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Abstract

Empirical studies of decision making have typically assumed that value learning is governed by time, such that a reward
prediction error arising at a specific time triggers temporally-discounted learning for all preceding actions. However, in
natural behavior, goals must be acquired through multiple actions, and each action can have different significance for the
final outcome. As is recognized in computational research, carrying out multi-step actions requires the use of credit
assignment mechanisms that focus learning on specific steps, but little is known about the neural correlates of these
mechanisms. To investigate this question we recorded neurons in the monkey lateral intraparietal area (LIP) during a serial
decision task where two consecutive eye movement decisions led to a final reward. The underlying decision trees were
structured such that the two decisions had different relationships with the final reward, and the optimal strategy was to
learn based on the final reward at one of the steps (the ‘‘F’’ step) but ignore changes in this reward at the remaining step
(the ‘‘I’’ step). In two distinct contexts, the F step was either the first or the second in the sequence, controlling for effects of
temporal discounting. We show that LIP neurons had the strongest value learning and strongest post-decision responses
during the transition after the F step regardless of the serial position of this step. Thus, the neurons encode correlates of
temporal credit assignment mechanisms that allocate learning to specific steps independently of temporal discounting.
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Introduction

Converging evidence from recent research is consistent with the

idea that animals solve simple decision tasks in a manner

consistent with basic reinforcement learning mechanisms, and

that variables related to these mechanisms are encoded in

individual cells [1,2]. Specifically, sensorimotor cells in cortical

and subcortical structures are thought to encode the values of

competing options, and to update these values based on of reward

prediction errors in midbrain dopamine cells [2,3]. An intensively

investigated value representation is found in the lateral intrapar-

ietal area (LIP), a cortical area involved in target selection for

spatial attention and eye movement control [4]. LIP neurons have

visual-spatial receptive fields (RF) and respond selectively for task-

relevant targets relative to distractors, and their responses scale

with target value, whether value is manipulated through the

probability or magnitude of an expected reward [5,6], the delay to

the future reward [7], or the relative values of the alternative

options [8]. Thus, LIP cells have been proposed to act as an

intermediate decision stage that encodes action values and

provides input to a final step of action selection [2,3].

The decision studies carried out so far have been largely limited

to simple paradigms where animals choose individual actions and

receive discrete feedback regarding each action. However, in

natural behavior achieving a goal typically requires sequences of

action that may be extended in space and in time. Moreover, each

of the actions in the sequence may have a different significance for

the final goal [1,9,10]. Imagine, for example, that you are an

athlete trying to improve your sprint time at a daily practice. In

this case you will want to pay attention to your choice of stretching

regimen and learn about the value of that regimen based on your

sprint performance at today’s practice. However, you would

ideally not update the value of your decision to wear a red rather

than a blue shirt. Even though this decision is a valuable part of

the action chain and may be closer in time to your final goal, it has

little bearing on your sprint time. In these more complex

conditions, therefore, animals require credit assignment mechanisms

that can link a global reward with the significant steps based on

task-specific or contextual information.

Although the importance of credit assignment mechanisms is

widely recognized in computational research, their neural

correlates remain almost entirely unexplored. In computational

models, credit assignment is implemented directly by increasing

learning rates at specific steps [10] or indirectly, by using eligibility

traces to prolong the memory for a recent action and increase its

eligibility for a later reinforcement [11]. Studies of decision

making, in contrast, have explained the results of simple single-step

tasks using algorithms where learning depends solely on time – i.e.,
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reward prediction errors from a final reward propagate automat-

ically to all preceding actions subject only to temporal discounting

(e.g., [12,13]). Likewise, studies of sequential actions have focused

on memory and ordering processes but not on credit assignment

mechanisms (e.g., [14,15]).

In the present study, we sought to identify the neural correlates

of credit assignment by recording single neuron responses in area

LIP during a sequential task where two eye movement decisions

were required to obtain a final reward. The critical manipulation

was that, in two distinct contexts, either the first or the second

decision was important for the final reward. In contrast, the choice

at the remaining step could not change the size of the final reward

and would optimally be based on the immediate reward. We refer

to these two decisions as the ‘‘F’’ and the ‘‘I’’ steps, to indicate that

they are optimally based on, respectively, the final or immediate

rewards. We show that the monkeys adopted an optimal strategy,

learning selectively based on the final reward at the ‘‘F’’ but not at

the ‘‘I’’ step. This selective learning was seen whether the F step

was the first or second in the sequence, showing that it was

independent of temporal discounting. LIP cells encoded this

strategy by showing stronger value learning and enhanced post-

decision responses after the F relative to the I step. Thus, the cells

encode credit assignment mechanisms consisting of elevated

learning rates and memory (eligibility) traces that highlight

specific, significant steps in a sequence.

