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Abstract

The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP)

transcription factors is one of the superfamilies of plant-specific transcription factors

involved in plant growth, development, and biotic and abiotic stress. However, there is no

report on the research of the TCP transcription factors in soybean response to Phytophthora

sojae. In this study, Agrobacterium-mediated transformation was used to introduce the

CRISPR/Cas9 expression vector into soybean cultivar “Williams 82” and generated targeted

mutants of GmTCP19L gene, which was previously related to involve in soybean responses

to P. sojae. We obtained the tcp19l mutants with 2-bp deletion at GmTCP19L coding region,

and the frameshift mutations produced premature translation termination codons and trun-

cated GmTCP19L proteins, increasing susceptibility to P. sojae in the T2-generation. These

results suggest that GmTCP19L encodes a TCP transcription factor that affects plant

defense in soybean. The new soybean germplasm with homozygous tcp19l mutations but

the BAR and Cas9 sequences were undetectable using strip and PCR methods, respec-

tively, suggesting directions for the breeding or genetic engineering of disease-resistant

soybean plants.

Introduction

TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) tran-

scription factors (TFs) are plant-specific transcription factors family. There were named based

on the first four identified members: TEOSINTE BRANCHED1 (TB1) from maize (Zea
mays), CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), and PROLIFERATING

CELL FACTORS 1 and 2 (PCF1 and PCF2) from rice (Oryza sativa) [1, 2]. The members of

TCP transcription factors family all contain conserved domains and encode structurally simi-

lar proteins [3–5]. The conserved TCP domain, a noncanonical basic-Helix-Loop-Helix

(bHLH) domain, composed of 59 amino acids, is shown to play vital roles in DNA binding

and the interaction between proteins [3]. According to the sequence differences in the TCP

domains, the 24 TCPs in Arabidopsis thaliana can be classified into Class I (PCF or TCP-P)

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267502 June 9, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fan S, Zhang Z, Song Y, Zhang J, Wang P

(2022) CRISPR/Cas9-mediated targeted

mutagenesis of GmTCP19L increasing

susceptibility to Phytophthora sojae in soybean.

PLoS ONE 17(6): e0267502. https://doi.org/

10.1371/journal.pone.0267502

Editor: Hao-Xun Chang, National Taiwan

University, TAIWAN

Received: October 3, 2021

Accepted: April 10, 2022

Published: June 9, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0267502

Copyright: © 2022 Fan et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

https://orcid.org/0000-0002-4897-7692
https://orcid.org/0000-0001-7552-7665
https://doi.org/10.1371/journal.pone.0267502
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267502&domain=pdf&date_stamp=2022-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267502&domain=pdf&date_stamp=2022-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267502&domain=pdf&date_stamp=2022-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267502&domain=pdf&date_stamp=2022-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267502&domain=pdf&date_stamp=2022-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267502&domain=pdf&date_stamp=2022-06-09
https://doi.org/10.1371/journal.pone.0267502
https://doi.org/10.1371/journal.pone.0267502
https://doi.org/10.1371/journal.pone.0267502
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


and Class II (TCP-C) subfamilies. Class I members promote cell proliferation and growth, but

class II members inhibit these processes [6, 7]. The class II members can be further divided

into two subcategories, CINCINNATA (CIN)-like TCP (CIN-TCP) and CYCLOIDEA/TEO-

SINTE BRANCHED1 (CYC/TB1) [5]. TCP transcription factors modulate target gene expres-

sion by specifically binding to the cis-acting element, and the consensus binding sequences for

class I is GGNCCCAC while class II is G(T/C)GGNCCC [4, 6].

