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ABSTRACT

Objective: The study sought to build predictive models of next menstrual cycle start date based on mobile

health self-tracked cycle data. Because app users may skip tracking, disentangling physiological patterns of

menstruation from tracking behaviors is necessary for the development of predictive models.

Materials and Methods: We use data from a popular menstrual tracker (186 000 menstruators with over 2 mil-

lion tracked cycles) to learn a predictive model, which (1) accounts explicitly for self-tracking adherence; (2)

updates predictions as a given cycle evolves, allowing for interpretable insight into how these predictions

change over time; and (3) enables modeling of an individual’s cycle length history while incorporating

population-level information.

Results: Compared with 5 baselines (mean, median, convolutional neural network, recurrent neural network,

and long short-term memory network), the model yields better predictions and consistently outperforms them

as the cycle evolves. The model also provides predictions of skipped tracking probabilities.

Discussion: Mobile health apps such as menstrual trackers provide a rich source of self-tracked observations,

but these data have questionable reliability, as they hinge on user adherence to the app. By taking a machine

learning approach to modeling self-tracked cycle lengths, we can separate true cycle behavior from user adher-

ence, allowing for more informed predictions and insights into the underlying observed data structure.

Conclusions: Disentangling physiological patterns of menstruation from adherence allows for accurate and in-

formative predictions of menstrual cycle start date and is necessary for mobile tracking apps. The proposed pre-

dictive model can support app users in being more aware of their self-tracking behavior and in better under-

standing their cycle dynamics.
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INTRODUCTION

Background and significance
Mobile health (mHealth) tracking apps enable users to self-manage

their personal health by tracking information anytime, anywhere.1,2

In particular, self-tracking apps allow users to flexibly and easily

track conditions and behaviors ranging from endometriosis3 and fer-

tility care4 to compliance and chronic diseases,5,6 resulting in in-

creased awareness of and autonomy over individual health.
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While such apps offer the opportunity for users to better under-

stand their behaviors, they present the issue of adherence, namely

how consistently a user engages with the app to track their health.

Studies have shown that such adherence can vary widely among

users, impacted by factors like the app’s user interface and notifica-

tion system, as well as device fatigue.7–9 Well-designed apps are cru-

cial to user engagement.10,11 For apps that provide predictions and

analytics to the user, insights can only be derived from what is actu-

ally tracked by the user, raising the question of how to distinguish

true health phenomena from tracking behavior to provide the most

accurate picture of an individual’s health.

To explore this question, we ground our work in the context of

menstrual trackers, a category of mobile tracking apps that has risen

in popularity—they are the second most popular app for adolescent

girls and the fourth most popular for adult women.12,13 Users of

these apps are interested in knowing when their next period will oc-

cur and what symptoms to expect. Responding to this need, various

apps provide prediction and insight into menstrual behavior, fertil-

ity, and more, allowing users to gain a deeper understanding of their

menstrual experience,14 but may fall short in providing accurate pre-

dictions.15 With access to large-scale, longitudinal menstrual data-

sets from these trackers, there has been a surge in research on how

to best characterize menstruation,16–19 including efforts to describe

menstrual cycles and symptoms,18–20 as well as related physiological

events like ovulation,17,21 quantitatively. Nonetheless, menstrual

trackers are subject to adherence artifacts that may obscure health-

related conclusions: if a user forgets to track their period, their cycle

length computations are inflated.

Owing to the inherent variability of the menstrual experience, it

can be difficult to predict the time to each user’s next cycle start.

Prior studies based on survey results have shown that menstrual

experiences vary both within and between individuals, encompass-

ing not only period and cycle length (the number of days between

subsequent periods),22 but also qualitative symptoms like period

flow, physical pain, and quality-of-life characteristics.22–32 Com-

bined with the aforementioned possibility of inconsistent adherence

(eg, some users may track their information consistently, while

others may skip tracking, whether intentionally or by accident), the

difficulty of modeling menstruation holds especially true for such

self-tracking data, as researchers must take into account multiple

sources of uncertainty. As such, there exists a need for accurate pre-

dictive models that can address the specific nature of data from mo-

bile apps.