Results

Task design
Two monkeys completed a sequential decision task where they

made two eye movement decisions to obtain a final reward. In

each trial the monkeys began by achieving central fixation, after

which they were shown the first pair of targets and chose one by

making a saccade to it (Fig. 1b). The monkeys then returned to

fixation, were shown the second target pair and made their second

choice. After a final return to fixation the trial ended with the

delivery of a large or small final reward (see Methods for additional

details). The task was run in separate blocks of ,150 trials, such

that in each block a randomly selected choice sequence led to the

largest reward, and the monkeys had to discover this sequence by

trial and error. Our focus was on the monkeys’ exploratory

strategy – the ways in which they sampled the alternative options

to find the optimal path.

The key task manipulation was that, in two different contexts,

the optimal strategy was to explore selectively based on the final

reward only at the first or only at the second step, and ignore

changes in the final reward at the remaining step. We refer to the

step where it was optimal to explore as the ‘‘F’’ step to indicate the

strong relationship between this step and the final reward. We

refer to the step where it was optimal to withhold exploration as the

‘‘I’’ step, to indicate the closer relation between this step and the

immediate reward (see below). As we show below, if the monkeys

adopted a step and context-specific exploration strategy this would

be evidence that they can assign credit for a global reward to

specific steps. In contrast, if they adopted a less efficient

undifferentiated strategy, this would indicate an absence of credit

assignment mechanism.

We established the significance of a decision step by manipu-

lating the transition contingencies leading to the final reward,

resulting in four different decision trees. These decision trees,

which were hidden from the monkeys, are reproduced for the

reader in Fig. 1a using abstract notation where each target is

denoted by a letter. In the main task context (signaled by the use of

a fixed complement of saccade targets, A-F in Fig. 1a, top) the F

step was the initial step in the sequence. In any given trial block,

the monkeys had to discover whether the largest final reward was

reached by selecting either target A or B at this step (e.g., whether

they were in an AC-optimal or BE-optimal configuration; Fig. 1a,

top). At the second step, by contrast, the optimal choice was

determined by the immediate reward (see below) and always

consisted of targets C or E (in, respectively, an AC-optimal, or a

BE-optimal block). Thus, in this task context, the optimal strategy

when sensing a change in the final reward was to evaluate the final

reward associated with the alternative options at the first, F, step,

but keep a fixed preference for one of the options at the second, I,

step. The control task was signaled by a distinct target set (Fig. 1a,

bottom, targets K-P), and was similar in all respects except that the

F step was the second in the sequence. At this step, targets M or N

could lead to the large final reward in different trial blocks, while

at the first step, the optimal choice consisted of target K in all trial

blocks.

In sum, the decision task had a hierarchical structure. Upon

entering a trial block the monkeys could infer the context based on

the saccade target set, but had to search for the path leading to the

largest reward. Our question was whether their search was focused

on a specific step in context-dependent fashion. It is important to

note that such a difference was in no way dictated by the task

contingencies or training regimen. Even though the appearance of

the targets signaled a difference between the two contexts, it did

not instruct the monkeys that one step was more significant, or

which was the significant step. Any physical sequence of events

seen by the monkey (e.g., Fig. 1b) was equally consistent with the

first or the second step being more significant, or with an

undifferentiated strategy where the search extended to both

decision steps. Thus, if the monkeys implemented context specific

exploration, this would indicate that they had inferred aspects of the

task structures.

We implemented a final manipulation where we provided small

immediate rewards after each decision step, in order to underscore

the step-specific differences and facilitate the interpretation of the

data. Because the immediate rewards were very small, behavior

was ultimately governed by the final reward (see Methods for

specific values and the results below). However, by selectively

assigning the immediate rewards we could constrain the interpre-

tation of the monkeys’ choices. At the F step in each context, the

immediate reward was given for the target that was not optimal in

the long run (e.g., target B in an AC-optimal block and target A in

a BE-optimal block). Therefore, at the F step the optimal strategy

was to suppress the pull of the immediate reward and learn target

values based on the final reward, whether this step was the first or

second in the sequence (main or control contexts). At the I step, in

contrast, the immediate reward was assigned to a fixed target and

the optimal strategy was to choose based on this reward. For

example, target C in the main task was optimal whether the final

reward associated with it was large (e.g., in an AC-optimal block)

or small (e.g., in a BE-optimal block). Thus, the optimal strategy at

this step was to ignore the final reward and choose solely based on

the immediate reward. Such a strategy, which weights the final

reward strongly or weakly depending on context regardless of its

temporal proximity to the action selection, clearly distinguishes a

selective from a temporally discounted learning rule.