TCP transcription factors are widely present in plants and play important roles in growth

development, morphogenesis, hormone synthesis, signal transduction, and the response to

biotic and abiotic stresses [3, 8–19]. In Arabidopsis, a large number of TCP transcription fac-

tors have been found, and most of which are related to the formation of leaves, flowers and

axillary buds, and the synthesis of plant hormones [12, 20–24]. AtTCP3 can interact with

MYB, bHLH and WD40 (MBW) transcription factors to regulate the synthesis of anthocya-

nins [25]. AtTCP14 and AtTCP15 can modulate cell proliferation in the developing leaf blade

and specific floral tissues [26], and also participate in the induction of genes involved in gib-

berellin biosynthesis and cell expansion by high temperature functionally [27, 28]. AtTCP12/

AtTCP18 can integrate into the FLOWERING LOCUS T (FT)–FD complex to control floral

initiation and also directly bind the promoter of downstream floral meristem identity gene

APETALA1(AP1) to enhance its transcription and regulate flowering [7]. Experimental evi-

dence indicates that several TCP transcription factors can be rapidly induced in response to

altered environmental conditions and to integrate hormonal signals [4, 29–31]. Based on tran-

scriptome data analysis and related experiments, it is found that TCP transcription factors are

likely to regulate the differential expression of auxin-induced genes [4, 31, 32].

In addition, recent studies supported that TCP transcription factors can also play an impor-

tant role in plant defense signaling networks by stimulating the synthesis of certain active

metabolites, such as brassinosteroid, jasmonic acid (JA) and flavonoids [20, 21, 25, 33, 34].

More importantly, in the process of plant innate immune response, TCP transcription factors

were found to be involved in the effector-triggered immunity (ETI) of pathogenic bacteria [22,

35, 36]. In Arabidopsis, AtTCP13, AtTCP15 and AtTCP19 can be targeted by effectors from the

gram-negative bacteria Pseudomonas syringae and the oomyceteHyaloperonospora arabidopsi-
dis, and the plants mutated in AtTCP13, AtTCP15 or AtTCP19 exhibit altered infection pheno-

types [35]. AtTCP8, AtTCP14, AtTCP15, AtTCP20, AtTCP22 and AtTCP23 can interact with

suppressor of rps4-RLD1 (SRFR1, a negative regulator of ETI) and regulate the expression of

defense-related genes which are hostile to SRFR1, facilitating plant disease resistance [22]. The

secreted AY-WB protein 11(SAP11), an effector protein factor of Xanthomonas oryzae, can spe-

cifically target CIN-like TCP transcription factor, inhibiting the expression of LOX2 gene and

reducing the production of JA, and improving the reproduction ability of insects [33, 37].

In a previous study, a TCP gene (Glyma.05G050400.1) was significantly induced after infec-

tion with P. sojae among several soybean near isogenic lines revealed by comparative tran-

scriptomics [38]. In this study, the full-length of this TCP gene was isolated using RT-PCR

technique. It showed the highest homolgy with AtTCP19 protein after comparison with the 24

TCP transcription factor members of Arabidopsis, and this TCP gene was named as

GmTCP19-Like (GmTCP19L). Subsequently, we employed the CRISPR/Cas9 system to specifi-

cally induce targeted mutagenesis of the GmTCP19L in the soybean cultivar “Williams 82” and

studied the function of this gene responses to P. sojae infection. We obtained a variety of

homozygous tcp19lmutants with short deletions in T1 generation, and the targeted mutations

were stably inherited from the T1 to T2 generation. In T2-generation, the homozygous

mutants for null alleles of GmTCP19L frameshift mutated by a 2-bp deletion and the BAR and

Cas9 sequences were undetectable using strip and PCR methods, respectively, which resulted

in enhanced susceptibility to P. sojae infection by decreasing the activity of antioxidant defense
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system. Our findings suggest that GmTCP19L directly or indirectly regulates soybean resis-

tance to P. sojae. These mutants of GmTCP19L that we obtained will provide materials for

more in-depth research on GmTCP19L functions and the molecular mechanism responses to

P. sojae infection in soybean.

Materials and methods

Plant material, growth condition and strain material

“Williams 82”, a P. sojae-resistant soybean cultivar carrying resistance gene Rps1k, was used

for transformation in this study. Seeds collected from the T0 generation were sown in pots

filled with sterile vermiculite in a growth chamber with a 14-h photoperiod (at a light intensity

of 350 mol m-2s-1) at 22˚C/18˚C day/night temperatures and relative humidity of 70 ± 10%.