OBJECTIVE

Our goal is to provide users with more accurate predictions of next

cycle start date (ie, next period date) by characterizing the underly-

ing mechanisms (both physiological and behavioral) implicit in men-

strual data as collected via self-tracking apps. Specifically, we aim at

disentangling true cycle lengths from self-tracking artifacts that re-

sult from inconsistent adherence, allowing for better understanding

of collected mHealth data and greater predictive power. We also

aim to provide predictions that evolve over time. To that end, we

take a probabilistic machine learning approach.

We aim at a model with 3 key features. First, it shall account ex-

plicitly for the possibility that users may adhere differently to the

app by factoring in the possibility that the observed cycle lengths are

not the true, experienced cycle lengths. Second, it should dynami-

cally update predictions each day as the cycle proceeds, providing

insights into how predictions evolve over time. Third, it must priori-

tize each individual’s unique menstrual experience by modeling

user-specific cycle length history and providing individual user pre-

dictions, while also harnessing the power of population-wide knowl-

edge.

MATERIALS AND METHODS

This study leverages de-identified data. The research was approved

as exempt by the Columbia University Institutional Review Board.

Self-tracked menstruator data
We leverage a de-identified self-tracked dataset from Clue by Bio-

Wink,33 comprising 117 014 597 self-tracking events over 378 694

users. A “self-tracking event” refers to an instance when a user logs

a symptom in their menstrual tracking app (eg, “heavy flow” or

“headache”). For this full dataset, users have a median age of 25

years, a median of 11 cycles tracked, and a median cycle length of

29 days. Clue app users input personal information at sign-up, such

as age and hormonal birth control type; information on race or eth-

nicity is not collected. The dataset contains information from 2015

to 2018 for users worldwide, covering countries within North and

South America, Europe, Asia, and Africa.

Users can self-track symptoms over time—for this work, we fo-

cus on period self-tracking events, ie, the users’ self-reports on which

days they have period flow, which we use to compute cycle lengths.

A period consists of sequential days of bleeding (greater than spot-

ting and within 10 days after the first greater than spotting bleeding

event) unbroken by no more than 1 day on which only spotting or

no bleeding occurred. We consider a menses duration longer than

10 days as an outlier, as it would exceed mean period length plus 3

standard deviations for any studied population.22 In addition, a user

has the opportunity to specify whether a cycle should be excluded

from their Clue history—eg, if the user feels that the cycle is not rep-

resentative of their typical menstrual behavior due to a medical pro-

cedure, changes in birth control, or other relevant events like

pregnancy or miscarriage, they may elect to exclude it. To focus the

scope and consistency of our dataset, we exclude these cycles from

our analysis.

Our cohort consists of users 21 to 33 years of age (because cycles

are more likely to be ovulatory and less variable in their lengths dur-

ing this age interval)22,24,25,34,35 with natural menstrual cycles (ie,

no hormonal birth control or intrauterine device). To rule out cases

that indicate insufficient engagement with the app or instances

where a user may not be menstruating (for instance, due to preg-

nancy), we remove users who have only tracked 2 cycles and cycles

for which the user has not provided period data within 90 days. We

use the first 11 cycles for all 186 106 menstruators with more than

11 cycles tracked (because 11 is the median number of cycles

tracked in the full Clue dataset).

We only use cycle lengths as input to our proposed model, in

which we define a menstrual cycle as the span of days from the first

day of a period through to and including the day before the first day

of the next period.22 Because the tracking of period exactly deter-

mines cycle length, if a period is not tracked by the user, their ob-

served cycle length may not accurately reflect their true experience.

