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Abstract

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group
of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide
insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species
from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-
trypanosome interactions by a consortium of researchers in a five-year (2013–2018) Coordinated Research Project
(CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-
pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control
by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission.
This paper highlights the CRP’s major achievements and discusses the science-based perspectives for successful
mitigation or eradication of African trypanosomosis.
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Background
Tsetse flies (Diptera; Glossinidae) transmit African
trypanosomes across sub-Saharan Africa. These proto-
zoan parasites are the causative agents of human and
animal African trypanosomoses (HAT and AAT, re-
spectively), which are neglected tropical diseases that
are fatal if left untreated [1, 2]. A lack of effective
prophylactic vaccines and drugs that target trypano-
somes [3, 4] makes control of the tsetse vector an ap-
pealing alternative to reduce disease transmission.
One attractive vector control method is the sterile

insect technique (SIT), which is effective when included
as a component of an area-wide integrated pest manage-
ment (AW-IPM) approach [5–8]. SIT involves the mass
production of sterilized male adults, which subsequently
out-compete wild males in mating with wild virgin females
in the field [9]. These matings are non-productive, eventu-
ally resulting in the decline and elimination of the target
wild insect populations [10].
The successful and sustained eradication of Glossina

austeni Newstead and AAT from Unguja Island in 1997
[7], in which SIT played a pivotal role, inspired African
Governments to implement similar campaigns against
tsetse on mainland Africa. SIT has also been employed
to suppress G. palpalis gambiensis and G. tachinoides
populations in Burkina Faso, G. p. palpalis in Nigeria
[11, 12], and G. pallidipes in Ethiopia [13]. Challenges
associated with improving SIT effectiveness include suc-
cessful colony establishment [14], management of patho-
genic infections that reduce colony fitness [15, 16] and
compromised performance of field-released sterile males
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[17]. Importantly, the ability of released sterile males to
vector trypanosomes increases the risk of transmitting
disease in foci where trypanosomes are actively circulat-
ing. Furthermore, irradiation used for sterilization may
negatively impact tsetse fitness (e.g. by damaging the tse-
tse host and its associated beneficial microbiota [18, 19].

The joint FAO/IAEA-sponsored coordinated
research projects
To enhance the SIT programs, the Joint Division of
FAO/IAEA initiated a five-year (2013–2018) Coordi-
nated Research Project (CRP) on enhancing tsetse fly
refractoriness to trypanosome infections [20]. Com-
posed of 22 research teams from 18 countries, the
CRP involved four Research Coordination Meetings
(RCMs) to review the results, progress and plan future
research activities.
This paper highlights the major achievements

towards answering the following four key research
questions of the CRP: (1) Can the elucidation of
tsetse-trypanosome molecular interactions assist in
the development of novel methods and approaches to
reduce or prevent the transmission of trypanosomes
by irradiated tsetse flies? (2) Are tsetse’s symbiome

and the fly’s competence as a vector of trypanosomes
affected by radiation? (3) Can tsetse symbionts be used
to develop novel vector and disease control tools, com-
plementary to the SIT? (4) Can the characterization of
tsetse’s symbiome and viral pathogens improve the effi-
cacy of SIT? [20]. Many other concepts that emerged
while addressing the above-mentioned research ques-
tions were addressed during the course of the CRP.

Major objective of the CRP
The overall objective of the CRP was to elucidate the
tsetse-symbiome-pathogen molecular interactions to
improve SIT and SIT-compatible interventions. This
effort was undertaken to reduce trypanosomosis by
enhancing vector refractoriness, thus facilitating the
expansion of SIT to areas where HAT-causing para-
sites are currently circulating in resident animals. The
specific objectives and the expected output of this
CRP are listed in Table 1 [See also Ref.#20]. The im-
proved knowledge gained from achieving the objec-
tives of the CRP is of significant interest to the FAO/
IAEA and sub-Sahara African countries in their en-
deavor to control and ultimately eradicate tsetse and
African trypanosomosis.