P. sojae race 1, PSR01, which is the dominant race in Jilin Province, was kindly provided by

Professor Shuzhen Zhang and her team (Soybean Research Institute, Key Laboratory of Soy-

bean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin,

China). It was isolated from infected soybean plants in Heilongjiang [39].

sgRNA design and CRISPR/Cas9 expression vector construction

The soybean endogenous gene GmTCP19L (Glyma.05G050400.1) sequence was downloaded

from the Phytozome database (http://www.phytozome.net/). Potential sgRNA target sites

within the GmTCP19L gene were identified using the web tool CRISPR-P (http://cbi.hzau.edu.

cn/crispr/) [40]. The primer binding sites for amplification of selected sgRNAs target sites

were designed using Primer Premier 5.0. Functional domain was predicted using CDSearch

[41]. To construct the GmTCP19L-CRISPR/Cas9 vector carrying both GmTCP19L targeted

sgRNA and Cas9 cassettes, the sequence of Cas9 was assembled downstream of the CaMV 35S

promoter together with the sgRNA driven by the Glycine maxU6 promoter (GmU6) within its

T-DNA region, the bar gene driven by a CaMV 35S promoter was used as a screening marker

(S1 and S2 Figs).

Plasmid delivery by tri-parental mating and soybean transformation

The GmTCP19L-CRISPR/Cas9 plasmids were transformed into Agrobacterium tumefaciens
strain EHA105 via tri-parental mating. A. tumefaciens EHA105 was grown on LB agar with Rif

selection for 36–48 h at 28˚C. E. coliDH5α harboring GmTCP19L-CRISPR/Cas9 plasmids and

E. coli HB101 harboring pRK2013 plasmids were grown on LB agar witn Kan selection for 12

h at 37˚C. The bacteria were scraped off their respective plates and resuspended in at least 1

mL of LB medium each with no antibiotics. Combine 100 μL of each pre-culture into a reac-

tion tube and pellet the cells in a microcentrifuge at 1,000×g for 1 min at room temperature.

Resuspend the cells in 20–30 μL of LB medium and placed them at the center of a LB agar

plate with no antibiotic selection at 28˚C for 3–5 h. Use an inoculation loop to take the biomass

up from the agar surface and resuspend them in 1 mL of LB medium containing no antibiotics.

100 μL of this suspension was then streaked out on a LB agar plate supplemented with Rif and

Kan at 28˚C for 72 h until clear colonies have formed. The cotyledonary nodes from “Williams

82” were used as explants for tissue culture and soybean transformation using the Agrobacter-
ium-mediated transformation method described by Guo et al. [42].

Screening for mutations by sequencing analysis

Genomic DNA was extracted from the leaves of each individual plant following the modified

cetyltrimethylammonium ammonium bromide (CTAB) protocol in the T0, T1 and T2
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generation, and then the 621 bp GmTCP19L target region was amplified via PCR with Phan-

ta_Super Fidelity DNA Polymerase (Vazyme Biotech). PCR products were detected by 1% aga-

rose gel electrophoresis and then sequenced using the GmTCP19L-F and GmTCP19L-R

primers. Three types of gene editing can be identified by sequence peaks. The heterozygous

mutations showed overlapping peaks at the target site, and the wild type (WT) and homozy-

gous mutations showed single peaks at the target. The homozygous mutations were identified

by sequence alignment with the WT sequence, and short base insertions or deletions induced

by CRISPR/Cas9 can lead to frameshift mutations. At the same time, we also screened the

tcp19lmutants without the BAR and Cas9 sequences of the CRISPR/Cas9 vector in both T1

and T2 progenies. PAT/Bar test strip (Catalog No. STX 14200, Agdia, USA) was used to iden-

tify the BAR protein following the manufacturer’s instruction, and the primers Cas9-F/R were

used to amplify the fragment (349 bp) of the Cas9 (S2 Fig).

