
  1Hoppe B, et al. RMD Open 2021;7:e001751. doi:10.1136/rmdopen-2021-001751

ORIGINAL RESEARCH

Predictive value of C- reactive protein 
for radiographic spinal progression in 
axial spondyloarthritis in dependence 
on genetic determinants of fibrin clot 
formation and fibrinolysis

Berthold Hoppe    ,1,2 Christian Schwedler,2 Hildrun Haibel,3 Maryna Verba,3 
Fabian Proft    ,3 Mikhail Protopopov    ,3 Hans- Gert Heuft,4 
Valeria Rios Rodriguez,3 Anke Edelmann,5 Martin Rudwaleit    ,6 
Joachim Sieper    ,3 Denis Poddubnyy3

To cite: Hoppe B, Schwedler C, 
Haibel H, et al. Predictive 
value of C- reactive protein 
for radiographic spinal 
progression in axial 
spondyloarthritis in dependence 
on genetic determinants 
of fibrin clot formation and 
fibrinolysis. RMD Open 
2021;7:e001751. doi:10.1136/
rmdopen-2021-001751

 ► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (http:// dx. doi. org/ 10. 
1136/ rmdopen- 2021- 001751).

Received 26 May 2021
Accepted 16 June 2021

For numbered affiliations see 
end of article.

Correspondence to
Dr Berthold Hoppe;  
 berthold. hoppe@ charite. de

Spondyloarthritis

© Author(s) (or their 
employer(s)) 2021. Re- use 
permitted under CC BY- NC. No 
commercial re- use. See rights 
and permissions. Published 
by BMJ.

ABSTRACT
Objective Genetic determinants of fibrin clot formation and 
fibrinolysis have an impact on local and systemic inflammatory 
response. The aim of the present study was to assess whether 
coagulation- related genotypes affect the predictive value 
of C- reactive protein (CRP) in regards of radiographic spinal 
progression in axial spondyloarthritis (axSpA).
Methods Two hundred and eight patients with axSpA from the 
German Spondyloarthritis Inception Cohort were characterised 
for genotypes of α-fibrinogen, β-fibrinogen (FGB) and 
γ-fibrinogen, factor XIII A- subunit (F13A) and α2- antiplasmin 
(A2AP). The relation between CRP levels and radiographic 
spinal progression defined as worsening of the modified Stoke 
Ankylosing Spondylitis Spinal Score (mSASSS) by ≥2 points 
over 2 years was assessed in dependence on the respective 
genetic background in logistic regression analyses.
Results Overall, CRP was associated with mSASSS 
progression ≥2 points: time- averaged CRP ≥10 mg/L, OR: 
3.32, 95% CI 1.35 to 8.13. After stratification for coagulation- 
related genotypes, CRP was strongly associated with 
mSASSS progression in individuals predisposed to form loose, 
fibrinolysis- susceptible fibrin clots (FGB rs1800790GG, OR: 
6.86, 95% CI 2.08 to 22.6; A2AP 6Trp, OR: 5.86, 95% CI 1.63 
to 21.0; F13A 34Leu, OR: 8.72, 95% CI 1.69 to 45.1), while in 
genotypes predisposing to stable fibrin clots, the association 
was absent or weak (FGB rs1800790A, OR: 0.83, 95% CI 0.14 
to 4.84; A2AP 6Arg/Arg, OR: 1.47, 95% CI 0.35 to 6.19; F13A 
34Val/Val, OR: 1.72, 95% CI 0.52 to 5.71).
Conclusions Elevated CRP levels seem to be clearly 
associated with radiographic spinal progression only if patients 
are predisposed for loose fibrin clots with high susceptibility to 
fibrinolysis.

INTRODUCTION
Structural damage in the spine in patients 
with axial spondyloarthritis (axSpA) is—
together with inflammatory activity—one of 
the main determinants of spinal mobility and 

function, parameters, which are relevant for 
long- term outcome of disease.1–4 Even though 
the pathophysiology of structural spinal 
damage in axSpA is not fully understood, 
current data suggest that initial inflammation 
in vertebral bodies is followed by activation 
of repair processes with formation of fibrous 
tissue, activation of osteoblasts and formation 
of new bone.5 New spinal bone formation 
in patients with axSpA is usually assessed on 

Key messages

What is already known about this topic?
 ► C- reactive protein (CRP), presence of syndesmo-
phytes and smoking are predictors for radiographic 
spinal progression in axial spondyloarthritis.

 ► Inflammation and tissue repair are involved in patho-
genesis of axial spondyloarthritis.

 ► Genetic determinants of fibrin clot formation and fi-
brinolysis influence inflammatory processes.

