard CS is used to solve f6 and f10, and it failed many times in the

convergence experiments. Moreover, when D = 100, PSO is unable to solve the convergence

problem for the function f7. The CS also loses convergence for functions f3, f6, f8, and f10. When

D = 100, the LWFA can quickly reach the optimal value 0 for functions f1, f3, f4, and f5. For

other functions, the optimization accuracy and stability of PSO, the CS, FPA, and FA is lower

than the performance of LWFA proposed in this paper. Particularly, the performance of the

SCA decreases rapidly as the dimension increases, but the LWFA has a faster convergence

speed and higher accuracy in 30 high-dimensional independent runs (D = 100).

5.4 Experiments and results analysis on set 2

In this section, to further analyze the performance of the improved FA, IEEE CEC2010 func-

tions [39] are used in simulation experiments. PSO, the SCA, the FPA, and the standard FA

are used to evaluate the performance of the LWFA. The simulation environment is similar to

Table 4. The parameters of POS, CS, SCA, FPA, FA, LWFA.

Algorithm Parameters values

PSO c1 = c2 = 1.494, w2[0.4,0.9], Vmax = 1, Vmin = −1, N = 30, T = 1000

FPA P = 0.2, N = 30, T = 1000

SCA a = 2, N = 30, T = 1000

CS PA = 0.25, N = 30, T = 1000

FA α = 1.0, β0 = 1.0, γ = 1.0, N = 30, T = 1000

LWFA α = 1.0, β0 = 1.0, βmin = 0.2, γ = 1.0, N = 30, T = 1000

https://doi.org/10.1371/journal.pone.0255951.t004
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that of set 1. The parameters of the five algorithms are also shown in Table 4. To realize signifi-

cant solutions, each function is run 30 times independently, and all the simulation experiments

are tested under the same conditions. The solutions of all the algorithms are shown in Table 8.

The details of the results—mean and standard deviation are recorded in Table 6. Based on

Table 8, it can be easily analyzed that the LWFA outperformed the standard FA. Compared

with the other algorithms (PSO, the FPA, FA, and SCA), the im-proved FA achieved superior

optimization performance.

5.5 Convergence curve analysis

To clearly show the convergence speed and accuracy of the LWFA, this paper will plot the con-

vergence curves of the LWFA and the five other algorithms (PSO, the CS, FPA, SCA, and FA)

with D = 10 on ten benchmark functions, as shown in Fig 9. When the dimension D = 30/100,

the convergence curve of function f2, f5, and f6 are shown in Fig 10. In these graphs, the

Table 5. The optimization result of 10 benchmark functions for different algorithms (D = 10).