Behavior
The monkeys modulated their exploration in context-specific

fashion, modifying their choices selectively at the F step but

maintaining a stereotyped preference at the I step (Fig. 2). At the

F step in both tasks, both monkeys started out a trial block with a

bias toward the non-optimal target (which received the larger
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immediate reward) and slowly reversed this bias, reaching an

asymptote of 75–80% optimal choices geared toward the large

final reward. Learning was slow, consistent with a trial and error

mechanism. A behavioral learn-point (defined as the last trial of 7

consecutive optimal choices) was reached, on average, after 41

trials in the main task and 50 trials in the control task (two-tailed t-

test, p . 0.05 between tasks; monkey 2, learn points 25 (+/–5) for

main vs 44 (+/–3) for control, p,0.05; monkey 1: learn points 55

(+/–5) for main, 54 (+/–4) for control, p . 0.05). This slow

learning was not due to spurious factors such as incomplete

training on the task (linear regression, p . 0.1 for effect of session

number for each monkey and task) or an idiosyncratic bias for a

spatial location (p . 0.05 for each monkey and task). Moreover,

gradual learning was seen in each individual session with no

evidence of a step-like switch to the optimal path, showing that it

was not an artifact of averaging across sessions (Fig. S1).

Therefore, even though the monkeys experienced only two

alternative paths in each context, they seemed to re-discover the

optimal one de novo by trial and error, consistent with previous

reports [16,17].

In contrast with this robust learning at the F step, changes in the

final reward had no effect at the I step. In the control task, the

monkeys chose the immediately rewarded target on 100% of the

trials (for clarity, these data are omitted from Fig. 2), and, in the

main task they chose this target on 98.5% of trials even though this

choice was temporally proximal to the final reward (Fig. 2, black

squares; 11,298/11,465 trials across all recording sessions). As we

show below, this selective learning differs from a reinforcement

mechanism devoid of credit assignment, which would produce

obligatory exploration based on the final reward at the I step,

suggesting that the monkeys appropriately assigned credit to the

significant step in context dependent fashion.

LIP neurons encode relative target values and respond
differently at the F and I steps

To examine the neural correlates of this differentiated strategy,

we recorded the activity of 96 neurons (52 in monkey 1) that were

identified as belonging to LIP based on their location in the

intraparietal sulcus and spatially selective delay period activity on a

memory guided saccade task (see Methods and Fig. S2). We placed

the saccade targets inside and opposite a neuron’s RF and

examined responses to target selection as an index into internal

valuation.

LIP neurons are known to carry two multiplexed signals, a

primary response encoding the saccade direction, and a modula-

tion of this response by expected reward [6]. To disambiguate

these factors we used the fact that, at the F, step the monkeys made

both optimal and non-optimal choices, and the locations of

optimal target could fall inside or opposite the RF (see Methods),

statistically dissociating value from saccade direction. Therefore, at

the F step we fit each neuron’s firing rates with the bivariate

regression:

FR~b0zb1
:Directionzb2

:Value

Here FR are firing rates in a sliding window aligned on target and

saccade onset (50 ms window, 1 ms step), b0, b1, and b2 are fitted

coefficients, and direction and value were coded as dummy

variables of 0 or 1. In this analysis a positive direction coefficient

indicates higher firing for a saccade toward the RF, and a positive

value coefficient indicates higher firing when the optimal target

was in the RF regardless of saccade direction. (Note that, although

we can assess the significance of each coefficient, the absolute

magnitude of the value and direction coefficients depend on the

Figure 1. Behavioral task. (a) Transition contingencies for the main task and the control task. Each target is denoted by a letter and drops indicate
rewards. Optimal choices are denoted in bold. (b) The sensorimotor events on a representative trial. In each trial the monkeys made two eye
movement decisions to obtain a reward. After initiating a trial by acquiring fixation the monkeys were shown the first pair of targets (randomly
placed on either side of fixation) and, after a brief delay, chose one target by making a saccade to it. The monkeys then returned to fixation, were
shown the second pair of targets and made their second choice. The trial ended with a final return to fixation and delivery of the final reward. The
target sequence that delivered the largest reward was switched across trial blocks and the monkeys discovered this sequence by trial and error.
doi:10.1371/journal.pone.0088725.g001
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Figure 2. Behavior. The filled symbols show the fraction of choices of the optimal target at the first and second steps for the main task, and at the
second step for the control task. Each point represents the average across sessions for a given trial number in a block.
doi:10.1371/journal.pone.0088725.g002
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arbitrarily chosen dummy variables and cannot be meaningfully

compared to each other.)

LIP neurons showed significant positive coefficients for value

and saccade direction in both the main and the control tasks; Fig.
3). The value coefficient peaked earlier during the decision period

and was higher in trials that followed rather than preceding the

learning point (200–300 ms, stars, p,0.05). In contrast, the

direction coefficient peaked later during the pre-saccadic epoch

and did not show significant learning effects at any time during the

decision interval. The pattern found in the full data set was

replicated individually in each monkey (Fig. S3) and, in individual

cells, 59/96 neurons had significant value coefficients in at least

one task (criterion of at least one time bin significant at p,0.001;

36/96 cells for the main task; 38/96 cells for the control task). We

found no correlation between the value coefficient and the fraction

of choices on a session-by-session basis for optimal (r = 0.04) or

non-optimal choices (r = 0.12). This supports the prevailing view

that the cells encode an intermediate stage of learning and

valuation that influences, but is not rigidly mapped onto the final

choice [3,18].