What does this study add?
 ► The predictive potential of CRP in respect of radio-
graphic spinal progression in axial spondyloarthritis 
depends on genotype (constellations) influencing 
fibrin clot formation and fibrinolysis.

 ► Elevated CRP levels at baseline are associated with 
radiographic spinal progression in axial spondyloar-
thritis only if patients are predisposed for loose fibrin 
clots with low antifibrinolytic capacity.

How might this impact on clinical practice or 
future developments?

 ► Enhancement of prognostic evaluation of patients 
with axial spondyloarthritis by considering their ge-
netic background could help to improve risk stratifi-
cation and to focus treatment strategies.
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plain spinal X- rays and, therefore, referred to as radio-
graphic spinal progression. A number of predictors of 
radiographic spinal progression have been identified, 
including already existing syndesmophytes, cigarette 
smoking, male sex, manual work and high inflammatory 
activity reflected by elevated C- reactive protein (CRP), 
high Ankylosing Spondylitis Disease Activity Score and 
active inflammatory or postinflammatory changes on 
MRI.6–14

Fibrin and factor XIII play essential roles in inflam-
matory processes and bone development.15 16 Fibrin gel 
properties are affected by inflammation and genetic 
factors.15 17 18 Reciprocally, genetic factors affecting 
fibrinogen synthesis (α-fibrinogen, FGA, β-fibrinogen, 
FGB, γ-fibrinogen, FGG), fibrin clot formation (factor 
XIII A- subunit/B- subunit) and fibrinolysis resistance (α2- 
antiplasmin, A2AP) influence both local and systemic 
inflammatory activity.19–21 Thus, highly frequent genotype 
constellations predisposing for tight, fibrinolysis- resistant 
fibrin clot structures attenuate systemic inflammatory 
response as measured by CRP and those related to looser 
fibrin gels, which are more susceptible for fibrinolysis, 
are associated with stronger CRP responses.20 22–24

As genetic factors affecting fibrin clot properties influ-
ence CRP responses19 and processes with potential impact 
on reactive bone remodelling,15 25–27 this topic gives a 
target for evaluating its effect on CRP- based prediction 
models in axSpA. In the GErman SPondyloarthritis 
Inception Cohort (GESPIC), approximately 14% of 
patients exhibited radiographic spinal progression over 
2 years and about 2/3 of progressing patients presented 
with CRP elevations.7 Currently, it is widely unclear, why 
some patients with unelevated CRP exhibit a progress 
and what differentiates progressing and nonprogressing 
patients with axSpA with high inflammatory activity.

The objective of this study was to investigate the perfor-
mance of the above- mentioned CRP- based prediction 
model for radiographic spinal progression in patients 
with axSpA,7 when considering the genetic background 
with influence on fibrin clot formation and fibrinolysis.

METHODS
Patients and clinical assessment
Patients with axSpA who completed a 2- year clinical and 
radiographic follow- up in GESPIC were studied.7 28 They 
were included in GESPIC if they had definite axSpA, 
either radiographic (r- axSpA, also referred to as anky-
losing spondylitis) or non- radiographic form (nr- axSpA). 
All patients included were of European Caucasian origin. 
Clinical and laboratory data were collected at base-
line, and every 6 months thereafter, radiographic data 
(cervical spine lateral view, lumbar spine lateral and 
anteroposterior views) were collected at baseline and 
after 2 years. Treatment of patients with GESPIC has 
been done according to local rheumatologists, without 
any limitations28 (table 1).

Assessment of radiographic spinal progression
Cervical and lumbar radiographs (lateral views) were 
scored independently by two trained readers (DP and 
HH) in concealed and randomly selected order according 
to modified Stoke Ankylosing Spondylitis Spinal Score 
(mSASSS).29 Final mSASSS was calculated as mean of two 
scores produced by individual readers. Meaningful radi-
ographic spinal progression was defined as worsening of 
mSASSS by ≥2 points after 2 years. In addition to mSASSS, 
we assessed syndesmophytes on both lateral views and 
lumbar anteroposterior view as described previously.7

Genotyping
Patients were analysed for fibrinogen genotypes influ-
encing fibrinogen levels30–32: FGA rs6050A>G, FGA 
rs2070006G>A, FGA rs2070016T>C, FGB rs1800788C>T, 
FGB rs1800790G>A, FGG rs1049636T>C. Variants of 
F13A, F13B15 17 33 and A2AP34 35 were characterised, 
which influence fibrin cross- linking and/or suscep-
tibility to fibrinolysis: F13A Val34Leu (rs5985G>T), 
F13A Tyr204Phe (rs3024477A>T), F13B His95Arg 
(rs6003A>G), A2AP Arg6Trp (rs2070863C>T). Geno-
types were determined using LightSNiP assays (TIB 
MOLBIOL, Berlin, Germany).