function algorithm the best

value

the worst

value

the average

value

standard

deviation

function algorithm the best

value

the worst

value

the average

value

standard

deviation

f1 PSO 0.0097 0.0782 0.0440 0.0209 f6 PSO 1.6059E-13 9.4905E-05 8.1838E-06 2.1168E-05

CS 0.0097 0.0372 0.0116 0.0070 CS 5.2625E-15 2.8228E-12 3.2843E-13 6.3288E-13

FPA 0.0099 0.0429 0.0357 0.0071 FPA 7.5162E-04 0.0221 0.0047 0.0043

SCA 0.0097 0.0097 0.0097 2.3360E-07 SCA 1.8623E-35 1.2869E-25 6.3602E-27 2.5140E-26

FA 4.3300E-02 1.2710E-01 9.4133E-02 2.2880E-02 FA 3.1187E+01 7.8010E+01 4.8660E+01 1.2126E+01

LWFA 0 5.5511E-17 3.8858E-17 2.5873E-17 LWFA 3.0366E-22 1.0505E-21 6.7096E-22 1.8083E-22

f2 PSO 1.1811E-11 4.5714E-06 3.3055E-07 8.9581E-07 f7 PSO 1.6577E-06 26.0726 0.8697 4.7601

CS 1.8841E-15 9.1193E-14 1.9124E-14 1.8349E-14 CS 3.6268E-07 2.3082E-04 3.0668E-05 4.8888E-05

FPA 0.0200 0.2283 0.0853 0.0514 FPA 3.0419E-04 0.0034 0.0017 7.9478E-04

SCA 7.1155E-37 6.4354E-25 2.8900E-26 1.1783E-25 SCA 2.0934E-21 2.4024E-11 8.0332E-13 4.3856E-12

FA 4.7507E+00 1.5125E+01 1.0938E+01 2.2635E+00 FA 9.9440E+00 3.8105E+01 2.5361E+01 6.9977E+00

LWFA 1.6529E-23 5.8901E-23 3.7995E-23 1.0073E-23 LWFA 3.3720E-23 1.0120E-22 5.8941E-23 1.7883E-23

f3 PSO 3.9832 26.9286 10.7593 5.0800 f8 PSO 3.0130E-07 0.0257 0.0013 0.0046

CS 4.2552 10.0941 6.5688 1.5021 CS 5.6553E-10 3.3123E-08 7.5349E-09 6.9291E-09

FPA 10.4006 26.9615 18.6496 4.2546 FPA 1.3139E-04 0.0014 5.8059E-04 2.9570E-04

SCA 0 1.5447E-06 5.6132E-08 2.8229E-07 SCA 1.6318E-19 8.4752E-10 3.0634E-11 1.5440E-10

FA 4.7599E+01 8.1388E+01 6.4081E+01 8.4711E+00 FA 2.7464E+01 6.3785E+01 4.6410E+01 9.8794E+00

LWFA 0 0 0 0 LWFA 4.7114E-23 2.2662E-22 1.6560E-22 4.7540E-23

f4 PSO 0.0640 0.7308 0.2980 0.1454 f9 PSO 0.0023 0.0865 0.0411 0.0256

CS 0.0149 0.0850 0.0454 0.0161 CS 1.7888E-04 7.1200E-04 3.7998E-04 1.4049E-04

FPA 0.1440 0.4735 0.3126 0.0680 FPA 0.4786 1.9163 1.0946 0.3118

SCA 0 0.5153 0.0390 0.1128 SCA 7.7359E-12 8.4083E-07 6.7627E-08 1.7704E-07

FA 3.0980E-01 6.4260E-01 4.9305E-01 7.7488E-02 FA 2.0423E+00 4.2122E+00 3.3785E+00 5.5880E-01

LWFA 0 0 0 0 LWFA 4.8645E-12 8.2962E-12 6.5972E-12 8.3867E-13

f5 PSO 4.4785E-07 1.1581 0.1937 0.4377 f10 PSO 0.0015 0.1362 0.0290 0.0323

CS 2.1457E-05 0.0776 0.0058 0.0152 CS 5.8613E-07 9.2833E-06 3.2644E-06 2.2526E-06

FPA 0.4717 3.1001 1.3024 0.5851 FPA 0.1960 1.3147 0.4822 0.2314

SCA 0 9.2371E-14 1.6579E-14 2.4584E-14 SCA 1.4191E-23 4.7817E-18 2.9770E-19 9.2584E-19

FA 5.8071E+00 9.4430E+00 8.4697E+00 8.1240E-01 FA 9.4411E+00 2.0651E+01 1.6371E+01 2.4332E+00

LWFA 1.0807E-11 1.8442E-11 1.4506E-11 2.0414E-12 LWFA 2.1315E-11 3.4736E-11 2.8367E-11 2.9999E-12

https://doi.org/10.1371/journal.pone.0255951.t005
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horizontal axes represent the iteration T = 1000, and the robustness of each algorithm is dem-

onstrated in the vertical axes.

Fig 9 shows the performance of the LWFA. The other algorithm (PSO, the CS, FPA, and

FA) have similar solutions based on the convergence curves. Compared with the SCA, the

LWFA can obtain a higher accuracy for the function f2, f5, and f6. However, the performance of

the SCA drops rapidly as the dimension increases. Fig 10 shows that the LWFA obtains a

higher optimal value than the SCA.

Overall, based on the above comparison results above, we can see that the improved FA

proposed in this paper is better than the other algorithms in the same dimension. When the

comparison dimension is 30/100, the convergence rate of the LWFA is faster than the other

algorithms in the convergence graph of the same function and has a vertical decline state. In

different dimensions, the optimization accuracy of PSO, the CS, FPA, SCA, and FA will

decrease with an increase in dimension. However, the optimization accuracy of the LWFA

Table 6. The optimization result of 10 benchmark functions for different algorithms (D = 30).