Table 1 The Five-year (2013–2018) CRP objectives, outputs and achievements (published papers)

Specific objectives Expected output Published papersa

(i). Elucidate tsetse-trypanosome interactions and
understand determinants of vector competence.

(i). Molecular interplay of tsetse-trypanosomes
characterized.

(ii). Factors affecting trypanosome infections in tsetse
determined.

(iii). Tsetse vectorial competence assessed via
comparative genomics and transcriptomics.

[102–146];
([21, 26, 43, 107, 147])

(ii). Acquire better understanding of the physiology
of tsetse-microbiota-pathogen tripartite interactions.

(i). Microbiota of multiple trypanosome-infected and
uninfected tsetse species and hybrids determined.

(ii). Trypanosome-microbiota interactions in model
tsetse species and hybrids determined.

(iii). Impacts of viral pathology on the tsetse symbionts
determined.

[42, 47, 53, 58, 59, 148–172];
([44, 54, 72, 93, 173, 174])

(iii). Determine effects of radiation in tsetse,
its microbiota and pathogens.

(i). Effects of radiation on tsetse vectors, their symbionts
and pathogens determined.

(ii). Mutagenic effect of radiation on paratransgenesis
determined.

[175]; ([95, 99])

(iv). Analyse SGHV-microbiota interactions in multiple
tsetse species.

(i). Functional SGHV genes identified as candidates for
developing antiviral mitigation strategy.

(ii). Latency SGHV genes identified as tools for host
interacting proteins.

(iii). Mechanisms of SGHV’s escape from host defense
response determined.

(iv). SGHV haplotypes and evolution in lab-reared
and wild tsetse fly populations determined.

[75, 76, 79, 81, 82, 84, 176, 177];
([28, 77, 78, 80, 83])

(v). Develop novel symbiont-based, SIT-compatible
anti-trypanosomiasis strategies.

(i). Wolbachia-based population suppression and/or
replacement strategies assessed.

(ii). Trypanosome-refractory paratransgenic tsetse lines
developed.

[94, 108, 178]; ([109])

aArticles in round brackets are published in the current issue of the BMC Special Issue. The remaining articles in this table have either been or are submitted for
publication elsewhere during the five years (2013–2018) CRP period
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Current status and achievements
During the course of the CRP (2013–2018) more than
seventy scientific papers, detailing experimentally de-
rived data related to achieving the project’s objectives,
were published in peer reviewed journals. This special
issue includes several of these papers, findings from
which are briefly summarized in this introductory chap-
ter along with the overall outcome of the project and fu-
ture perspectives.

Tsetse species resolution
Correct taxonomic identification of insects is impera-
tive for many reasons including the fact that studies
conducted on different taxa may be reported by the
same species (names), thus creating confusion. It is
therefore important to properly identify field-captured
tsetse species during characterization of their inhabit-
ing microbial communities (including parasites, patho-
gens and symbionts). During the CRP, Augustinos and
colleagues [21; this issue] evaluated the use of different
molecular tools that can be used to efficiently and ac-
curately distinguish distinct Glossina species using sam-
ples deriving from laboratory colonies and museum
collections as well as all those collected in the field.
The combined use of relatively inexpensive molecular
genetic techniques, along with the identification of spe-
cies specific microsatellites and mitochondrial and

nuclear markers, will facilitate accurate identification of
several tsetse species in the future.

Tsetse-microbiota-trypanosome interactions and
determinants of vectorial competence
Figure 1 summarizes the interwoven associations and
localization of the tsetse’s microbiota, which is com-
prised of the Wigglesworthia-Sodalis-Wolbachia com-
plex, recently discovered Spiroplasma, environmentally
acquired enteric bacteria, the salivary gland hypertrophy
virus (SGHV) and the Trypanosoma parasite.