Statistics
In logistic regression analyses, radiographic spinal 
progression (mSASSS by ≥2 points after 2 years) was used 
as dependent variable. A priori, risk covariable CRP eleva-
tion was defined either (1) as time- averaged CRP level 
(CRPmean) from up to five time points >6 mg/L7 or (2) 
≥10 mg/L22. Additionally, CRP levels at baseline (CRPbase-

line) ≥10 mg/L were used for categorisation. Analyses were 
adjusted for presence of syndesmophytes at baseline, 
smoking, presence of definite radiographic sacroiliitis 
according to modified New York criteria and sex. Anal-
yses were performed separately for subgroups defined by 
presence/absence of minor allele carriage of respective 
genotypes. ORs with 95% confidence intervals (95% CIs) 
were calculated and given for presence/absence of the 
genotype tested, respectively. Subsequently, interaction 
terms between CRP and the stratifying variable (ie, pres-
ence/absence of minor allele) were included in logistic 
regression analyses to test for interaction between both 
variables. OR and 95% CI of interaction terms as well as 
p values for homogeneity were given. Hereby, a p<0.05 
indicates that the relation between CRP and radio-
graphic spinal progression significantly differs between 
both genotype- defined subgroups.

For testing our hypothesis, assessment was carried out 
in stepwise order: Primarily, FGB rs1800790G>A geno-
type with strong influence on fibrinogen synthesis36 
was used for subgrouping. Second, subgrouping was 
performed by F13A Val34Leu,17 A2AP Arg6Trp35 and 
F13B His95Arg,37 which modulate influence fibrin cross- 
linking and/or fibrinolysis resistance. Subsequently, 
composite prothrombotic constellations of fibrinogen 
and F13A Val34Leu genotypes (PFGB rs1800790G>A and PFGA 
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rs2070016T>C) were studied (online supplemental text).20 
These prothrombotic constellations of fibrinogen and 
F13A Val34Leu genotypes predispose for highly cross-
linked, dense (so- called prothrombotic) fibrin structures 
and influence CRP responses.20 Finally, additional fibrin-
ogen genotypes were addressed.20

To account for measurement errors in analyses 
using dichotomised mSASSS change,38 linear regres-
sion analyses were carried out with mSASSS change as 
continuous dependent variable that incorporates both, 
positive (progression) and negative (usually considered 
as measurement error of reading exercised blinded for 
time point) values of mSASSS change (online supple-
mental text). Performance of CRPbaseline≥10 mg/L in 
predicting mSASSS change was visualised in cumulative 
probability plots (figure 1). We used STROBE cohort 
reporting guidelines.39

Patient and public involvement
Representatives of the German patient with axSpA organ-
isation provided advice on outcomes in GESPIC and 
recommend ways to facilitate study participation while 
minimising burden of study visits.

RESULTS
Clinical characteristics and genotype distribution
A total of 208 of 210 patients with follow- up after 2 years 
were genotyped and included in this study. Baseline char-
acteristics are presented in table 1. A total of 30 patients 
(14.4%) demonstrated radiographic spinal progression 
defined as worsening of the mSASSS (≥2 points) after 2 
years. Genotype distributions in the total study popula-
tion as well as in r- axSpA and nr- axSpA patients are given 
in online supplemental table 1.

 

Relation of radiographic spinal progression and time-
averaged CRP levels in dependence on FGB rs1800790G>A 
genotype
According to the predictive model described earlier,7 
we performed analyses in respect of radiographic spinal 
progression stratified for FGB rs1800790 A- allele carriage 
using time- averaged CRP levels (CRPmean) categorised 
for >6 mg/L7 or ≥10 mg/L22 (table 2).

As described earlier, using the model without 
genotype- defined subgrouping, CRPmean (>6 mg/L) 
was associated with radiographic spinal progression 

Table 1 Baseline demographic and clinical characteristics of included patients with axial spondyloarthritis

Parameter All patients (n=208) r- axSpA (n=115) nr- axSpA (n=93)

Age, years 37.3±10.6 36.1±11.0 38.6±10.0

Duration of symptoms, years 4.2±2.7 5.0±2.8 3.1±2.2

Male sex, n (%) 106 (51) 75 (65.2) 31 (33.3)

HLA- B27 carrier, n (%) 165 (79.3) 97 (84.3) 68 (73.9)

Peripheral arthritis, n (%) 31 (14.9) 15 (13.0) 16 (17.2)

Enthesitis*, n (%) 45 (21.6) 23 (20.5) 22 (23.9)

Uveitis ever, n (%) 45 (21.6) 27 (23.5) 18 (19.4)