function algorithm the best

value

the worst

value

the average

value

standard

deviation

function algorithm the best

value

the worst

value

the average

value

standard

deviation

f1 PSO 0.0782 0.1782 0.1306 0.0262 f6 PSO 1.7531 25.0448 6.7477 4.5681

CS 0.0373 0.0782 0.0752 0.0104 CS 8.2527E-05 8.4290E-04 4.0109E-04 1.9621E-04

FPA 0.0372 0.0782 0.0742 0.0123 FPA 23.6230 154.3394 76.1294 33.2436

SCA 0.0097 0.0782 0.0308 0.0183 SCA 1.3975E-07 0.0047 5.0452E-04 0.0010

FA 3.1220E-01 3.4570E-01 3.3796E-01 1.2084E-02 FA 1.5084E+03 1.9225E+03 1.7262E+03 1.2639E+02

LWFA 0 0 0 0 LWFA 7.6511E-61 1.9997E-60 1.5032E-60 2.4686E-61

f2 PSO 0.1902 1.0520 0.4540 0.2149 f7 PSO 15.0176 212.2121 63.6612 49.9723

CS 8.6604E-04 0.0075 0.0031 0.0017 CS 88.2473 210.1480 129.1037 29.7051

FPA 262.1592 1.2650E+03 661.7135 226.6214 FPA 30.3362 85.3530 53.1830 15.3680

SCA 2.0687E-06 0.7171 0.0339 0.1308 SCA 0.4161 15.2616 4.5798 3.6660

FA 1.0377E+02 1.4254E+02 1.2540E+02 9.3352E+00 FA 1.7731E+02 2.3392E+02 2.0774E+02 1.5899E+01

LWFA 8.9383E-62 1.3154E-61 1.1222E-61 1.4028E-62 LWFA 2.9461E-62 5.7812E-62 4.2535E-62 6.2112E-63

f3 PSO 42.8954 136.2840 92.5186 23.5156 f8 PSO 7.1718 43.5822 19.3772 9.3495

CS 56.8094 111.4573 81.1353 13.4428 CS 1.4197 4.2732 2.6419 0.7065

FPA 103.9302 150.2750 125.5139 12.2622 FPA 1.2049 6.6488 3.6693 1.5667

SCA 1.3988E-04 80.4870 14.6301 19.0388 SCA 1.2531 135.7837 37.6145 29.5912

FA 2.8838E+02 3.8032E+02 3.5731E+02 1.8252E+01 FA 4.4617E+02 6.8185E+02 5.5592E+02 5.4870E+01

LWFA 0 0 0 0 LWFA 1.0874E-61 2.9668E-61 1.7842E-61 3.9272E-62

f4 PSO 0.0128 0.1849 0.0475 0.0355 f9 PSO 1.4777 18.7225 7.3092 4.3077

CS 7.5014E-04 0.0536 0.0101 0.0129 CS 2.4960 10.1774 5.6504 1.7214

FPA 2.6201 9.4595 6.4769 1.8591 FPA 10.3986 18.4567 14.2229 2.1451

SCA 1.3316E-08 0.9080 0.1774 0.2850 SCA 1.1044 41.0334 20.5064 12.7204

FA 1.1068E+00 1.1342E+00 1.1219E+00 7.2960E-03 FA 6.6831E+00 8.0281E+00 7.5500E+00 3.4282E-01

LWFA 0 0 0 0 LWFA 1.0002E-31 1.3789E-31 1.2292E-31 9.3718E-33

f5 PSO 0.4425 3.2575 2.3851 0.5495 f10 PSO 0.9885 11.9882 4.0160 3.2955

CS 56.8094 111.4573 81.1353 13.4428 CS 0.0609 0.2279 0.1333 0.0453

FPA 3.1234 7.4835 4.8481 1.2431 FPA 10.4606 25.5790 15.8913 3.0222

SCA 2.8420E-04 20.3911 18.4823 5.5056 SCA 6.2089E-08 4.5451E-04 2.9099E-05 8.4071E-05

FA 1.1782E+01 1.3155E+01 1.2664E+01 3.1784E-01 FA 1.9087E+02 6.9022E+07 4.1621E+06 1.2682E+07

LWFA 0 0 0 0 LWFA 1.1946E-30 1.5411E-30 1.3823E-30 8.5811E-32

https://doi.org/10.1371/journal.pone.0255951.t006
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also increases gradually and shows good optimization performance for each function with an

increase in its dimensions.

6 Conclusions

In this paper, the biological principle and mathematical description of the standard FA are pre-

sented, and the improvement of the FA and the research of its application fields are summa-

rized. To achieve minimum attraction, an FA based on self-adaptive logarithmic inertia weight

is proposed. The step adjustment factor is added to the random step term to dynamically

adjust the random step, thus greatly improving the optimization performance of the FA. To

evaluate the performance of the LWFA, multiple simulation experiments were conducted. In

Table 7. The optimization result of 10 benchmark functions for different algorithms (D = 100).

function algorithm the best

value

the worst

value

the average

value

standard

deviation

function algorithm the best

value

the worst

value

the average

value

standard

deviation

f1 PSO 0.2277 0.3733 0.3066 0.0295 f6 PSO 877.5363 2.0832e+03 1.3193e+03 289.6528