Note that the above regression analysis, which separates value

from saccade direction, could not be performed on the I step

because the monkeys never selected the non-optimal target at this

step. However, to compare neural responses at the F and I steps

we calculated responses to target selection, defined as the firing

rate difference between trials in which the saccade was directed

toward and opposite the RF (or equivalently, trials in which the

neurons responded to a target or a distractor in its RF). Target

selection reflects the combined effects of direction and value and

could reveal difference in computations between the two steps.

As shown in Fig. 4, target selection responses were weaker at

the F relative to the I step, whether this was the first or second step

in the sequence (Fig. 4a, b vs. Fig. 4c,d). Target selection indices

(Fig. 4b, the differences between preferred and null direction

saccades, calculated 250–300 ms after target onset) were positive at

all decision steps (Wilcoxon test; all p,0.02 relative to 0), but were

significantly smaller at the F relative to the I step in each task and

monkey (Wilcoxon paired test; main task: monkey 1, p,0.006,

monkey 2, p,0.02; control task, monkey 1, p,0.004, monkey 2,

p,0.0005). These differences were not due to spurious factors

such as ceiling effects (firing was far below the neurons’ maximal

firing rates; Fig. S2), or to sensorimotor factors (as target salience

and saccade metrics were equivalent at all decision steps; saccade

amplitude, latency and velocity, all p . 0.1 for the effect of step).

Therefore, the differences shown in Fig. 4 are likely to reflect

differences in decision strategies at the two decision steps. Thus,

the conflict between the immediate and the final reward and the

frequent value reversals, may have produced a weaker target

selection response at the F relative to the I step.

Neural learning is higher at the F relative to the I steps
The next question we asked is whether, consistent with the

monkeys’ choices (Fig. 2), LIP neurons show faster learning of

target values at the different steps. To evaluate this idea, we

selected trials that ended in an optimal choice, thereby ensuring

that we track the neural responses to a constant target as they

evolve during a block. We then used a linear regression analysis to

fit trial-by-trial firing rates as a linear function of trial number

during a block. We calculated the regression slopes separately for

saccades directed toward and opposite the RF, obtaining two slope

parameters that indicated whether firing rates changed (increased

or decreased) across trials for each saccade direction. Finally we

calculated the difference between the two direction-specific slope

coefficients. This provided a learning index which, when positive,

indicates an increase in target selectivity during a trial block.

Finally, to examine the time course of the learning effects, we

calculated the learning index in a sliding window (100 ms width, 1

ms step) spanning the decision interval.

As seen from the colormaps in Fig. 5a, neuronal learning was

significantly stronger at the F relative to the ‘‘I’’ step in both task

contexts. This result was evident at the level of individual cells

(Fig. 5a) and when the learning indices were averaged across the

population (Fig. 5b), and was significant individually in each

monkey (Fig. S5). We ruled out several possible artifactual

explanations for these differences. Analysis of the directional slopes

(Fig. 5c) showed that learning was due both to increases in firing

for saccades to the RF and decreases in firing for saccades directed

away, ruling out that it reflected a non-specific excitability change.

Second, while the learning effects peaked at different times for

individual cells (Fig. 5a) there were no correlations between the

timing of a cell’s peak effect and task performance, task type or

decision stage, or the time of the cell’s maximal selectivity for

saccade direction. Third, the effects were not due to changes in

firing variability, as there were no step-related differences in the

across-trial variance or Fano factor (calculated separately for each

cell and saccade direction in a sliding window throughout the

delay period; all p . 0.1). Finally, the results were replicated in a

separate analysis that compared target selection before and after

the behavioral learn point (Fig. S4), showing that they were not

artifacts of the analysis method. Therefore, these results indicate

that value learning in LIP was consistently higher at the F relative

to the I step regardless of the temporal order of the steps.

It is important to realize that, while these differentiated learning

rates are consistent with the monkeys’ choices (Fig. 2) they are not

a trivial consequence of the task setup or the monkeys’ choice

pattern. To illustrate this point we simulated the monkeys’

performance on this task using a standard temporal difference

algorithm, where learning was driven solely by temporally

discounted prediction errors without a credit assignment mecha-

nism (see legend to Fig. 6 for the model details). We allowed the

algorithm to converge across multiple reversals to simulate long-

term experience with the two task contexts, and tested learning

during a trial block after this long-term learning of the two

contexts.

Fig. 6 illustrates the evolution of action values during an AC-

optimal block (the arguments apply equally to all configurations).