Trypanosome co-infections in tsetse flies
Molecular epidemiological surveys indicate that tsetse fly
midguts, sampled from various HAT and AAT foci (includ-
ing Fontem [22, 23] Campo and Bipindi [22, 24], Bafia [25]
and Faro and Deo [26; this issue] in Cameroon) are in-
fected with multiple trypanosome species. Application
of nuclear ribosomal internal transcribed spacer (ITS)
and/or trypanosome species-specific primers revealed
that 53–82% of flies housed infections with trypano-
some of a single species (T. brucei sl., T. congolense
“forest” and “savannah” types, T. vivax and T. simiae),
18–47% were infected with two or three of the afore-
mentioned species. In the Malanga HAT focus in Demo-
cratic Republic of Congo, 13.87% and 1.9% of G. p. palpalis

Fig. 1 The tsetse fly and its associated microorganisms. Tsetse flies can harbor multiple microbes, including the bacterial endosymbionts obligate
Wigglesworthia, facultative Sodalis, parasitic Wolbachia and Spiroplasma, as well as a taxonomically diverse population of environmentally acquired
enteric bacteria, a virus (salivary gland hypertrophy virus, SGHV) and protozoan African trypanosomes. All tsetse harbor Wigglesworthia, while the
presence of Sodalis, Wolbachia, Spiroplasma, SGHV and trypanosomes is fly population dependent. Wigglesworthia, Sodalis and SGHV are
transmitted to developing intrauterine larval offspring via maternal milk secretions, while Wolbachia is transmitted through the germline.
Spiroplasma’s mode of vertical transmission is currently unknown. Pathogenic trypanosomes are acquired by tsetse when they feed on an
infected animal. The parasites must then undergo a complex development cycle in the fly before they can be successfully transmitted to a new
host, where they cause disease. (This figure is adapted with permission from Aksoy et al., 2013) [179]
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had single and mixed trypanosome infections, respectively
[27]. To assess the prevalence of trypanosome infection in
a geographically broader area, Ouedraogo et al. [28; this
issue] screened 3102 individual tsetse flies comprised of
four species collected in five countries in west Africa. Re-
sults from this study indicate that trypanosome infections
prevalence varied between tsetse species and location, but
was on average substantial. In other words, infection preva-
lence ranged widely from 2.2–61.1% in flies sampled from
different species in different locations. Furthermore, mixed
infection was rarely observed (< 10%), and could be attrib-
uted to host specificity and/or preferences (human, domes-
tic and wild animals) of particular tsetse species [29–32]
and/or sensitivity of the PCR assay.

Modulations of tsetse gene expression during
trypanosome infections
During SG infections, T. b. brucei suppresses the expres-
sion of the most abundant proteins in G. m. morsitans
SGs, especially the proteins involved in the blood feed-
ing process (e.g. Tsal1/2, TAg5, TSGF-1/2, 5’-Nuc, ADA
and Spg3) [33]. This reduction in protein expression
may significantly reduce fly feeding performance, conse-
quently promoting vector competence via increase of
the fly’s biting frequency. Further, the parasite upregu-
lates expression of specific host proteins that are
essential for parasite maturation, particularly proteins
(e.g. CaMK, Serp-2, V-ATPases, and ArgK) involved in
the regulation of stage-specific parasite differentiation
[33, 34]. In response to the SG infection, tsetse overex-
presses at least 15 immunity-related proteins [See Table
3 in Ref.#33]. In the midguts of G. pallidipes, which is
more refractory to midgut colonization by trypanosomes
compared to G. m. morsitans [35], T. b. brucei-challenge
did not significantly modulate most of the genes (> 93%)
in infected flies compared to uninfected controls [36].
However, whereas T. b. brucei induced expression of
metabolism-associated genes in teneral flies (24 h post
challenge), immunity-related and oxidative stress (ROS)
genes were induced during late infection stages (48 h
post challenge) [36]. Induction of expression of immun-
ity and ROS genes is partially implicated in trypano-
some-refractoriness in G. m. morsitans [37]. Notably,
unlike in G. m. morsitans, in which only a small propor-
tion of midgut infections progress to the SG, all G. palli-
dipes with trypanosome gut infections end up hosting
mature SG infections [35]. Together, these data are ap-
plicable in designing strategies to interfere with metacy-
clogenesis and transmission of the mammalian-infective
metacyclic (MT) parasites in the SGs of G. pallidipes.
The SG tissue bottleneck (in trypanosome transmission)
represents a vulnerable and attractive intervention point
to enhance natural tsetse refractoriness to trypanosomes

or to reduce the vectorial competence of the sterile
males used in SIT campaigns.