CS 0.1782 0.2277 0.1931 0.0231 CS 69.3377 205.6963 120.0117 34.0957

FPA 0.1270 0.2290 0.1768 0.0316 FPA 2.1184E+03 4.4187E+03 3.3137E+03 594.5536

SCA 0.0814 0.3123 0.2146 0.0463 SCA 229.7247 6.0798E+03 1.6547E+03 1.3282E+03

FA 4.5990E-01 4.7390E-01 4.6922E-01 3.9257E-03 FA 2.8050E+04 3.4829E+04 3.2328E+04 1.6309E+03

LWFA 0 0 0 0 LWFA 2.1345E-

199

3.0341E-

199

2.6422E-199 0

f2 PSO 19.9744 79.6507 46.6166 12.1838 f7 PSO 8.1925E+03 2.7431E+04 1.3991E+04 4.6078E+03

CS 159.7210 456.8990 276.0323 77.7914 CS 870.9981 1.5087E+03 1.2052E+03 166.0680

FPA 5.7575E+03 9.8960E +03 7.4427E+03 962.7697 FPA 585.9580 1.4666E+03 991.1530 222.2277

SCA 337.8922 1.9765e+04 5.4671e+03 5.4292E+03 SCA 133.4625 288.3350 195.5669 40.9209

FA 6.3068E+02 7.0802E+02 6.6869E+02 2.2472E+01 FA 7.8111E+02 1.0451E+03 9.2988E+02 6.8783E+01

LWFA 4.5054E-

201

6.0252E-

201

5.4209E-201 0 LWFA 1.5016E-

201

2.4386E-

201

2.0039E-201 0

f3 PSO 490.3816 776.5889 606.5859 59.7708 f8 PSO 339.0808 815.9485 526.2622 116.3743

CS 334.8207 481.6886 428.7982 39.9027 CS 227.1708 459.1311 321.5536 49.0437

FPA 589.6294 734.1776 674.4609 36.4772 FPA 40.0958 111.0140 66.1648 16.9574

SCA 1.2247 558.7510 242.6099 119.8851 SCA 1.2439E+03 2.9323E+03 1.8525E+03 407.4930

FA 1.4705E+03 1.5829E+03 1.5373E+03 2.5691E+01 FA 4.2350E+03 6.3283E+03 5.4018E+03 5.3043E+02

LWFA 0 0 0 0 LWFA 1.1439E-

200

2.8352E-

200

2.0264E-200 0

f4 PSO 0.4433 0.6773 0.5852 0.0600 f9 PSO 20.6272 30.6745 25.5670 2.8529

CS 0.9339 1.1244 1.0449 0.0440 CS 17.3485 28.3434 23.0299 2.8894

FPA 53.3739 105.0862 68.9915 13.0304 FPA 20.4611 29.4837 24.9385 2.4659

SCA 0.6948 5.1392 2.2343 1.0284 SCA 72.8254 92.1978 85.7399 4.7084

FA 1.5571E+00 1.6804E+00 1.6402E+00 2.5173E-02 FA 9.3510E+00 9.7162E+00 9.5422E+00 1.0333E-01

LWFA 0 0 0 0 LWFA 1.5683E-

101

1.8175E-

101

1.7278E-101 5.5112E-103

f5 PSO 6.1351 14.7410 10.3604 2.7097 f10 PSO 25.2204 62.2287 39.4478 9.2937

CS 9.1747 19.7776 13.6876 3.3292 CS 10.0777 19.7471 13.3932 2.1460

FPA 4.5747 7.8755 6.1055 0.9323 FPA 57.6723 83.5676 71.6025 6.1407

SCA 20.5231 20.6970 20.6298 0.0380 SCA 0.1123 5.1104 1.4292 1.3773

FA 1.3993E+01 1.4587E+01 1.4347E+01 1.2047E-01 FA 8.9329E+37 1.8601E+43 1.6162E+42 4.2571E+42

LWFA 0 0 0 0 LWFA 5.3091E-

100

6.2809E-

100

5.8188E-100 2.1445E-101

https://doi.org/10.1371/journal.pone.0255951.t007
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the first experiment set, ten benchmark test functions and IEEE CEC2010 standard test func-

tions are used to compare the performance of state-of-the-art algorithms with that of the

LWFA. The comparisons with PSO, the FPA, SCA, and CS show that the improved FA

increases the accuracy of the solutions and significantly enhances the robustness of the

solutions for the test functions, particularly for high-dimensional test functions. The

Table 8. The result of CEC2010 standard functions for different algorithms (D = 30).