A “self-tracking (or adherence) artifact” refers to a mismatch be-

tween true, experienced physiological phenomena and the self-

tracked event: eg, a user had their period on a given day, but they

did not log such an event in the app. In the context of this article, we

focus on how such self-tracking artifacts impact cycle length compu-
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tation and result in instances where a cycle appears to be skipped be-

cause a user did not track accurately; see Figure 1 for an illustrative

example.

Proposed model
We propose a probabilistic machine learning model that accounts

explicitly for self-tracking artifacts, utilizes population-wide infor-

mation and individual-level tracking histories, and updates predic-

tions over days of the next cycle.

Our model is generative, meaning that we propose the distribu-

tions from which each of these quantities (variables) are drawn and

hypothesize how the observed variables are related to one another.36

We showcase all the relevant variables in our generative model as a

probabilistic graphical model37 in Figure 2. A generative process is a

candidate probabilistic model for generating the observed data. A

graphical model is a visual representation for explaining and reason-

ing about such a probabilistic model. In this representation, shaded

circles represent observed data, open circles represent latent (unob-

served) variables, and dots represent hyperparameters. Latent varia-

bles are quantities we wish to infer from the data. Lines in a

graphical model represent conditional dependencies between varia-

bles. “Plates” (the rectangular boxes) represent groups of variables

that share the same repeated conditional dependence relations; for

example, a plate could represent many users or many instances of

time for representing a temporal process.

Our model posits that each user can be characterized by 2 latent

quantities that govern the observed data: their typical cycle length ki

(ie, their expected cycle length patterns) and their likelihood to skip

tracking pi (ie, their typical adherence behavior). We model ob-

served data (cycle lengths di;c for user i and cycle c) as the sum of la-

tent, true (unobserved) cycle lengths di;j;c skipped si;c times

(j indexes these skipped cycles).

By proposing separate probability distributions from which each

of these per-user variables are drawn, we can disentangle true, per-

user cycle behavior from self-tracking adherence. Consequently, in

addition to predicting cycle length, we can also gain interpretable in-

sight into cycle skipping behavior on a per-individual basis. To that

end, we must learn the per-user parameters of interest on the basis

of observed self-tracked cycle lengths, accommodating the latent

(unobserved) variables via marginalization of their uncertainties (see

the Supplementary Appendix for details on inference).

The generative nature of our model enables us to update predic-

tions each day for the next cycle, which we refer to as “current

day.” In addition, it allows us to provide predictions for how likely

a user is to have skipped tracking of their period on each day of the

cycle. Finally, it offers 2 possibilities for computing predictions—

one in which we assume that the next reported cycle will be truth

and one in which we assume that the next reported cycle may not be

truth. s represents the number of possible skipped cycles in the ob-

served cycle length: s ¼ 0 indicates that we assume the next observed

cycle length to be the true cycle length (ie, that the next observed cy-

cle will not be skipped), while s � 0 indicates that there may be a

nonzero number of skipped cycles in the next observed cycle length

(ie, accounting for the user possibly skipping their next cycle track-

ing). When we assume that the next reported cycle may not be truth

(ie, s � 0), we can account for as many skipped cycles as is desired.

Figure 1. Example cycle tracking history for the same user, demonstrating 2 scenarios: in which they track all of their periods (top) and in which they skip tracking

of 1 of their periods (bottom). Cycle start dates are highlighted in green and the skipped period tracking is highlighted in red. The bottom panel showcases how

skipping tracking of 1 period can result in inflated observed cycle lengths—instead of 2 subsequent cycles of lengths 27 and 35, respectively, because the user

skips tracking of a period, it appears that they have 1 cycle of length 62. This is because cycle length is determined by the number of days between tracked peri-

ods. This phenomenon holds analogously if a user skipped more than 1 period (in which case 3 subsequent cycle lengths would appear as if it were a single, in-

flated cycle length).

Figure 2. Hierarchical graphical model for the proposed generative process.