As shown in Fig. 6, even though the algorithm replicated the

monkeys’ selective exploration it produced distributed value learning at

both decision steps. The monkeys’ stereotyped preference at the I

step is explained by their long-term experience with the patterns at

this step, which dictated that the relative value of target C would

always be larger than that of target D (relative value estimates are

positive at the I step from the start of the block). However, value

learning did occur at the I step: the relative value of target C

increased while that of target E decreased during the course of a

block by an amount comparable to that seen at the first step

(where relative values also changed sign). This is an obligatory

consequence of the global final reward and the undifferentiated

learning rule; learning at the I step is triggered simply by the fact

that the final reward for target C is large an AC-optimal block but

smaller in a BE-optimal block.

This simulation shows, therefore, that the selective learning in

LIP cells unambiguously indicates a credit assignment mechanism.

While the monkeys’ selective sampling strategy (Fig. 2) may have

reflected overtraining with the task structure, the fact that

neuronal (value) learning was stronger at the F relative to the I

step even when the F step was relatively more distant from the
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final reward, requires a credit assignment mechanism and cannot

be reproduced by a temporally dependent learning rule.

Neurons encode the transition after the F step
We noted that, in addition to their step-specific target selection

responses, LIP neurons had post-decision responses that were

specifically elevated after F relative to the I steps. To illustrate

this results, Fig. 7 plots the population responses aligned on the

post-decision events that link successive steps - the return to central

fixation and the change in fixation point color heralding the

transition to the following step (Fig. 7a).

During the main task, the neurons had higher firing after the

first relative to the second step in the main task (Fig. 7b, blue).
During the control task, in contrast, the neurons had higher firing

after the second relative to the first step (Fig. 7b, red). A 2-way

Figure 3. LIP neurons encode value independently of saccade direction.
and bottom panels show the time course of, respectively, the value and direction signals in the LIP response, aligned on target onset on the left, and
saccade onset on the right. Traces show mean and SEM. The horizontal bars show paired comparisons of pre- and post-learning coefficients in the
200–300 ms after target onset (stars, p,0.05). (b) Value and direction coefficients in the control task. Same format as in (a).
doi:10.1371/journal.pone.0088725.g003
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ANOVA showed a significant effect of step type in the combined

data and individually in each monkey (100–200 ms after saccade

end: F = 27.4, df(1,95), p,0.0001; p,0.03 monkey 1, p,0.0001

for monkey 2; 100 ms epoch centered on the change in the fixation

point color: F = 24.1, df(1,95), p,0.0001; p,0.05 for monkey 1,

p,0.0001 for monkey 2). There was no significant task effect

during the initial fixation (Fig. 7b, leftmost panel; F = 1.8,

df(1,95), p . 0.1), showing that the cells encoded a post-choice

process rather than the preparation for the forthcoming choice.

Post-decision responses were found in both pre-and post-learning

trials, showing that they are independent of the monkeys’

knowledge of the optimal path. Finally, the responses were

independent of the direction or reward of the preceding saccade,

showing that they encoded to the preceding state rather than the

action taken in that state (2 way ANOVA in the color-change

aligned epoch; p . 0.08 for effect of saccade direction and

direction x reward interaction for each task and decision stage; all

p . 0.35 in paired comparisons of the two directions and two

reward outcomes at each step and task). Thus, the cells had a non-

spatial response, which was independent of the preceding reward

or action and was highest during the transition after the F step.

Discussion

We show that, during sequences of action oriented to a final

reward, monkeys adjust their trial and error learning strategy

according to the significance of a decision step, and these

adjustments are reflected in differential value learning rates and

post-decision responses in area LIP. We discuss the significance of

these findings in light of previous studies of reinforcement learning

and value representations.

Focusing primarily on single-step decision paradigms, studies of

decision making have modeled the results of these paradigms using

simple temporally dependent reinforcement learning rules. For

instance, in a dynamic foraging task, Sugrue et al. found that the

influence of a past reward on a current choice decays monoton-

ically according to a memory time constant [6] and in a task of

temporal discounting, Louie and Glimcher showed that the

influence of an expected future reward decays monotonically with

the expected delay [7]. Similarly, Bernacchia et al. showed that

LIP neurons have reward learning across consecutive trials whose

decisions are statistically unrelated, suggesting that learning is

automatic and independent of the significance of an action [19].

Our results show that, in more complex sequential actions,

learning in LIP has additional components that are temporally

non-monotonic and based on the significance of individual actions.

Value learning was enhanced at the F steps independently of time,

indicating an augmented RL mechanism where trial and error

learning is regulated by context dependent credit assignment

mechanisms [9,10]. As noted in computational studies, credit

assignment is critical for efficient learning in complex conditions

where agents cope with large option spaces [9] or perform several

simultaneous tasks (e.g., walking while avoiding obstacles and

picking up litter [10]). In such complex conditions credit

assignment is critical for preventing inappropriate learning – i.e.,

assigning credit or blame to events that are irrelevant but happen

to be close in time to the final outcome. Interestingly, in the

control task LIP cells had slightly negative learning indices at the I

step (Fig. 5b, bottom panel), suggesting a partial weakness of

credit assignment, that leads to some unlearning of the optimal

option.