Psoriasis ever, n (%) 28 (13.5) 18 (15.7) 10 (10.8)

IBD ever, n (%) 4 (1.9) 3 (2.6) 1 (1.1)

Family history of SpA, n (%) 35 (16.8) 19 (16.5) 16 (17.2)

BASDAI, points NRS (0–10) 3.9±2.1 3.8±2.2 4.1±2.0

BASFI, points NRS (0–10) 2.9±2.3 3.0±2.4 2.8±2.2

BASMI, points (0–10) 1.8±1.6 2.0±1.7 1.5±1.5

CRPbaseline, mg/L 7.48±8.6 9.64±9.9 4.82±5.6

mSASSS, points 4.3±8.4 5.9±10.3 2.3±4.3

Smoking, n (%) 63 (30.3) 39 (33.9) 24 (25.8)

Treatment with NSAIDs, n (%) 139 (66.8) 76 (66.1) 63 (67.7)

Treatment with DMARDs, n (%) 53 (25.5) 31 (26.9) 22 (23.6)

Treatment with systemic steroids, n (%) 12 (5.8) 6 (5.2) 6 (6.4)

Treatment with a TNF-α inhibitor, n (%) 5 (2.4) 4 (3.7) 1 (1.1)

*The Berlin score assesses 12 enthesitis sites of lower limbs plus optional sites elsewhere. Continuous variables are presented as mean±SD.
BASDAI, bath ankylosing spondylitis disease activity index; BASFI, bath ankylosing spondylitis functional index; BASMI, bath 
ankylosing spondylitis metrology index; CRPbaseline, C- reactive protein level at baseline; DMARD, disease- modifying anti- rheumatic drug; 
IBD, inflammatory bowel disease; mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score; nr- axSpA, non- radiographic axial 
spondyloarthritis at baseline; NSAID, non- steroidal anti- inflammatory drug; r- axSpA, radiographic axial spondyloarthritis at baseline; TNF-α, 
tumour necrosis factor alpha.
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(mSASSS ≥2 points)7: OR: 2.56, 95% CI 1.03 to 6.35. 
When analysing genotype- defined subgroups separately, 
this association considerably depended on underlying 
FGB rs1800790G>A genotypes. In FGB rs1800790GG 
wild types, CRPmean exhibited a strong association with 

mSASSS progression (OR: 5.64, 95% CI 1.56 to 20.3), 
whereas it was completely missing in carriers of FGB 
rs1800790 A- allele (OR: 0.99, 95% CI 0.20 to 4.92). 
However, heterogeneity between both subgroups was 
not statistically significant (interaction term, OR: 0.28, 

Figure 1 Cumulative probability plots of radiographic spinal progression after 2 years according to mSASSS in relation to the 
presence or absence of (A) syndesmophytes at baseline and (B) CRP elevations. Plots for CRP additionally are subgrouped for 
(C) FGB rs1800790G>A, (D) A2AP Arg6Trp, (E) PFGB rs1800790G>A and (F) PFGA rs2070016T>C. A2AP, α2- antiplasmin; CRP, C- reactive 
protein; FGB, β- fibrinogen; mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score.
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95% CI 0.04 to 1.76, p for homogeneity: 0.17). In respect 
of presence of syndesmophytes at baseline or current 
smoking as predictors of radiographic progression an 
opposite effect could be found. In both cases, associa-
tions with radiographic progression were restricted on 
carriers of the FGB rs1800790 A- allele (syndesmophytes, 
OR: 12.2, 95% CI 2.12 to 70.5; current smoking, OR: 6.08, 
95% CI 1.18 to 31.2).

Based on CRPmean≥10 mg/L, the strength of associa-
tion between CRPmean and mSASSS progression in FGB 
rs1800790GG wild- types was further increased (OR: 6.86, 
95% CI 2.08 to 22.6) and heterogeneity between both 
subgroups was more pronounced compared with a cut- 
off level of CPRmean>6 mg/L (interaction term, OR: 0.22, 
95% CI 0.03 to 1.42, p for homogeneity: 0.11) (table 2). 
Results of linear regression analyses are given in online 
supplemental table 2. In following sections, analyses were 
based on CRPmean≥10 mg/L.

Analyses on relation between time-averaged CRP levels and 
radiographic spinal progression in dependence on F13A, 
A2AP and F13B genotypes
We tested whether variability of other genes related to 
fibrin cross- linking and/or fibrinolysis resistance influ-
ences association between CRPmean (≥10 mg/L) and 
radiographic spinal progression. Interestingly, for these 
genotypes, similar effects as for FGB rs1800790G>A could 
be found in the prognostic model (table 3).