In our graphical model, variables within the outer plate are replicated for

users i ¼ 1; . . . ; I, variables within the inner plate are replicated for each per-

user cycle c ¼ 1; . . . ;Ci , and variables within the innermost plate are repli-

cated for each skipped cycle j ¼ 0; . . . ; si ;c . Individual-level parameters ki (av-

erage cycle length without skipping) and pi (probability of skipping a cycle)

are drawn from population-level distributions characterized by hyperpara-

meters u ¼ j; c; a; b½ �: si;c represents number of skipped cycles for user i and

cycle number c; di;c represents observed cycle length. We model observed

data (cycle lengths di;c ) as the sum of true (unobserved) cycle lengths di;j;c

skipped si;c times (so that an observed cycle length di ;c contains 1þ si;c unob-

served cycle lengths di;j;c ).
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This allows us to assess how valuable accounting for self-tracking

artifacts is for predictive performance. See the Supplementary Ap-

pendix for details on how we compute predictions.

An ideal model for menstrual cycle start date is able to borrow

information between users (ie, take advantage of population-wide

knowledge), while also maintaining the integrity of each individual’s

unique experience. In order to achieve this, we utilize a hierarchical

model, which means we incorporate different levels of information

into our model: the aforementioned individual-level variables for

typical cycle patterns and self-tracking adherence, as well as a

broader level of information that represents population-wide char-

acteristics (ie, common patterns that exist across the studied popula-

tion). Population-wide information is learned as hyperparameters

that influence the distributions from which the individual-level

quantities are drawn. That is, if on a population scale the most likely

cycle length is around 30 days, the population-wide distribution will

represent this. Individual-level typical cycle length drawn from

population-wide distribution will then be influenced by each per-

son’s own cycle tracking history.

Model training and prediction task
We train our model (see the Supplementary Appendix for details on

inference) on the full dataset of 186 106 users described in Table 1.

We train on the first 10 cycle lengths and predict each user’s next cy-

cle start and likelihood to have skipped tracking on each day of the

user’s 11th cycle (see Figure 1 for definition of cycle length and cycle

start). For instance, a user could have 10 cycle lengths of

d ¼ 30;40; 32; 35; 34; 33; 50; 48; 32; 31½ �; the 11th cycle is used for

testing. On each day of the 11th cycle, we predict each user’s next

cycle start and likelihood to have skipped tracking.

Evaluation metrics
We use root mean square error (RMSE) to evaluate the average pre-

diction accuracy of our model across all users. For a given model

and N users, an RMSE is computed at each current day of the next

cycle, where each of the N users has their own prediction. RMSE of

true cycle lengths di and predicted cycle lengths bdi is computed as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
di�bdi

� �2

N

s
.

We use absolute error and median absolute error to evaluate pre-

diction accuracy of our model on a per-user basis. Absolute error be-

tween an actual data point di and prediction bdi is computed as

jdi � cdij:
We use median cycle length difference (CLD) as a metric for

evaluating menstrual regularity, based on previous work character-

izing menstruation.19 CLDs are computed per user as the absolute

differences between consecutive cycle lengths, measuring the vari-

ability from one cycle to the next—for a user whose C cycles are de-

fined as d ¼ d0; d1;d2; . . . dC½ �, the CLDs are computed as CLDs ¼
d1 � d0;d2 � d1; . . . dC � dC�1½ �. For instance, a user with cycle

lengths d ¼ 30; 40; 25; 30½ � will have CLDs of 5; 10; and 15 and a

median CLD of 10. Users with higher median CLD are generally

more volatile in their cycle tracking histories, and vice versa.19

Alternative baselines
To evaluate the predictive performance of our proposed model, we

consider summary statistic–based and neural network–based base-

lines:

• Mean and median baselines: the predicted next cycle for each

user is the average (or median) of their previously observed cycle

lengths.
• Convolutional neural network: a 1-layer convolutional neural

network with a 3-dimensional kernel.
• Recurrent neural network: a 1-layer bidirectional recurrent neu-

ral network with a 3-dimensional hidden state.
• Long short-term memory network: a 1-layer long short-term

memory neural network with a 3-dimensional hidden state.