Role of Sodalis in the establishment of trypanosome
infections in tsetse midguts
Sodalis glossinidius, tsetse’s facultative endosymbiont, may
modulate the ability of trypanosomes to establish an infec-
tion in tsetse’s midgut. However, the mechanism(s) that
underlies this association is poorly understood [38–40].
This CRP addressed this knowledge gap by further explor-
ing the relationship between Sodalis and trypanosome in-
fection in tsetse. Geiger et al. [41] observed a correlation
between specific Sodalis genotypes and tsetse’s ability to
establish trypanosomes infection.
Hamidou et al. [42] demonstrated that Sodalis-hosted

prophages also mediate trypanosome infection estab-
lishment by affecting Sodalis densities. However, certain
studies on field-caught tsetse did not indicate any
strong associations between Sodalis densities and tryp-
anosome infections [26; this issue, 43; this issue]. In
addition, a correlation between trypanosome infection
and Sodalis presence observed in Kenya [43; this issue]
was weak or nonexistent. However, the authors thought
that tsetse-trypanosome-microbiota interactions could
be influenced by other factors such as tsetse’s ecology
and community compositions, but only in some species
of trypanosomes. However, Griffith et al., [44; this
issue] found that Sodalis densities were significantly
higher in trypanosome-infected, wild-caught flies com-
pared to their uninfected counterparts. Additionally,
other confounding factors may indirectly affect vector-
ial competence, including tsetse flies age, sex, habitat,
species of trypanosome, and Sodalis genotypes and
their modulation of the host’s immune system [43, this
issue]. These factors may influence Sodalis densities,
which may indirectly impact trypanosome prevalence
within tsetse and the fly’s vectorial competence for
trypanosome transmission.

Insights into tsetse-microbiota-pathogen tripartite
interactions

Tsetse symbionts
Taxonomic composition of microbial communities housed
in the gut of wild tsetse
Enteric microbes impact several aspects of their host’s
physiology [45]. In tsetse, the obligate mutualist Wig-
glesworthia mediates numerous aspects of the fly’s
physiology, including nutrition, reproduction and
immune system maturation and function [46–48].
Over the course of this CRP, researchers performed
studies to characterize the taxonomic composition of
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environmentally acquired bacteria housed in the gut
of field-captured and colonized tsetse. This informa-
tion is an important prelude to understanding how
this population of microbes impacts tsetse’s fitness
and susceptibility to trypanosome infection. Using cul-
ture dependent and independent techniques, promin-
ent bacterial taxa found in guts from field captured
tsetse included Serratia, Enterobacter, Enterococcus,
Acinetobacter, Providencia, Sphingobacterium, Chry-
seobacterium, Lactococcus, Staphylococcus, and
Pseudomonas, Bacillus, Mesorhizobium, Paracoccus,
Microbacterium, Micrococcus, Arthrobacter, Coryno-
bacterium, Curtobacterium, Vagococcus, and Dietzia
spp. ([44, 49–54]; this issue). The sources and mecha-
nisms by which tsetse flies acquire this diverse enteric
microbiota remain unclear. However, tsetse hosts from
specific ecosystems could differ in their microbial di-
versities [55]. Flies could ingest bacteria present on
host skin when probing for a blood meal [56], or host
blood may contain bacteria that are ingested by flies
during feeding on a septic host. Identification of di-
verse bacteria in tsetse tissues that also house trypano-
somes raises the question whether these bacteria
influence trypanosome infections. Environmentally ac-
quired bacteria found in the gut of other disease vec-
tors (i.e., Anopheles gambiae) exhibit direct
anti-parasitic properties [57]. As such, tsetse’s gut
microbiota should be explored in more detail to deter-
mine if bacteria that exhibit anti-trypanosomal prop-
erties are present in the fly’s gut.