function Index PSO FPA SCA FA LWFA

f1 Mean 1.1758E+08 2.8482E+07 3.2023E+08 3.2758E+09 1.2335E+09

St.dev 1.2266E+08 9.8650E+06 8.3177E+07 6.6525E+08 2.9624E+08

f2 Mean 194.4268 270.7726 313.9159 429.0046 487.6912

St.dev 22.5446 24.3295 18.1015 22.3716 18.0347

f3 Mean 6.9845 11.5825 8.4616 9.9132 20.6573

St.dev 5.0723 0.8924 0.4262 0.1842 0.1956

f4 Mean 1.9000E+09 1.1098E+08 1.6428E+09 8.6480E+10 5.2756E+09

St.dev 2.5837E+09 3.4122E+07 6.3352E+08 1.1906E+11 1.4965E+09

f5 Mean 843.4820 341.8182 2.1540E+03 1.3410E+04 5.1709E+03

St.dev 159.9266 28.5857 1.3582E+03 9.2452E+04 1.3000E+03

f6 Mean 1.6696E+06 29.0407 8.9861E+04 3.2047E+06 5.8606E+05

St.dev 1.9389E+06 7.4758 6.9757E+04 1.1767E+06 4.1916E+05

f7 Mean 4.1934E+07 3.5154E+04 2.3353E+05 7.4838E+07 3.3784E+06

St.dev 1.0738E+05 8.0394E+03 7.2418E+04 8.5399E+07 3.5215E+06

f8 Mean 4.5953E+13 1.7543E+05 2.5375E+06 5.9478E+11 2.2544E+07

St.dev 1.9726E+12 4.3275E+04 3.2598E+06 7.9379E+11 1.1232E+07

f9 Mean 1.3289E+07 1.9022E+07 7.0679E+07 4.4532E+08 7.2144E+08

St.dev 1.8736E+07 7.0583E+06 1.7118E+07 9.4426E+07 1.5339E+08

f10 Mean 112.8304 158.8623 179.4504 303.8515 268.3395

St.dev 34.0315 16.8684 19.1803 29.1816 20.2220

f11 Mean 40.7407 28.7450 34.2656 64.0681 51.6848

St.dev 5.4358 2.0124 3.8885 4.3817 2.6954

f12 Mean 2.7810E+04 1.4545E+04 2.3914E+04 5.5761E+04 8.4959E+04

St.dev 1.8096E+03 3.9676E+03 2.2166E+03 4.5165E+03 8.8299E+03

f13 Mean 4.4553E+09 4.1246E+05 4.8125E+06 4.4521E+09 1.3288E+08

St.dev 7.5115E+08 3.1061E+05 1.8795E+06 2.0723E+09 1.2952E+08

f14 Mean 4.1494E+07 6.0881E+07 2.5674E+08 1.5656E+09 9.1115E+08

St.dev 5.4354E+07 4.8423E+07 9.2009E+07 2.0959E+08 1.0834E+08

f15 Mean 46.9529 92.8979 99.1639 166.1725 173.0482

St.dev 10.6700 9.1652 12.0043 18.0469 11.9303

f16 Mean 46.6296 44.6271 46.9118 71.5064 73.7265

St.dev 8.8237 4.1806 3.2170 3.9258 2.6880

f17 Mean 5.2609E+04 1.4721E+04 2.9294E+04 1.0348E+05 9.4555E+04

St.dev 1.4283E+04 4.0175E+03 5.4200E+03 1.0450E+04 1.2981E+04

f18 Mean 1.0972E+10 N/A 3.5760E+08 2.5780E+10 7.0092E+09

St.dev 2.8496E+09 N/A 1.5551E+08 6.6432E+09 2.2750E+09

f19 Mean 3.1396E+04 1.6728E+04 3.4017E+04 1.1001E+05 1.1440E+05

St.dev 7.3101E+03 5.7618E+03 6.6369E+03 2.1627E+04 1.9785E+04

f20 Mean 7.1139E+09 2.4342E+09 2.3806E+09 2.2325E+10 4.6233E+10

St.dev 8.4790E+08 1.0194E+09 7.0705E+08 4.1391E+09 7.4252E+09

https://doi.org/10.1371/journal.pone.0255951.t008
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experimental results in this study have convincingly shown and confirmed that the LWFA

achieves high performance in solving optimization problems. The application of the improved

FA to real-world engineering problems and multi-objective optimization will be done in future

work.

Fig 9. Convergence curve of functions f1-f10 in D = 10.

https://doi.org/10.1371/journal.pone.0255951.g009
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