We train these baselines in the same way as the proposed model,

training on the first 10 cycle lengths and predicting next cycle start

of the 11th cycle. Because these models are not generative, we can-

not predict the likelihood of skipping or update predictions dynami-

cally by day. Note that we also test other neural network

architectures (increasing number of layers and changing kernel or

hidden state dimensionality) and find no meaningful performance

difference—see the Supplementary Appendix for details.

We utilize summary statistic-based baselines because of the com-

mon conception that menstrual cycles are “regular,” and that there-

fore the mean or median of several cycle lengths would provide a

reasonable estimate for the predicted next cycle length. We choose

neural network–based baselines because they have been shown to be

powerful predictive models in a variety of healthcare applications.

While menstrual trackers utilize their own proprietary solutions for

cycle prediction (and therefore we are unable to evaluate our predic-

tions against theirs), our baselines provide a reasonable and fair pic-

ture of alternative approaches to consider for our predictive task.

RESULTS

Self-tracked menstruator data
We show summary statistics for the selected self-tracked menstrua-

tor cohort for all cycles, as well as for the selected first 11 cycles

only in Table 1. The total number of users and age are the same in

both cohorts, as they represent the same set of users. We see that cy-

cle length and period length statistics differ very minimally between

cohorts, indicating that using the first 11 cycles is a reasonable rep-

resentation of each user’s history.

Table 1. Summary statistics for selected self-tracked menstruator dataset

Summary statistic Selected cohort Selected cohort (first 11 cycles only)

Total number of users 186 106 186 106

Total number of cycles 3 857 535 2 047 166

Number of cycles 20.73 6 8.35, 18.00 11.00 6 0.00, 11.00

Cycle length, days 30.45 6 7.73, 29.00 30.71 6 7.90, 29.00

Period length, days 4.07 6 1.76, 4.00 4.13 6 1.80, 4.00

Age, years 26.07 6 3.56, 26.00 25.59 6 3.61, 25.00

Values are n or mean 6 standard deviation, median.
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Summary of results
We demonstrate below our model’s ability to successfully detect

self-tracking artifacts, which can be utilized in mHealth apps to alert

users of possible missed tracking. We showcase our proposed mod-

el’s ability to outperform alternative baselines on predicting next cy-

cle start on the menstruator data, especially on later days of the next

cycle and in particular, as the typical cycle length has passed. This

demonstrates the benefit of being able to dynamically update beliefs

about both cycle length and likelihood of cycle skips and can help

users better understand their cycles as they proceed. In addition, we

examine the effect of individual variability on cycle length predic-

tions and the importance of considering individual experiences.

Accounting for potential cycle skips enables detection

of tracking artifacts
As noted in Figure 1, identifying when a user has skipped tracking

of their period is vital to modeling self-tracked cycle lengths accu-

rately, since a failure to do so results in mistaking observed,

artificially-inflated cycle lengths for true ones.

We display our model’s ability to detect when a user has skipped

period tracking by utilizing simulated data, in which we know the

ground truth of when in their cycle tracking history a user has

skipped. As with our real menstruator data experiments, we simu-

late 10 cycles per user and predict likelihood of skipping on the 11th

cycle (details on simulated data in the Supplementary Appendix).

In Figure 3, we showcase that for a user who has skipped a cycle

before (in their set of 10 training cycle lengths), their probability of

skipping 1 cycle in the 11th (unseen) cycle is low up until around

current day 30 of cycle 11, but increases substantially after this day

(eg, on day 40, it is around 0.8). That is, before the average cycle

length of this user (30 days) has passed, the likelihood that the user

has skipped tracking their period is low; however, when the cycle

proceeds past this typical cycle length, this probability spikes. This

demonstrates that our model can accurately detect when a user is

likely to have skipped an upcoming cycle based on their individual

cycle length histories and update these beliefs over time.