Analysis of off-target mutagenesis

To examine if either of target sites could have off-target activity, we analysed the potential off-

target sites using online website tool CRISPR-P (http://cbi.hzau.edu.cn/crispr/). Two most

potential off-target sites at GmTCP19L-SP1 and GmTCP19L-SP2 were selected, and the

sequences were downloaded from the Ensembl Plants database (http://plants.ensembl.org/

Glycine_max/). Primers of each off-target site were designed to amplify 300–500 bp regions.

The regions spanning the target sites were amplified by PCR technique, then the different

types of potential off-target sites editing can be identified by sequencing analysis.

Resistance identification of the tcp19l mutants

To examine the phenotype of tcp19lmutants in response to P. sojae infection, the T1 living cot-

yledons at the first-node stage (V1) were treated with P. sojae as described by Ward et al.
(1979) with minor modifications for the live plants. To determine whether the tcp19lmutants

can transmit the phenotype to their progenies, the progeny of tcp19lmutants without BAR

and Cas9 sequences were sown in pots filled with nutritious soil and grown in a greenhouse at

Jilin Agriculture University under previously described conditions. P. sojae race 1 was culti-

vated on V8 juice agar in a petri dish at 25˚C for 7 days. For disease resistance analysis, hypo-

cotyls of fourteen-day old seedlings were inoculated using the wounded-hypocotyl inoculation

technique [43, 44]. For the same purpose, roots of fourteen-day old seedlings were inoculated

with zoospores using a hydroponic assay according to the method of Ward et al. (1979) and

Gijzen et al. (1996) with minor modifications [45, 46]. The inoculated seedlings were grown in

a mist chamber at 25˚C with 90% relative humidity under a 14-h photoperiod at a light inten-

sity of 350 mol m-2 s-1 [43–46]. Non-transformed seedlings were used as controls. After 3 days

of inoculation, the disease symptoms were observed and photographed using a Nikon D700

camera. For pathogen level analysis, the relative accumulation of P.sojae in infected cotyledons

and roots were also analyzed by qPCR using One Step RT-PCR Kit (Code No.:PCR-311,

TOYOBO, Japan) on a QuantStudio 3 instrument (Thermo, United States). The expression of

the P. sojae housekeeping gene PsACT (GenBank accession no. XM_009530461.1) relative to

the soybean housekeeping gene GmCYP2 (Glyma.12G024700.1) (ΔCt = CtHK of P. sojae—CtHK

of soybean) was calculated. The housekeeping genes of P. sojae and soybean were chosen as

described previously by Wang et al. (2011) [47], and the primers were listed in S1 Table.

Detection of enzyme activities

To test whether GmTCP19L could affect superoxide dismutase (SOD) activity and peroxidase

(POD) activity, the activities of SOD and POD were measured in tcp19lmutants one gram of
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fresh roots were harvested at 3 days after inoculation with zoospores of P. sojae. The SOD and

POD activities were measured as described previously by Li et al. (2015) [48]. Non-trans-

formed seedlings were used as controls.

Primer sequences used in the present study

The specific primers used for amplifying the regions which span the target sites, potential off-

target sites, identifying tcp19lmutants without the BAR and Cas9 sequences of the CRISPR/

Cas9 vector are listed in S1 Table.

Statistics and reproducibility

All statistical methods are annotated in the figure captions. The numbers of biological repli-

cates in each assays are also indicated in the figure captions. Three independent biological rep-

licates were used for each sample and the student’s t-test (�P<0.05, ��P<0.01) was used to

analyze statistical significance. Error bars represent ±SD.

Results

Isolation and phylogenic analysis of GmTCP19L

The full-length sequence of this TCP gene was isolated from “Williams 82” using RT-PCR

technique. Alignment and phylogenetic tree analysis of the full-length amino acids sequence

with the 24 TCP transcription factor members of Arabidopsis were performed. It showed the

highest homolgy with AtTCP19 protein, and then this TCP gene was named as GmTCP19-Like
(GmTCP19L) (S3 Fig).