Carriers of the respective minor allele(s) of F13A 
Val34Leu, A2AP Arg6Trp or F13B His95Arg exhibited 
a strong, highly significant relation between elevated 
CRPmean (≥10 mg/L) and radiographic progression. In 
contrary, in corresponding wild- type associations of 
CRPmean and mSASSS progression were clearly diminished. 

Results of linear regression analyses are given in online 
supplemental table 2.

Relation of radiographic spinal progression and time-
averaged CRP levels in dependence on potentially 
prothrombotic genotype constellations
As the effect of fibrinogen and factor XIII genetics 
on inflammatory processes results from their interac-
tive influence on fibrin clot formation, we assessed the 
performance of the predictive model in dependence of 
prothrombotic genotype constellations PFGB rs1800790G>A 
and PFGA rs2070016T>C, which are associated with inflamma-
tion.20

For both genotypes, in absence of the prothrombotic 
constellation, CRPmean (≥10 mg/L) was strongly associ-
ated with mSASSS progression and in presence of the 
prothrombotic constellation, this association was consid-
erably diminished (table 4) (PFGB rs1800790G>A: interaction 
term, OR: 0.13, 95% CI 0.02 to 0.98, p for homogeneity: 
0.048; PFGA rs2070016T>C: interactions term, OR: 0.15, 95% CI 
0.02 to 1.39, p for homogeneity: 0.094).

Influence of genetic variants in FGB, FGA and FGG on relation 
between time-averaged CRP levels and radiographic spinal 
progression
For FGB rs1800788C>T (wild- type, OR: 5.91, 95% CI 
1.52 to 23.0; T- allele carriers, OR: 1.83, 95% CI 0.47 to 
7.15; p for homogeneity: 0.50), FGA rs6050A>G (wild- 
type, OR: 4.76, 95% CI 1.48 to 15.3; G- allele carriers, 
OR: 2.23, 95% CI 0.40 to 12.4; p for homogeneity: 0.16), 
FGA rs2070016T>C (wild type, OR: 4.10, 95% CI 1.43 to 
11.8; C- allele carriers, OR: 1.22, 95% CI 0.15 to 9.72; p for 
homogeneity: 0.66), again, a tendency for heterogeneity 
between wild- types and minor allele carriers in respect 

Table 2 Analysis of parameters associated with radiographic spinal progression (worsening of mSASSS by ≥2 points after 2 
years) in axial spondyloarthritis stratified by FGB rs1800790G>A genotype

Parameters

Unstratified
OR (95% CI)
(n=208)

FGB rs1800790GG (wild- type)
OR (95% CI)
(n=124)

FGB rs1800790A (A- allele carriage)
OR (95% CI)
(n=84)

CRPmean

  >6 mg/L (model 1) 2.56 (1.03 to 6.35) 5.64† (1.56 to 20.3) 0.99† (0.20 to 4.92)

  ≥10 mg/L (model 2) 3.32 (1.35 to 8.13) 6.86* (2.08 to 22.6) 0.83* (0.14 to 4.84)

Syndesmophytes

  Model 1 4.70 (1.92 to 11.5) 3.25 (1.00 to 10.6) 12.2 (2.12 to 70.5)

  Model 2 4.82 (1.96 to 11.9) 3.47 (1.06 to 11.4) 12.7 (2.14 to 75.2)

Current smoking

  Model 1 2.37 (0.99 to 5.67) 1.39 (0.45 to 4.31) 6.08 (1.18 to 31.2)

  Model 2 2.26 (0.93 to 5.48) 1.51 (0.48 to 4.77) 6.28 (1.19 to 33.2)

Logistic regression analyses were performed in two models using either CRPmean>6 mg/L (model 1) or CRPmean≥10 mg/L (model 2). 
Syndesmophytes at baseline and current smoking were used as covariables. All analyses were adjusted for sex and for presence of 
definite radiographic sacroiliitis according to modified New York criteria. Data of unstratified analysis as well as after stratification for FGB 
rs1800790GG and FGB rs1800790A are presented.
*P for homogeneity: 0.11.
†P for homogeneity: 0.17.
CRPmean, time- average level of C- reactive protein; FGB, β-fibrinogen; mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score.

https://dx.doi.org/10.1136/rmdopen-2021-001751
https://dx.doi.org/10.1136/rmdopen-2021-001751
https://dx.doi.org/10.1136/rmdopen-2021-001751
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6 Hoppe B, et al. RMD Open 2021;7:e001751. doi:10.1136/rmdopen-2021-001751

RMD OpenRMD OpenRMD Open

of association of CRPmean (≥10 mg/L) and mSASSS wors-
ening was found.

Relation of radiographic spinal progression and CRP level at 
baseline
From a clinical and research perspective, prognostic 
information yielded from baseline data on course of 
structural damage progression would be of interest.