Note that we can compute probabilities of skipping a specific

number of cycles, not just whether a cycle was skipped or not—for

instance, we can model the likelihood that a user has skipped 0

cycles, 1 cycle, 2 cycles, and so on in the upcoming reported cycle.

See the Supplementary Appendix for a deeper illustration of our

ability to detect cycle skips.

Proposed model outperforms baselines in cycle length

prediction, particularly as the cycle proceeds
Our model outperforms the studied baselines in prediction accuracy,

particularly as the cycle proceeds—it updates predictions on each

day of the next cycle, which we refer to as current day in Figure 4.

On the first day of the next cycle (day 0), our model outperforms

all alternative baselines, as seen in Table 2. As seen in Figure 4, this

superior performance is especially apparent as the cycle evolves past

day 29—our models (gray line, s ¼ 0 and blue line, s � 0) display

much lower RMSE than baselines. In particular, accounting for po-

tential skipped cycles (blue line) proves more advantageous as the

cycle proceeds, in comparison to assuming the next observed cycle

contains no self-tracking artifacts (gray line).

We showcase specific RMSE values on different days of the next

cycle in Table 2 and further illustrate that after the typical cycle

length of around 29 days has passed, our model’s ability to account

for skipped cycles becomes especially important for accurate predic-

tions. This is because the possibility of a cycle skip becomes more

likely, a scenario that our model is able to incorporate into its pre-

dictions, whereas baselines cannot—regardless of the model, the

likelihood of a cycle skip becomes more likely as time progresses,

Figure 3. Predicted probability of skipping 1 cycle over time for a simulated user. Orange curve represents probability of user having skipped 1 cycle; markers in-

dicate probability of having skipped 1 cycle on day 30 or 40 of the upcoming cycle. We see that the probability of having skipped 1 cycle in the upcoming cycle is

low until day 30. However, past day 30, we see that this probability increases; on day 40, it is around 0.8 (vs 0.2 on day 30). Thus, the model detects that the user

is likely to have skipped a cycle on day 40, when their typical cycle length has been passed. Because data in this experiment are simulated, we know that this user

has skipped a cycle before in their history and does actually skip the next cycle. Our inferred probabilities recover this, showing that our model can accurately de-

tect when a user is likely to have skipped an upcoming cycle based on their individual cycle length histories and update these beliefs over time.
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but not all models can account for this fact in predicting next cycle

length. Our model’s ability to outperform baselines as the cycle pro-

ceeds demonstrates the value of being able to dynamically update

predictions, a benefit offered by our proposed generative model.

We have evaluated the robustness of our training and predic-

tive performance with respect to different modeling choices,

namely dataset size and ordering of cycle lengths. We find that our

model is generally stable across different training set sizes. To ac-

count for possible time dependencies across tracked cycles, we

experimented with shuffling the order of each user’s cycles and

found no significant difference in results. See the Supplementary

Appendix for details.

Variability in cycle tracking history impacts prediction

accuracy
The menstrual experience is unique, differing within and between

individuals, and it is imperative for models relating to menstruation

to maintain the integrity of this inherent variability. In addition to

averaging results over the whole population, we also consider results

on an individual level and examine the role that menstrual variabil-

ity may play in producing accurate predictions. The ability to learn

population-wide information while also making individualized pre-

dictions is a direct benefit of our hierarchical modeling approach.

To assess how predictive accuracy depends on cycle length vari-

ability, we showcase a violin plot of per-user median CLD vs abso-

lute error in predicted cycle length in Figure 5—the middle white

point represents the median absolute error for each group (as de-

fined by the median CLD value on the x-axis), and the thick gray

bar represents the interquartile range. We see that variability

impacts prediction accuracy, with more variable users being gener-

ally more difficult to predict. This underscores the importance of

considering each individual’s experience.