Targeted mutagenesis of GmTCP19L induced by CRISPR/Cas9

We designed sgRNAs within GmTCP19L gene using CRISPR-P, which displayed all optional

sgRNA sequences (20 bp) immediately followed by 5’-NGG (PAM, protospacer adjacent

motif) in the forward or reverse strand. Two target sites in the exon of GmTCP19L (named

GmTCP19L-SP1 and GmTCP19L-SP2) were chosen (Fig 1), and the corresponding sgRNA/

Cas9 vectors were transferred into the soybean cultivar “Williams 82” by Agrobacterium-medi-

ated genetic transformation. The whole genome DNA was used to examine CRISPR/Cas9-in-

duced mutations at the target sites using PCR and DNA sequencing analysis. In T0 transgenic

lines, we determined that 15.7% (8 of 51) and 11.8% (6 of 51) DNA-positive plants had hetero-

zygous mutations at the two target sites of GmTCP19L, respectively (S4 Fig). Then, all seeds

Fig 1. Gene structures of GmTCP19L with target sites. The underlined nucleotides indicate the target sequences, and

the red nucleotides indicate PAM sequences.

https://doi.org/10.1371/journal.pone.0267502.g001
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derived from each T0 lines were planted under natural conditions. The types of mutation at

target sites of GmTCP19L were observed in the T1 generation (Table 1). Sequencing analysis

showed that a total of 44 T1 plants (29 tcp19l-SP1 and 15 tcp19l-SP2) were homozygous for

null alleles of GmTCP19L and two types of mutations at target site GmTCP19L-SP1 (2-bp dele-

tion and 1-bp deletion) were detected (Fig 2A and 2B). Meanwhile, the 14-bp deletion type of

mutations was found at target site GmTCP19L-SP2 (Fig 2A and 2C). The frameshift mutations

of three types at two target sites of GmTCP19L resulted in premature translation termination

codons (S5 Fig).

Potential off-target analysis

Then, we sought to determine whether introduction of CRISPR/Cas9 machinery led to off-tar-

get mutagenesis of soybean DNA, we identified the off-target sites in the “Williams 82”

genome predicted to be most likely off-targets of our sgRNAs using the online tool CRISPR-P.

Two most likely off-target sites with highest scores at the two target sites (GmTCP19L-SP1 and

GmTCP19L-SP2) were examined by specific genomic PCR and DNA sequencing analysis in

the 44 T1 plants identified as homozygous tcp19lmutants. Every potential off-target site only

possessed mismatches of 2–4 bases compared with the GmTCP19L target sequences (S2

Table). In this study, no mutations were observed in the examined potential off-target sites

(Fig 3, S2 Table).

Phenotypes of T1 mutants in response to P. sojae infection

In the T1 generation, cotyledons of three types of homozygous tcp19lmutants (1-bp deletion

and 2-bp deletion at target site GmTCP19L-SP1, 14-bp deletion at target site GmTCP19L-SP2)

were selected to investigate resistance to P. sojae. We found that the cotyledons of tcp19l
mutants became soft and exhibited clear water-soaked lesions compared with those of the WT

after 3 days of incubation with zoospores of P. sojae (Fig 4A), and the accumulation of P. sojae
in infected cotyledons was significantly (P<0.05) higher in tcp19lmutants (1-bp deletion and

2-bp deletion) than that in WT (Fig 4B). These results indicate that the cotyledons of T1

homozygous tcp19lmutants showed a reduced resistance phenotype after P. sojae infection.

Table 1. CRISPR/Cas9-mediated targeted mutagenesis of GmTCP19L in the T1 generation.