LIP neurons showed two step-specific responses that are

consistent with two mechanisms for credit assignment proposed

in computational work. One mechanism is the selective increase in

learning rates at the F relative to the I step, consistent with the

theoretical proposal that credit assignment can be implemented by

direct modulation of learning rates [10]. A second mechanism is

the enhanced post-decision response after the F step, which may

Figure 4. LIP target selection responses are weaker at the F relative to the I step.
task (mean and SEM in 96 neurons) for trials with saccadic choices toward the RF (dark gray) or in the opposite direction (light gray). (b) Cumulative
distribution of directional selectivity in the main task separated by decision stage and monkey. (c,d) Results from the control task, same
format as in (a,b)
doi:10.1371/journal.pone.0088725.g004
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be related to eligibility traces that prolong the time for which an

action is subject to reinforcement [11,13,20]. Note that the post-

decision responses we describe are distinct from previously

described memory traces in that they encoded the preceding state

rather than the action or reward obtained in that state [21]. Most

importantly, our post-decision responses encoded the specific

reward-relevant step, rather than the mere time discounted value

of relevant or irrelevant steps [7,13,21,22].

As noted in the earlier sections, the transition diagrams defining

the two contexts were not explicitly taught to the monkeys but had

to be inferred (Fig. 1). Current research suggests two possible

bases for these inferences. One possibility is that the monkeys

Figure 5. Neuronal learning is stronger at the F step.
shows an individual neuron. Each pixel shows the learning index (color coded according to the scale on the right), computed in a sliding window that
spans the delay period (100 ms time bins, 1 ms step). Within the main and control tasks, the neurons are sorted according to the time of their peak
effect at the F step, so that corresponding rows show the same neuron at the two stages. (b) Population average learning indices (mean and SEM)
across the neurons shown in (a). The symbols at the right edge summarize the statistical findings for comparisons 250–300 ms after target onset.
Filled symbols indicate significant differences between the two traces (p,0.05). The color of the error bars indicate the result of comparison with 0,
such that black shows p,0.05, and gray indicates p . 0.05. (c) Same as b, but with indices shown separately for the saccades directed toward the RF
(dark gray) and in the opposite direction (light gray).
doi:10.1371/journal.pone.0088725.g005
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(a) Regression based analysis of neuronal learning. Each row in the colormap



inferred the underlying models – i.e., the transition contingencies –

between successive steps, consistent with a growing literature

showing that animals can flexibly modulate their exploration as if

based on task models [23]. A second possibility is that the monkeys

allocated learning based on the estimated uncertainty at each

decision step, consistent with behavioral evidence that learning

rates depend on context or state uncertainty [25,26] [27,28,29,30].

In the present task, uncertainty may have been signaled by the

magnitude of the target selection response, which was smaller at

the F relative to the I step, possibly indicating lower choice

confidence at the former step [24]. Thus, our findings may be the

first single-cell correlate of the selective learning described in

behavioral investigations. It is important to note that both of these

explanations - based on the transition structure and decision

Figure 6. Predicted evolution of the value responses according to an RL simulation. Each panel shows the difference between the values
of the optimal and non-optimal options, as a function of trial during a block, during the F (left panel) and I (right panel) of the main task. For the
simulation we used a temporal discounting choice model, where the subjective value of each action (V) is updated by the temporally discounted
prediction errors (R) resulting from both the immediate and the final rewards [12]. The simulations included all 5 task states (fixation, first step, re-
fixation, second step, re-fixation with final reward), and calculated action values at each state according to the equation:
Vi(n)~Vi(n{1)za½Ri(n){Vi(n{1)� where Vi(n) is the subjective value of action i after the nth time that action was selected, and a represents
the learning rate. R is an internal estimate of the experienced reinforcement, specified by: Ri(n)~ri(n)zg(ti)Viz1(n{1) where r is the actual reward
magnitude given at stage i, g is the hyperbolic temporal discounting function [7], and Viz1(n{1) is the value of the next state before it is updated.
Action selection was made using a ‘soft-max’ function, with a temperature parameter that introduced stochasticity in the monkeys’ choices. We did
not fit the model to the data, but chose the model parameters so as to roughly replicate the monkeys’ behavioral pattern. However, we stress that
the specific choice of the model parameters (learning rates, temporal discount and temperature) does not affect our argument, because all the
parameters affect learning at both steps and produce the same qualitative pattern of results. This computational framework does not contain task-
dependent learning control and thus by definition cannot produce state-specific learning allocation.
doi:10.1371/journal.pone.0088725.g006