We also note the presence of outliers within a user’s cycle length

history, eg, instances in which users may have never skipped in their

Table 2. Prediction RMSE for proposed model and baselines on different days of the next cycle for the full menstruator dataset (averaged

over 186 106 users)

Model Day 0 Day 14 Day 21 Day 28 Day 30 Day 40

Mean 7.50 7.43 7.29 7.81 8.99 21.92

Median 7.49 7.43 7.32 7.99 9.35 23.39

CNN 8.03 7.97 7.85 8.23 9.55 24.51

LSTM 7.40 7.34 7.20a 7.72a 8.98 22.68

RNN 7.76 7.70 7.56 7.92 9.07 22.95

Proposed model (predict with s¼ 0) 7.56 7.51 7.36 7.80 8.59 14.78

Proposed model 7.38a 7.32a 7.22 7.93 8.58a 11.77a

Our model typically outperforms summary statistic-based and neural network–based baselines when we account for skipped cycles.

CNN: convolutional neural network; LSTM: long short-term memory; RMSE: root mean squared error; RNN: recurrent neural network.
aBest-performing model on each day.

Figure 4. Prediction root mean square error (RMSE) for proposed model and baselines over current day of the next cycle on the menstruator data, averaged over

all users. Our models’ superior performance is magnified past around day 30 of the next cycle; they are able to update predictions dynamically, as compared

with static baselines. In particular, accounting for skipped cycles (full version of our proposed model, blue line) proves especially beneficial to prediction accuracy

vs assuming the next reported cycle is truth (alternative version of our proposed model, gray line)—by anticipating the possible presence of skipped cycles, we

are able to make more accurate predictions and avoid the bump in RMSE seen in the gray line. CNN: convolutional neural network; LSTM: long short-term mem-

ory; RNN: recurrent neural network.
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history, but skip the last cycle. These represent a small proportion of

the user base, but skew RMSE computations; for instance, for users

with very consistent cycle lengths (ie, a median CLD of 0), the me-

dian absolute error is as low as 1.5 days, despite the RMSE for this

group being 6.15.

DISCUSSION

Our proposed model offers opportunities to characterize the under-

lying mechanisms of the varied experience of menstruation as col-

lected via mobile tracking apps, a step to a deeper understanding of

menstruation as a whole. One particular advancement of our model

is the ability to flexibly account for adherence artifacts. While heu-

ristics have been proposed for identifying such self-tracking arti-

facts, such as locating cycle lengths that are anomalous on a per-user

basis,19 such definitions can be limiting. Because our method explic-

itly considers the possibility that users track their information incon-

sistently and separates this cycle-skipping behavior from typical

cycle length patterns, we can examine the likelihood of skipped

cycles specifically and in a probabilistic manner. This enables us to

distinguish true cycle lengths from self-tracking adherence, which

not only allows us to gain insight into both menstrual and tracking

behavior, but also has practical implications for mHealth users and

designers.

In particular, our dual predictions (ie, predictions of both cycle

length and possible cycle skips) allow us to provide users with more

accurate predictions, even when they are not necessarily consistent in

their tracking, and can allow apps to alert users when they may have

skipped tracking. Rather than providing an option for users to ex-

clude self-identified faulty cycles after the fact, apps can proactively

alert users when their probability of skipping tracking is high, help-

ing users to better self-manage their menstruation. For instance, users

could be alerted when their cycle skipping probability is near a peak,

as in Figure 3. Because cycle variability is common, longer cycle

lengths can also be the result of physiological phenomena and not

just skipped tracking—this context, captured by our proposed

model, can be provided to users in such alerts. This type of informed

alerting helps avoid user notification fatigue (ie, targeted alerts in-

stead of everyday alerts to ensure that they are tracking) and

increases efficacy and accuracy of self-reporting, which is crucial to

creating more reliable datasets for the future. This demonstrates the

importance of considering the specific nature of mHealth data that

not only enables researchers and users alike to better understand

menstruation and the underlying reason behind the observed cycle

lengths, but also provides insight for mHealth app developers into

how to alert users about possible inconsistent adherence in a nu-

anced way. As self-tracking apps continue to grow in popularity and

serve as an increasingly important source of information for health-

care interventions, these insights can aid researchers in improving the

quality of mHealth data and ensuring it is being treated responsibly.