T1 lines with tcp19l
mutations

No. of plants sequenced No. of homozygous tcp19l mutants No. of heterozygous tcp19l mutants No. of plants with no mutation

tcp19l-SP1-T1#01 26 0 18 8

tcp19l-SP1-T1#02 18 9 7 2

tcp19l-SP1-T1#07 26 7 16 3

tcp19l-SP1-T1#08 12 0 7 5

tcp19l-SP1-T1#10 12 0 12 0

tcp19l-SP1-T1#20 44 0 32 12

tcp19l-SP1-T1#21 77 13 43 21

tcp19l-SP1-T1#51 11 0 8 3

tcp19l-SP2-T1#02 18 5 7 6

tcp19l-SP2-T1#07 26 8 17 1

tcp19l-SP2-T1#10 12 0 6 6

tcp19l-SP2-T1#20 44 0 26 18

tcp19l-SP2-T1#21 77 0 28 49

tcp19l-SP2-T1#51 11 2 9 0

https://doi.org/10.1371/journal.pone.0267502.t001
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Generation of tcp19l mutants without the BAR and Cas9 sequences

To obtain soybean germplasm with homozygous tcp19lmutations but without the BAR and

Cas9 sequences of the CRISPR/Cas9 vector, the selectable marker BAR was examined by test

Fig 2. Homozygous targeted mutagenesis of GmTCP19L induced by CRISPR/Cas9 in the T1 generation. (A) Sequences of WT and

representative mutation types induced at target sites GmTCP19L-SP1 and GmTCP19L-SP2. Dashes, deletions. (B) and (C) Sequence

peaks of WT and representative mutation types at target sites GmTCP19L-SP1 and GmTCP19L-SP2. The red arrowheads indicate the

location of mutations. WT, wild-type soybean plant.

https://doi.org/10.1371/journal.pone.0267502.g002

Fig 3. Potential off-target analysis at the two target sites of GmTCP19L in the T1 generation. WT, wild-type

soybean plant. T1, the homozygous of tcp19l mutants in the T1 generation.

https://doi.org/10.1371/journal.pone.0267502.g003
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PAT/Bar strip, and the Cas9 coding sequence were amplified by PCR technique. In T1 genera-

tion, we found that two of 44 homozygous tcp19lmutants were both BAR-free and Cas9-free

(Fig 5A and 5B). Then, these two tcp19lmutants were named as tcp19l-SP1-T1#02.03 and

tcp19l-SP1-T1#02.08. Simultaneously, the 2-bp deletion type of mutations at target site

GmTCP19L-SP1 was found in both tcp19l-SP1-T1#02.03 and tcp19l-SP1-T1#02.08, and the

sequence of them were consistent (S6 Fig).

Phenotypes of the progeny of tcp19l mutants in response to P. sojae
infection

In the T2 generation, the progeny of T1 homozygous tcp19lmutants tcp19l-SP1-T1#02.03 and

tcp19l-SP1-T1#02.08 were grown under natural conditions. Because of the mutant of them

were consistent, we number them uniformly as tcp19l-SP1-T2, and all of them were homozy-

gous tcp19lmutants without the BAR and Cas9 sequences (Table 2). To examine the pheno-

type of tcp19l-SP1-T2 in response to P. sojae infection, eight plants were selected to investigate

resistance to P. sojae by the wounded-hypocotyl inoculation technique. After 3 days of incuba-

tion, a remarkable difference in the development of disease symptoms was observed. The

hypocotyls of tcp19l-SP1-T2 became soft, exhibited clear water-soaked lesions and emitted a

foul odor compared with those of the WT, and there were nearly no visible lesions in WT and

Fig 4. Phenotypes of T1 mutants in response to P. sojae infection. (A) Disease symptoms on the cotyledons of T1

tcp19lmutants and WT treated with P. sojae after 3 days. (B) Accumulation of P. sojae in tcp19l mutants and WT.