Discovery and characterization of Spiroplasma, a potential
fourth symbiont of tsetse
One of the major achievements of this CRP is the discov-
ery of Spiroplasma as a fourth endosymbiont (in addition
to Wigglesworthia, Sodalis, and Wolbachia) in some wild
and laboratory-reared tsetse populations [58, 59]. While
the function of this bacterium in tsetse is currently un-
known, it likely to impact colony fitness. However, in
Drosophila, Spiroplasma is a maternally [60] and horizon-
tally transmitted mutualist [61]. Some lineages of Spiro-
plasma confer their hosts with important traits, including
defense against pathogens (e.g. parasites and bacteria), ei-
ther singly or in associations with other symbionts such as
Wolbachia [62–65]. The poorly understood mechanism(s)
of Spiroplasma-Wolbachia associations presents an intri-
guing research topic, given that Wolbachia (found mainly
in reproductive organs) and Spiroplasma (resides primar-
ily in the hemolymph, but can also invade other tissues
such as ovaries, fat body and SGs) exhibit similar tissue
tropisms. Research on the Glossina-Spiroplasma associ-
ation is required to determine if the bacterium presents
commensal, mutualist or pathogenic phenotypes in the

fly. Additionally, it will be important to determine the re-
lationship between Spiroplasma and other constituents of
tsetse’s microbiota, including bacterial symbionts, viral
pathogens and trypanosomes. Finally, studies should be
performed to determine if Spiroplasma can be utilized to
develop novel symbiont-based strategies aimed at blocking
trypanosome transmission.

Role of Wolbachia in tsetse speciation and generation of
fertile hybrid tsetse colonies
Symbiont-induced cytoplasmic incompatibility (CI)
acts as an efficient post-mating barrier to hybrid for-
mation, making it an important parameter in preserv-
ing species borders [66–69]. In tsetse, Wolbachia
efficiently triggers CI within [70] and between species
[71]. During the CRP, Wolbachia related research fo-
cused on two main topics: 1) the development of diag-
nostic tools sensitive to detect low titer Wolbachia
infections in tsetse species, and 2) exploration of Wol-
bachia’s role in tsetse speciation. In relation to the
first topic, Schneider et al. [72; this issue], compared
classic endpoint PCR with high-sensitivity blot-PCR
and demonstrated that the latter technique facilitates
more sensitive detection of low-titer Wolbachia in the
morsitans and palpalis groups than does classic end-
point PCR. In addition, the authors used a high-end
Stellaris® rRNA-FISH based technique to localize Wol-
bachia in situ in high and low-titer Glossina species,
and demonstrated that with this highly sensitive
method, even low amounts of Wolbachia can be
traced in specific tissues. The results also highlight
that more tissues and organs than previously recorded
are infested with Wolbachia in subspecies of the mor-
sitans and palpalis groups. The novel, highly sensitive
molecular Wolbachia detection tools developed during
the CRP [72; this issue] should expedite further inves-
tigations on the tsetse hybrid colonies.
With regard to Wolbachia’s role in tsetse speciation, pre-

viously published data indicate that mating betweenWolba-
chia-free G. morsitans females and wild type G. morsitans
males results in significantly reduced larval deposition and
adult eclosion rates [70]. Similarly, mating between wild
type G. morsitans and G. centralis triggers high CI levels
due to the presence of two incompatible Wolbachia strains
[71]. However, premating barriers to hybrid formation are
rather weak or completely absent, as members of various
Glossina species mate readily [73]. Nevertheless, the nega-
tive effects of CI led to the consideration of generating tse-
tse hybrids for population control [74]. This consideration
is based on the assumption that among artificially created
hybrids between closely related Glossina species, males are
post-zygotically incompatible with both parental species
due to their natural hybrid sterility. Such pseudo-sterile tse-
tse males can be complementary to the SIT programs.
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Experiments performed during the CRP demonstrated that
knockdown of native Wolbachia in G. m. morsitans males
prior to their mating with G. m. centralis females results in
successful establishment of a hybrid line, which is now
maintained in the IPCL tsetse production facility in Seibers-
dorf, Austria (unpublished data). Therefore, prior to
employing hybrid flies to existing SIT programs, further in-
vestigations are necessary to determine how symbiont sta-
tus and mating competence are affected in the hybrid
background, and whether the hybrids and wild type flies
are equally fit.