Other efforts to model menstrual cycle lengths using user-

reported data focus on issues like how to represent between-women

and within-women variability. Researchers have represented this

variability utilizing hierarchical models38; linear random effects

models,39 accounting for the fact that menstrual cycle behavior

evolves with age40; and mixture models of standard cycles (cycles 43

days and shorter) and nonstandard cycles (cycles longer than 43

days).41 While these studies capture many important aspects of men-

struation (like consideration of each woman’s individual cycle be-

havior) and include exclusion criteria for women who may not have

reported their cycles accurately, they do not explicitly address the

user adherence issues encountered when using self-reported mHealth

data. Without this consideration, it may be difficult to determine

whether nonstandard cycles are the result of skipped tracking. In ad-

dition, the definition of a standard or nonstandard cycle may be lim-

iting in itself, and these studies may also be limited in the size or

scope of the dataset used. For instance, one advantage of our analy-

sis is that we are able to utilize a large dataset of natural menstrual

cycles only.

Furthermore, because sparsity is a prevalent issue with self-

tracked data, it is beneficial to have a performant model with the

minimal type of information needed. In this case, that is cycle length

information (which is also the information most commonly tracked

by users who use menstrual tracking apps). By using observed cycle

Figure 5. Violin plot of per-user absolute error of predicted next cycle length, stratified by user median cycle length difference (CLD) on the menstruator data. We

see from the increasing trend in absolute error with median CLD that more variable users are typically more difficult to predict, showcasing that consideration of

per-individual behavior is vital to the integrity of our model.
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lengths as our only data source, we are able to achieve comparable

error to prior studies. In previous work42 for instance, an RMSE of

1.6 is achieved; however, this RMSE is based on standard cycles

only and uses self-tracking data from a mHealth app designed for fe-

male athletes, a specific subset of individuals that does not necessar-

ily represent the diversity of women. In our study, when we consider

nonvariable cycles only (based on the definition of menstrual regu-

larity as represented in Figure 5) our model is able to achieve a simi-

lar median absolute error of 1.5 days, but the presence of outliers in

more broadly used apps like Clue (due to unexpected cycle skips)

increases the RMSE. Beyond predictive accuracy, model calibration

is also useful to provide less uncertain cycle length predictions.43

We acknowledge that there are limitations to this study. A limi-

tation inherent to our work is the lack of access to ground truth (ie,

knowledge of what the actual experienced cycle lengths are); how-

ever, this limitation holds for all studies utilizing self-tracking data.

Relatedly, we do not have explicit user information about events

that may disrupt menstruation, such as pregnancy or miscarriage;

we account for this by conservatively removing cycles that are iden-

tified by the user as anomalous and removing cycles longer than 90

days. Another limitation of our work is that we do not currently le-

verage any menstrual symptom information from Clue. However,

symptom observations offer great potential to extend our model. In

our previous work,19 we found that there is a relationship between

cycle timing and symptom experiences; other studies have also in-

cluded symptom covariates, like cramps and period flow, to exam-

ine how these impact reported menstrual cycle length.42 Including

information beyond cycle lengths is crucial to understanding cycle

variability more holistically44 and may have significant impact on

cycle prediction accuracy.

CONCLUSION

Our work on predicting menstrual patterns showcases the potential

that self-tracking data holds to further understanding of previously

enigmatic physiological processes. We have demonstrated our pro-

posed model’s ability to successfully detect self-tracking artifacts

and outperform alternative baselines on predicting next cycle start

on real-world menstruator data. By utilizing a generative model, we

have gained insight into the mechanisms of self-tracking behavior,

and in particular, users’ propensity to skip tracking.
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