Three independent biological replicates were used for each sample and the student’s t-test (�P<0.05) was used to

analyze statistical significance. Error bars represent ±SD.

https://doi.org/10.1371/journal.pone.0267502.g004
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the hypocotyls keep hard (Fig 6). In the T3 generation, similar results were obtained at 3 days

after inoculation with zoospores of P. sojae in the soybean root hydroponic assay, the disease

symptom of root browning and stem stunting appeared in tcp19lmutants. In contrast, the WT

seedlings were clearly healthier than tcp19lmutants seedlings (Fig 7A). We also analysed the

accumulation of P. sojae in infected living roots after 3 days of incubation with P. sojae zoo-

spores. The accumulation of P. sojae was significantly (P<0.01) higher in tcp19lmutants than

that in WT (Fig 7B). Meanwhile, the activities of SOD and POD were significantly (P<0.01)

decreased in tcp19lmutants compared with WT seedlings (Fig 7C and 7D). These results indi-

cate that the susceptibility to P. sojae was enhanced in tcp19lmutants.

Discussion

Soybean [Glycine max (L.) Merr.] is an important food crop with great economic value that

abundant protein and oil. Phytophthora root and stem rot, which is caused by the oomycete P.

sojae has been observed in all major soybean-growing regions all around the world [49–51].

Because Phytophthora root and stem rot is a persistent problem for soybean, improvement of

disease resistance through breeding, biocontrol and biotechnology approaches are all active

areas of research. Therefore, exploring the molecular mechanisms involved in responses to P.

sojae infection can provide useful information to generate resistant cultivars through molecu-

lar breeding.

With the development of the CRISPR/Cas9 system as a tool for targeted genome editing

[52], it quickly became an effective method for crop improvement [53–55]. The system has

Fig 5. The partial result of identifying tcp19l mutants without the BAR and Cas9 sequences of the CRISPR/Cas9

vector. (A) Detection of the selectable marker BAR by test strip. WT, wild type soybean plant. Labels 1–14, individual

mutant plants. The bands at red arrowhead indicate that BAR is positive. (B) Gel images of PCR products obtained

with a set of primer pairs for the Cas9 of sgRNA/Cas9 vectors. Cas9 (349 bp), part of the Cas9 coding sequence.

GmActin (Glyma.18G290800.1) was used as a normalization control. M, DL2000 DNA marker. V, plasmid of CRISPR/

Cas9 vector used in transformation. WT, DNA of wild type soybean plant. Labels 1–14, individual mutant plants.

https://doi.org/10.1371/journal.pone.0267502.g005

Table 2. Identifying tcp19l mutants without the BAR and Cas9 sequences from T1 and T2 generations.

T1 homozygous tcp19l
mutants

T-DNA in the T1 homozygous tcp19l
mutants

No. of the progeny plants

identified

No. of the T2 homozygous tcp19l mutants without the BAR

and Cas9 sequences

tcp19l-SP1-T1#02.03 T-DNA-free 16 16

tcp19l-SP1-T1#02.08 T-DNA-free 15 15

https://doi.org/10.1371/journal.pone.0267502.t002
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already been widely used in many crops and there are also many applications in soybean. Cai

et al. (2018) employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of

the GmFT2a gene in soybean, and the homozygous GmFT2a mutants exhibited late flowering

under both long-day and short-day conditions [56]. Subsequently, the CRISPR/Cas9 system

was also used to target four GmLHY genes in soybean, and the height and internodes of the

GmLHYmutants were significantly shorter than that of the WT [57]. Han et al. (2019)

obtained E1 gene mutants using the CRISPR/Cas9 system and Agrobacterium-mediated trans-

formation technique, and the mutants exhibited obvious early flowering under long day condi-

tion [58]. In this study, we screened and obtained homozygous mutants without the BAR and

Cas9 sequences targeting soybean endogenous gene GmTCP19L using the CRISPR/Cas9 sys-

tem, which will significantly increase breeding efficiency and speed up breeding process.