Tsetse fly pathogens
In addition to microbial communities associated with
tsetse flies, pathogens such as the SGHV (Hytrosaviri-
dae) and entomopathogenic fungi (EPF) infect tsetse
flies and hence affect fly fitness both in insect mass rear-
ing facilities and in the field. During the CRP, research
was conducted to gain a better understanding on the im-
pact of these pathogens on tsetse fly fitness and suscepti-
bility to trypanosomes.

Salivary gland hypertrophy viruses

Pathobiology of GpSGHV haplotypes and the prospects
for integrated antiviral strategies
Over the course of the CRP, the following topics related
to SGHV were investigated: 1) improvement of virus
control strategies [75], 2) explore genomic differences
between virus isolates [76], 3) virus host range [77], 4)
the impact of virus infection on tsetse fitness, 5) genetic
diversity of field collected viral isolates, and 6) the im-
pact of virus infection on the expression of tsetse im-
mune genes. Comparative analyses of the Ethiopian and
Ugandan GpSGHV strains [76] suggest that the differen-
tial virus-pathologies (i.e. outbreaks of the salivary gland
hypertrophy symptoms, SGH) in G. pallidipes colonies
are due to factors such as differences in viral gene
contents, host genetics and ecologies, and virus-host co-
evolutionary histories [78]; this issue. GpSGHV
pathological effects and the host’s response to the virus
infection vary amongst different Glossina species. For in-
stance, in G. pallidipes, GpSGHV infection results in
significant upregulation of host genes associated with
pathways promoting viral infection compared to upregu-
lation of genes associated with antiviral responses in
virus-infected G. m. morsitans [79]. We now have clues
that more GpSGHV strains exist in multiple Glossina
species, and that G. pallidipes may influence GpSGHV
evolution [78, 80]; this issue. Susceptibilities of tsetse to
GpSGHV infections, and the negative impacts of viral
infections on the fly’s fecundity, adult eclosion and

survival, differ amongst different fly species [77, 81]; this
issue. The narrow GpSGHV host range (only in Glossina
species) and lack of overt SGH in the majority of tsetse
hosts do not preclude implementing precautionary anti-
viral measures in tsetse production facilities that rear
multiple species [15, 16, 78, 82].

Insights into the roles of tsetse immunity during
symptomatic GpSGHV infections in lab-bred
tsetse colonies
We have ascertained that GpSGHV infection provokes
the RNA interference (RNAi) defense response, as evi-
denced by significant upregulation of the expression of
key RNAi pathway genes (Ago-1, Ago-2 and Dcr-2) in
virus-injected flies (asymptomatically infected) compared
to the non-infected flies [83; this issue]. These data
imply that both siRNA and miRNA pathways (two of the
RNAi machinery pathways) provide antiviral defense in
asymptomatic infected flies, but the pathways are highly
compromised during symptomatic infections. The third
RNAi machinery pathway (piRNA pathway) appeared
not to be involved in tsetse’s defense mechanism against
GpSGHV, as virus infection did not affect the expression
of Ago-3 gene, a key gene in the piRNA pathway [83]. In
addition to the RNAi, we have indications that GpSGHV
infection alters the host miRNA profile in G. pallidipes,
thus indicating possible functional importance of miR-
NAs in symptomatic infections [84; MS in Prep.]. Not-
ably, the majority of the upregulated miRNAs were
predicted to target over 700 host mRNAs, of which 150
mRNAs were immune-related. miRNA expression pro-
files are also modulated by the insect microbiota, and
may therefore contribute to the outcomes of virus infec-
tion as has been demonstrated in the dengue mosquito
vector Aedes aegypti [85]. Recent data suggest that the
absence (or low densities) of Wolbachia positively corre-
lates with SGHV outbreaks in G. pallidipes colonies
compared with other Glossina species that rarely exhibit
overt SGH symptoms [86]. Whether differences in Wol-
bachia prevalence in tsetse species is linked to differ-
ences in GpSGHV infections (e.g. via modulations of
miRNAs) requires further investigations.