Figure 7. Non-spatial responses at state transition. The gray panels mark the
events during state transitions – the return saccade to the fixation point and the change in fixation point color preceding the transition to the next
state. During these periods of fixation, no targets were present and the monkey could not predict the saccade direction. (b) Non-spatial neural
activity was enhanced after the F step. Average neural activity (n = 96 cells) for the two task conditions aligned on the re-fixation saccade and
change in fixation point color. Shading indicates SEM for each 1 ms time bin. The horizontal bars and stars denote a significant difference between
the two traces (p,0.05).
doi:10.1371/journal.pone.0088725.g007
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uncertainty – rely on second-order task properties, which must have

been inferred through practice with a task or context. Therefore,

our results require a hierarchical learning system that infers higher

order task properties on a longer time-scale (i.e., inferring

contextual properties over the experiment lifetime), and uses these

inferences to guide exploration strategy on a short scale (i.e.,

finding the optimal path in a trial block).

Value learning is thought to recruit a distributed network of

cortical and subcortical structures, and it is likely that this was also

the case in our task [3]. The learning of task models and

uncertainty/confidence estimates are linked with the frontal lobes

[31] and volatility-driven learning rates have been proposed to

involve a noradrenaline-linked arousal system [26]. Therefore the

selective learning we find in LIP may reflect a distributed process,

whereby model-based or uncertainty-based signals from the

frontal lobe control the release of modulators at significant

decision steps [32,33], resulting in accelerated learning and

cognitive allocation specifically at these steps.

Methods

Ethics statement
Two adult male rhesus monkeys (Macaca Mulatta) weighing

10–11 kg were tested with standard techniques [34]. This study

was approved by the Animal Care and Use Committees of

Columbia University and New York State Psychiatric Institute as

complying with the guidelines within the Public Health Service

Guide for the Care and Use of Laboratory Animals. Animals were

pair-housed with compatible partners in cages of appropriate sizes,

and were provided with environmental enrichment including

foraging boards, toys, and daily interactions with trained human

personnel. The animals general health, appearance, and weight

were monitored daily by experimenters and veterinary staff. Any

sign of poor health (weight loss, diarrhea, shedding, etc.) was

immediately addressed in consultation with the veterinarian. All

behavioral training was done gradually, by personnel familiar to

the monkey, using positive reinforcement of liquid or food

rewards. The minimal necessary restraint was used for each

procedure. Monkeys were allowed to drink to satiety during an

experiment or were given supplemental water at the end of each

session. On non-recording days monkeys were given as much

water as on days when they work to satiation.

General methods
During experimental sessions monkeys sat in a primate chair

with their heads fixed in the straight-ahead position. Visual stimuli

were displayed on a MS3400V XGA high definition monitor

(CTX International, INC., City of Industry, CA; 62.5by 46.5 cm

viewing area) at 57 cm in front of the monkeys’ eyes. The time of

target presentation was measured with a photodiode detecting a

vertical refresh.

Identification of LIP
Electrode penetrations were aimed at the posterior half of

lateral bank of the intraparietal sulcus as guided by structural

MRI. Upon isolation, each neuron was tested with a memory-

saccade task, where, after the monkey fixated a central point, a 1u
diameter round target was flashed for 100 ms at a peripheral

location. After a 1000–1250 ms delay, the monkey was rewarded

for making a saccade to the remembered location of the target. All

the neurons included in the study had spatial selectivity in the

memory saccade task (1-way Kruskal-Wallis analysis of variance,

p,0.05) and virtually all (99%) showed this selectivity during the

delay or presaccadic epochs (200–900 ms after target onset and

200 ms before saccade onset). Median RF eccentricity in the

neuronal sample was 11u (range, 8u – 14u).

Sequential choice stimuli and task
the sequential decision task one choice target was presented in

the RF and the second on the opposite side of fixation at an

angular distance of at least 120u (typically 180u) relative to the first,

with target locations randomized across trials. After each choice,

the monkey returned to central fixation and viewed a change in

the fixation point color heralding the progression to the next state.

This sequence was repeated for the second decision and was

followed by a small or large final reward, depending on the

preceding choices. A delay of 300 ms was imposed between

presentation of a target pair and the saccade go-signal (removal of

the fixation point). Although longer delays are customary in single-

choice tasks, shorter delays were necessary to improve perfor-

mance given the long trial lengths in this task. Delays of 200-300

ms (200, 225, 250 or 300 ms chosen with uniform probability)

were also imposed between each return to fixation and the change

in color of the fixation point, between the change in color and the

onset of the next pair of targets and between the final refixation

and the final reward. Reward delivery was accompanied by

presentation of an upright or inverted T signaling respectively, a

large or small reward. Reward sizes differed across monkeys,

being, typically, 0.003, 0.05 and 0.135 ml for monkey 1, and

0.007, 0.1 and 0.27 ml for monkey 2 (for, respectively, the

immediate, small final and large final reward). Note that, despite

any differences in absolute size, the rewards were related by a

single scaling factor and thus did not alter the performance of

individual monkeys. Moreover, the immediate rewards were very

small, allowing the monkeys to orient their choices toward the final

rewards.