In the total study population, CRPbaseline elevation 
(≥10 mg/L) tended to be associated with mSASSS 
progression (OR: 2.25, 95% CI 0.91 to 5.56). In FGB 
rs1800790GG wild types, this association was highly signif-
icant (OR: 5.71, 95% CI 1.69 to 19.3) and completely 
missing in FGB rs1800790 A- allele carriers (OR: 0.38, 
95% CI 0.06 to 2.53) with relevant heterogeneity between 
both subgroups (interaction term, OR: 0.13, 95% CI 

0.02 to 0.92, p for homogeneity: 0.041) (table 5). The 
same holds true, when stratifying for absence (OR: 4.98, 
95% CI 1.57 to 15.7) and presence (OR: 0.26, 95% CI 
0.03 to 2.34) of PFGB rs1800790G>A (interaction term, OR: 
0.09, 95% CI 0.01 to 0.72, p for homogeneity: 0.024) 
(table 5).

For A2AP Arg6Trp (wild type, OR: 0.63, 95% CI 0.14 to 
2.86; minor allele carrier, OR: 4.51, 95% CI 1.24 to 16.5; 
interaction term, OR: 5.66, 95% CI 0.88 to 36.6, p for 
homogeneity: 0.069) and PFGA rs2070016T>C (nonprothrom-
botic, OR: 4.63, 95% CI 1.59 to 13.8; prothrombotic, OR: 
0.14, 95% CI 0.005 to 3.85; interaction term, OR: 0.063, 
95% CI 0.005 to 0.86, p for homogeneity: 0.038) consid-
erable heterogeneity between both subgroups could be 
found, as well.

Table 3 Analysis of parameters associated with radiographic spinal progression (worsening of mSASSS by ≥2 points after 2 
years) in axial spondyloarthritis stratified by A2AP Arg6Trp, F13A Val34Leu or F13B His95Arg genotype

Genotype
CRPmean≥10 mg/L
OR (95% CI)

Syndesmophytes
OR (95% CI)

Current smoking
OR (95% CI)

A2AP Arg6Trp

  6Arg/Arg (n=116) 1.47‡ (0.35 to 6.19) 4.80 (1.16 to 19.9) 6.59 (1.73 to 25.1)

  6Trp (n=93) 5.86‡ (1.63 to 21.0) 5.76 (1.55 to 21.4) 0.74 (0.17 to 3.11)

F13A Val34Leu

  34Val/Val (n=117) 1.72* (0.52 to 5.71) 4.65 (1.41 to 15.3) 1.08 (0.33 to 3.52)

  34Leu (n=91) 8.72* (1.69 to 45.1) 9.47 (1.76 to 51.0) 5.15 (1.10 to 24.0)

F13B His95Arg

  95His/His (n=142) 2.36† (0.66 to 8.43) 15.1 (3.31 to 69.3) 4.11 (1.26 to 13.4)

  95Arg (n=67) 6.84† (1.51 to 30.9) 2.61 (0.56 to 12.1) 1.14 (0.25 to 5.25)

Logistic regression analyses were performed after stratification as indicated using CRPmean≥10 mg/L, syndesmophytes at baseline and current 
smoking. All analyses were adjusted for sex and for presence of definite radiographic sacroiliitis according to modified New York criteria.
*P for homogeneity: 0.21.
†P for homogeneity: 0.30.
‡P for homogeneity: 0.18.
A2AP, α2- antiplasmin; CRPmean, time- averaged level of C- reactive protein; F13A, factor XIII A- subunit; F13B, factor XIII B- subunit; mSASSS, 
modified Stoke Ankylosing Spondylitis Spinal Score.

Table 4 Analyses of parameters associated with radiographic spinal progression (worsening of mSASSS by ≥2 points after 2 
years) in axial spondyloarthritis stratified by the prothrombotic genotype constellations PFGB rs1800790G>A and PFGA rs2070016T>C

Genotype
CRPmean≥10 mg/L
OR (95% CI)

Syndesmophytes
OR (95% CI)

Current smoking
OR (95% CI)

PFGB rs1800790G>A

  Absent (n=156) 6.31† (2.09 to 19.0) 4.41 (1.49 to 13.1) 1.88 (0.65 to 5.41)

  Present (n=52) 0.50† (0.06 to 4.00) 12.4 (1.53 to 100.8) 3.71 (0.50 to 27.2)

PFGA rs2070016T>C

  Absent (n=172) 5.58* (1.97 to 15.8) 5.42 (1.90 to 15.4) 1.53 (0.56 to 4.22)