GmTCP19L is the first TCP gene was identified in soybean response to P. sojae infection. In

previous studies, TCP transcription factors have been shown to be a versatile regulatory role at

Fig 6. Disease symptoms on the hypocotyls of T2 tcp19l mutants and WT treated with P. sojae after 3 days. WT,

wild-type soybean plant. tcp19l-SP1-T2, 2-bp deletion mutants, the progeny of T1 tcp19l mutants tcp19l-SP1-T1#02.03

and tcp19l-SP1-T1#02.08.

https://doi.org/10.1371/journal.pone.0267502.g006
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the different stage of plant growth and development, such as leaf development [37], leaf mor-

phogenesis [8], leaf senescence [20], trichome development [30, 59], flower development [19,

60, 61], circadian clock [62], hormone signaling [28, 63, 64], and in the response to varies

stresses [35, 64–67]. Recently, increasing experimental evidence has showed that TCP tran-

scription factors played a pivotal role in plant defense [22, 33]. In Arabidopsis, the tcp13, tcp14
and tcp19 single mutants display enhanced disease susceptibility to 2 different avirulent Hyalo-
peronospora arabidopsidis (Hpa) isolates (Emwa1 and Emoy2), while the tcp15 mutant exhibits

improved disease resistance to the virulent Hpa isolate Noco2 [35]. AtTCP8, AtTCP14, and

AtTCP15 physically interact with NPR1 and function redundantly to establish systemic

acquired resistance (SAR), and AtTCP15 promotes the expression of PR5 which belongs to

SAR marker genes [68]. Silencing of StTCP23 in potato causes stunting and a branched pheno-

type as well as increasing susceptibility to common scab disease caused by the bacterial patho-

gen Streptomyces turgidiscabies [69]. Previous studies found that the GmTCP19L was up-

regulated in several near isogenic lines (NILs) under P. sojae treatment as assessed by RNA--

Seq, but little is known about the functional roles in soybean [38]. Consistent with this, in this

study, we further demonstrated that the accumulation of P. sojae was significantly higher in

tcp19lmutants than that in WT. These results indicate that GmTCP19L is required for soybean

defense responses to P. sojae.
Additionally, to survive the damaging effect of stresses-induced ROS accumulation, plants

have evolved multifaceted strategies to minimize these adverse effects. Protective enzymes in

Fig 7. Analysis of the tcp19l-SP1-T3 mutants and WT treated with zoospores of P. sojae in the soybean root

hydroponic assay. (A) Disease symptoms on the roots of tcp19l mutants and WT treated with zoospores of P. sojae at

3 days after inoculation. (B) Accumulation of P. sojae in tcp19lmutants and WT. (C, D) The activities of SOD and

POD in tcp19lmutants and WT at 3 days after P. sojae inoculation. Three independent biological replicates were used

for each sample and the student’s t-test (�P<0.05, ��P<0.01) was used to analyze statistical significance. Error bars

represent ±SD.

https://doi.org/10.1371/journal.pone.0267502.g007
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plant organisms, such as POD and SOD, can reduce ROS levels by scavenging free radicals

hydrogen peroxide (H2O2) or superoxide (O2−), leading to improve the plant resistance against

pathogens [70, 71]. GmPIB1 (a bHLH-type transcription factor) has been shown to facilitate

resistance to P. sojae in Glycine max by affecting ROS levels [72]. In this study, the activities of

SOD and POD were significantly lower in tcp19lmutants after P. sojae infection than those in

the WT plants, suggesting that GmTCP19Lmay improve the resistance by regulating the anti-

oxidant defense system.

Plants must fine-tune defense responses to avoid deleterious effects on growth and develop-

ment. In previous studies, there were reports that a few of TCP genes also play a wide range of

roles in growth and development [8, 19, 20, 28, 30, 35, 37, 59–67]. But, we did not find any

other phenotypic changes from T0, T1, T2, or T3 tcp19lmutants. So, in the follow-up work,

we will continue to multiply the number of seeds, and it is valuable that exploring enough phe-

notypes of the tcp19lmutants and network involved in regulation of GmTCP19L, it will

improve the interpretation of the findings that the function of the GmTCP19L response to var-

ies stresses. Our work provides a new soybean germplasm with homozygous tcp19l mutations

but the BAR and Cas9 sequences were undetectable using strip and PCR methods, respectively,

suggesting directions for the breeding or genetic engineering of disease-resistant soybean

plants.
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