The stimuli presented as saccade targets were abstract patterns

distinguished by shape and color, subtending ,1.8u on a side and

approximately equated for luminance. Six stimuli were assigned to

the main task and 6 to the control task, with two stimuli per stage

for each configuration.

The task was presented in blocks of 100–150 trials, with the

optimal path and conditions (main or control configuration)

randomly interleaved across blocks. In 40 neurons (19 monkey 1,

21 monkey 2) we obtained two sets of trials for at least one task,

thus studying both initial learning and reversal; since in these cases

learning rates in both blocks were similar (p . 0.05, for each task),

data from both blocks were pooled for analysis. As in other studies

of learning, we found that monkeys had variable choice biases at

the onset of a session, introducing noise in the baseline

performance. To address this problem we preceded each session

with a small number of ‘‘initializing’’ trials in which there was no

inter-temporal conflict at the F stage – the same target led to the

larger final and immediate reward. Monkeys quickly settled on

choosing this target, and once this happened we began the actual

task by switching the large final reward to the other target.

Data analysis
Non-completed trials where monkeys broke fixation or made

saccades away from the display were discarded and not analyzed

further. Saccade latencies were determined offline using acceler-

ation and velocity criteria. All neuronal analyses were conducted

on raw firing rates. We analyzed firing rates between 200 - 300 ms

after target onset – the later part of the decision period when

choice effects are maximal. Note that on some trials this window

extended beyond the disappearance of the fixation point, but this

visual event was outside of the neurons’ RF and in all cases the

window ended before the start of the saccade. Thus, this analysis

Neural Correlates of Temporal Credit Assignment
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window is not contaminated by visual or saccade artifacts. For

display purposes only, response histograms were smoothed using a

half-Gaussian kernel with a standard deviation of 20 ms. Analyses

were preceded by normality and symmetry tests and, depending

on the outcome, were based either on ANOVAs or paired-sample

t-tests, or on non-parametric statistics. For the regression analysis

of learning rates, trial-by-trial firing rates were normalized by

subtracting the mean.

Supporting Information

Figure S1 Learning is gradual in individual sessions To

rule out the possibility that the gradual learning in the average

data shown in Fig. 2 is an averaging artifact, we plotted the

performance in individual sessions. The figure shows the

cumulative number of optimal choices as a function of trial

number, drawn up to the learning point for each recording session

in each task and monkey. In this representation an abrupt strategy

shift would be seen as a line that is initially flat (indicating 0

optimal choices) but abruptly acquires a slope of 1 just before its

end (before the learning point). Instead, monkeys showed a

gradual accumulation of optimal choices, where streaks of optimal

and non-optimal choices were interleaved (seen as interleaved

sloped and flat line segments in this representation). This indicates

that session-by-session learning was gradual, with no evidence of

discrete shifts between two over-learned paths.

(PDF)

Figure S2 Neural responses on the memory guided
saccade task The traces show the average firing rates (n = 96

cells from both monkeys) on the memory guided saccade task

when the target was inside the RF (solid) and at the diametrically

opposite location (dashed). The neurons had the response pattern

expected from LIP, including a transient visual response (first 100

ms of target presentation) and sustained spatially specific activity

during the delay interval lasting up to 1,350 ms after target onset.

(PDF)

Figure S3 LIP neurons independently encode value and
saccade direction Regression coefficients measuring sensitivity

to value and saccade direction plotted for each monkey and task.

The format is identical to main Fig. 4.

(PDF)

Figure S4 Neuronal learning is stronger at the F step.
(a) Average directional selectivity (difference between preferred

and null-direction saccades, mean and SEM), for trials ending in

an optimal choice before and after the learn point. Background

shading indicates the F step. (b) Results from the control
task, in the same format as in (a). The asterisks denote a

significant difference between the pre- and post-learning responses

200–300 ms after target onset (p,0.05). A 3-way ANOVA with

factors of task type (main vs. control), decision step (F step vs. I

step) and learning stage (pre vs. post-learn) showed a significant

interaction such that learning was significantly stronger at the F

step (F = 4.2, df(1,95), p,0.05). The lack of learning at the I step

was not a ceiling effect, since neurons showed much stronger

responses in the standard memory delayed saccade task (Figure
S3).

(PDF)

Figure S5 State-selective learning is robust in each
monkey The figure shows color maps of the neuronal learning

effects, and a comparison of learning at the F and I step

individually for each monkey. Conventions are identical to those

in Fig. 5a,b, except that the color maps were rescaled for optimal

visibility of the results in each monkey. Each monkey showed

robust state-specific learning focused on the F step.

(PDF)
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