  Present (n=36) 0.40* (0.02 to 6.38) 16.3 (0.78 to 338.9) 9.76 (0.83 to 114.5)

Logistic regression analyses were performed after stratification for absence or presence of the indicated prothrombotic genotype 
constellation using CRPmean≥10 mg/L, syndesmophytes at baseline and current smoking. All analyses were adjusted for sex and for presence 
of definite radiographic sacroiliitis according to modified New York criteria.
*P for homogeneity: 0.094.
†P for homogeneity: 0.048.
CRPmean, time- average level of C- reactive protein; FGA, α-fibrinogen; FGB, β-fibrinogen; mSASSS, modified Stoke Ankylosing Spondylitis 
Spinal Score.
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The relation between CRPbaseline and mSASSS change in 
genotype- defined subgroups is visualised in cumulative 
probability plots (figure 1).

Results of analyses on a possible direct relation between 
the genotypes tested and radiographic spinal progression 
or CRP levels are given in online supplemental text and 
online supplemental table 3.

DISCUSSION
Pathology of axSpA is characterised by prolonged and/
or increased inflammatory response at the interface 
between cartilage and bone, presumably triggered and/
or perpetuated by mechanical stress and finally resulting 
in dysbalanced bone formation, that is the main patho-
logic process behind radiographic spinal progression.40 
Until now, only CRP is used for risk stratification on top 
of already existing structural damage (syndesmophytes) 
in clinical practice.7 When conjointly considering syndes-
mophytes, current smoking and CRP elevations, pres-
ence of syndesmophytes is strongly associated with radi-
ographic spinal progression, while CRP and current 
smoking moderately contribute to prognostic risk assess-
ment (table 2).

Our study was triggered by two facts. (1) Fibrin(ogen) 
derivatives and proteins related to fibrin clot forma-
tion and fibrinolysis modulate inflammation and tissue 
repair15 16 and (2) genetic variants of gene loci, which 
influence fibrinogen synthesis,30 32 fibrin clot formation/
structure17 or susceptibility to fibrinolysis17 34 35 41 42 and also 
influence the magnitude of inflammatory activity.20 22 24 
Thus, we hypothesised that the genetic background of 
fibrinogen and related proteins could modify the predic-
tive value of CRP in respect of radiographic spinal 
progression.

Data presented here are best comprehensible, when 
considering that genotype constellations predisposing 
for loose, fibrinolysis- susceptible fibrin clot structures 
are permissive for stronger CRP responses and that, 
vice versa, in genotype constellations resulting in tight, 

fibrinolysis- resistant so- called prothrombotic clot struc-
tures; CRP responses are comparatively diminished.20 22 24 
Consequently, local inflammation in vertebral bodies in 
patients with the latter genetic background might not be 
associated with a strong systemic CRP response. A lack of 
predictive value of CRP for radiographic spinal progres-
sion in this patient subgroup is a sequel.

In our study population, genotypes predisposing for 
increased fibrinogen synthesis (FGB rs1800790 A- al-
lele carriage) (table 2), strong fibrinolysis resistance 
(carriage of A2AP 6Arg/Arg wild- type) (table 3) or for 
prothrombotic clot structures (PFGB rs1800790G>A, PFGA 

rs2070016T>C) (table 4) abrogated completely association 
of CRP with radiographic spinal progression (mSASSS 
change) (figure 1). All these genotypes are known to 
diminish inflammatory activity.20 22 24 On the other hand, 
in individuals carrying genotypes related to lower fibrin-
ogen synthesis (FGB rs1800790GG wild- types), higher 
susceptibility to fibrinolysis (A2AP 6Trp carriers, F13A 
34Leu carriers) and/or less crosslinked, loose fibrin clot 
structures elevated CRP levels were strongly associated 
with radiographic spinal progression (tables 2–4 and 
figure 1). These genotype constellations are permissive 
for stronger CRP responses,20 22 and in those patients 
elevated CRP can be considered as good predictor of 
subsequent structural damage progression. Associations 
in these cases were considerably stronger compared with 
the association without considering the genetic back-
ground. Thus, our findings seem consistently to indicate 
that in axSpA, the predictive value of CRP elevation in 
respect of increased radiographic spinal progression 
may be limited to individuals, which are not genetically 
predisposed to form so- called prothrombotic fibrin clot 
structures under proinflammatory triggers.