Entomopathogenic fungi
EPF have been proposed as potential mosquito control
agents [87]. The EPF Metarhizium anisopliae (Metsch.)
Sorok may suppress wild tsetse populations when auto-
disseminated from devices mounted on pyramidal traps
[88]. Furthermore, horizontal transmission of the EPF
was demonstrated between M. anisopliae-infected G.
pallidipes and fungus-free flies during mating [89].
These characteristics make M. anisopliae a suitable can-
didate to be combined with SIT. Prior to causing death,
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fungal infection can significantly reduce tsetse feeding
and reproduction [90–92]. Therefore, the complemen-
tary action of EPF on reducing tsetse’s blood feeding and
reproduction capacity, and potential effects on trypano-
some development within the vector, could influence
disease epidemiology and transmission. During the CRP,
Wamiti et al. [93; this issue] conducted research focused
on determining the impact of EPF on trypanosome in-
fection. The results indicate that infection of G. f. fus-
cipes with M. anisopliae resulted not only in significant
reduction in T. congolense titers, but also hindered the
fly’s vectorial competence (ability to acquire and trans-
mit trypanosomes to mice). The precise mechanism(s)
underlying the fungal-mediated anti-trypanosome im-
pacts remain to be elucidated.

Effects of irradiation on tsetse, its microbiota and
trypanosome infections
One of the major objectives of this CRP was to investi-
gate the possibility of combining paratransgenesis with
SIT to control tsetse population size and simultaneously
reduce their vector competence. Paratransgenesis in-
volves genetically modifying tsetse’s commensal endo-
symbiont Sodalis so that it produces anti-trypanosome
factors. Modified Sodalis are reintroduced into female
flies, which subsequently present a trypanosome refrac-
tory phenotype ([94]; see section “Prospects of developi
ng symbiont-based anti-trypanosome strategies” below
for more details). As sterile males are produced via ex-
posure to irradiation, the impact of this treatment on
modified Sodalis is crucial for the implementation of the
combined approach. To this end, Demirbaş-Uzel et al.
[95; this issue] investigated the correlation between tse-
tse developmental stage (22- day old pupae, 29-day old
pupae and 7-day old adults) at the time of radiation ex-
posure and impact on Sodalis density. The results indi-
cate that irradiation of seven-days old G. m. morsitans
adults significantly reduced Sodalis densities. Further-
more, the recovery of Sodalis densities was significantly
higher in the adults that emerged from puparia that had
been irradiated on day 22 post larviposition as compared
to the flies that had been irradiated as adults [95]. Re-
sults also indicate that irradiation of puparia on day 22
post larviposition has no effect on the vectorial capacity
of the emerged males to transmit trypanosomes. The re-
covery of Sodalis titers in sterile males opens the door to
combine paratransgenesis with SIT for tsetse control. In
addition, pupal irradiation is operationally advantageous
in terms of handling and transportation compared to
adult irradiation [96].
Field released sterile males must efficiently identify

and mate with wild females. Therefore, one component
of the CRP investigated the effects of various doses of