We have analysed 10 genotypes and the sample size of 
GESPIC is rather low. For this reason, results of statistical 
testing should be interpreted carefully. However, the 
fact that results derived from genotypes from four chro-
mosomal locations (FGB/FGA, chromosome 4; F13A, 

Table 5 Analyses of parameters (including baseline CRP levels) associated with radiographic spinal progression (worsening 
of mSASSS by ≥2 points after 2 years) in axial spondyloarthritis stratified by the FGB rs1800790G>A or PFGB rs1800790G>A

Genotype
CRPbaseline ≥10 mg/L
OR (95% CI)

Syndesmophytes
OR (95% CI)

Current smoking
OR (95% CI)

FGB rs1800790G>A

  GG (wild- type) (n=124) 5.71† (1.69 to 19.3) 4.84 (1.44 to 16.3) 1.49 (0.47 to 4.72)

  A- allele carrier (n=84) 0.38† (0.06 to 2.53) 14.2 (2.31 to 87.2) 6.69 (1.24 to 36.2)

PFGB rs1800790G>A

  Absent (n=156) 4.98* (1.57 to 15.7) 5.3 (1.76 to 16.0) 2.00 (0.70 to 5.67)

  Present (n=52) 0.26* (0.03 to 2.34) 13.3 (1.69 to 104.1) 3.91 (0.48 to 31.6)

Logistic regression analyses were performed after stratification for absence or presence of the indicated genotype constellation using 
CRPbaseline ≥10 mg/L, syndesmophytes at baseline and current smoking. All analyses were adjusted for sex and for presence of definite 
radiographic sacroiliitis according to modified New York criteria.
*P for homogeneity: 0.024.
†P for homogeneity: 0.041.
CRPbaseline, level of C- reactive protein at baseline; FGB, β-fibrinogen; mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score.

https://dx.doi.org/10.1136/rmdopen-2021-001751
https://dx.doi.org/10.1136/rmdopen-2021-001751
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chromosome 6; F13B, chromosome 1 and A2AP, chromo-
some 17) were in agreement with the one tested hypoth-
esis, in our view seems to support the assumption.

In our study population, even a single baseline CRP 
level (≥10 mg/L) was predictive for a meaningful radio-
graphic progression, when the permissive genetic back-
ground was present. This finding could be relevant for 
prediction of progression and risk stratification in clin-
ical practice and research.

In general, our results can be discussed in two ways. 
It could be assumed that only in individuals not genet-
ically predisposed for prothrombotic fibrin clot struc-
tures, CRP- responses are sufficiently strong to reflect the 
magnitude of inflammation load in the axial skeleton. In 
other words, in patients predisposed for prothrombotic 
fibrin clots, CRP- responses could be diminished, hereby 
hampering the predictive value of CRP in respect of 
disease progress.

Otherwise, it could be hypothesised that loose fibrin 
gel structures with low anti- fibrinolytic potential are more 
permissive for cell migration into inflamed tissues, hereby 
modifying clinical course, allowing locally for stronger 
cytokine release and systemically for a more prominent 
CRP response. Hereby, genetics related to fibrin clot 
formation and fibrinolysis would be directly involved in 
processes of pathological inflammation and/or tissue 
repair in axSpA. This interpretation would help under-
stand the missing association between these genotypes 
and CRP levels in patients with GESPIC (online supple-
mental table 3). FGB rs1800790G>A, PFGB rs1800790G>A and 
PFGA rs2070016T>C have been described to be strongly asso-
ciated with CRP levels.20 22 Additionally, in patients with 
rheumatoid arthritis, both composite genotype constel-
lations were related to clinical disease activity.20 If these 
genotype constellations in patients with axSpA would 
directly influence processes involved in pathogenesis, 
missing associations between genotypes and CRP could 
result from a direct influence of these genetic variants on 
clinical course in axSpA.

In respect of the inverse predictive behaviour of CRP 
and syndesmophytes/smoking in genotype- defined 
subgroups (tables 2–5), there are two possible explana-
tions. Overall, CRP, smoking and syndesmophytes with 
some overlap are predictors for radiographic progres-
sion. In individuals with diminished CRP- response due 
to predisposition for tight fibrin gels, CRP does not 
adequately reflect inflammatory burden and conse-
quently has reduced predictive value for progression. In 
these individuals, association strength between syndes-
mophytes/smoking with progression could increase due 
to the decreased predictive value of CRP. Another expla-
nation could assume that individuals with a different 
genetic background behave biologically different.

The presented findings can be interpreted in a way 
that CRP cannot be considered without any limitation 
as a good predictive marker of radiographic spinal 
progression in the entirety of patients with axSpA or 
in a more conservative wording the findings could help 

to explain the clinical course in progressing patients 
without CRP elevations. The predictive potential of 
CRP in respect of radiographic spinal progression 
seems to be considerably increased, if a genetic back-
ground predisposing to loose, fibrinolysis- susceptible 
fibrin clots is given, and nearly absent otherwise. 
Further studies should address the question whether 
the same can also be true for CRP as predictor of treat-
ment response in axSpA.
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