ionizing radiation on tsetse cuticular hydrocarbon
(CHCs; e.g. n-alkanes, alkenes and methyl-branched hy-
drocarbons) profiles. CHCs act as sex pheromones for
species, sex, and mate recognition in Drosophila [97]
and tsetse [98]. Engl et al. [99; this issue] investigated
the impact of bacterial symbionts and irradiation on tse-
tse CHC profiles. They discovered that antibiotic-medi-
ated knockdown of tsetse’s indigenous microbiota
significantly reduced tsetse’s CHCs profiles and corres-
pondingly impacted mate choice. [99; this issue]. How-
ever, no significant differences in CHC profiles were
observed between irradiated and non-irradiated G. m.
morsitans flies [99]. These findings call for further re-
search into the roles of microbiota (e.g. Wigglesworthia)
in tsetse’s mating behavior (in terms of CHC synthesis),
and how the effects of irradiation on the microbiota can
be reversed in irradiated males before inundative re-
leases during SIT applications.

Prospects of developing symbiont-based anti-
trypanosome strategies
The development of trypanosome-refractory sterile
males would make SIT much less controversial, particu-
larly when applied in trypanosome-endemic locations
[20]. The viviparous reproduction of tsetse is not directly
amenable to germ-line transformation for the purpose of
ectopically expressing trypanocidal transgenes in an
effort to reduce the fly’s vector competence [100]. How-
ever, trypanosome-refractoriness can be indirectly con-
ferred to tsetse via paratransgenesis, whereby genetically
engineered symbionts express molecules that block tryp-
anosome development and/or transmission [101] (Fig. 2).
This approach works in triatome bugs [102] and mos-
quitoes [103, 104]. Sodalis is an ideal bacterium for ex-
pressing effector molecules in paratransgenic tsetse
because it (i) resides in close proximity to trypanosomes;
(ii) can be cultured and engineered in vitro; (iii) can be
re-introduced into tsetse after transformations; (iv) is
maternally transmitted to fly progenies, and (v) is rigorously
restricted to the tsetse host niche [105]. Engineered Sodalis
can express and release significant amounts of functional
nanobodies that target trypanosome surface epitopes in dif-
ferent tsetse tissues [94, 106]. Moreover, improved strat-
egies have been developed to: (i) identify and determine
population dynamics of tsetse species in a particular area
[107; this issue], (ii) establish stable chromosomal expres-
sion in Sodalis allowing strong and constitutive expression
of anti-trypanosome compounds [108], and (iii) sustainably
colonize tsetse and its subsequent generations with genetic-
ally modified Sodalis through microinjection into
third-instar larvae [109; this issue]. Sodalis-mediated inhib-
ition of parasite development in paratransgenic tsetse re-
mains to be demonstrated.
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Conclusions
A large body of information related to enhancing tse-
tse fly refractoriness to trypanosome infections was
acquired over the course of this CRP. However, many
challenges and questions remain, which include, but
are not limited to 1) developing more efficient tools to
correctly classify field captured tsetse flies, 2) further
deciphering the functional association between tsetse’s
microbiota (including environmentally acquired en-
teric bacteria, endosymbiotic microbes and pathogenic
or symbiotic viruses and fungi) and the fly’s physiology
and trypanosome vector competency, 3) optimizing
SIT irradiation protocols so that the treatment has a
minimal effect of tsetse/endosymbiont fitness, and 4)
maximizing the efficiency of tsetse paratransgenesis.
Theoretical and technical knowledge acquired from
experiments performed using the model tsetse species,
G. m. morsitans (and its associated microorganisms),
serves as a foundation for similar studies in other,
more epidemiologically relevant tsetse species.
This CRP served as a platform for scientists from

African, European and North American countries to

interact, exchange ideas and develop long-term, mutu-
ally beneficial collaborations. Additionally, the extensive
collaborations established during the CRP will continue
in a new five-year CRP, which will address various is-
sues related to the improvement of colony management
in tsetse mass rearing for SIT applications (http://
www-naweb.iaea.org/nafa/ipc/crp/new-crps-ipc.html).
Finally, African members of this CRP can disseminate
knowledge and expertise acquired to additional research
communities in other tsetse-endemic regions of
sub-Saharan Africa and to national authorities to promote
the novel insights in tsetse and trypanosomosis control.
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