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Abstract: Peak-to-peak intervals in Photoplethysmography (PPG) can be used for heart rate variabil-
ity (HRV) estimation if the PPG is collected from a healthy person at rest. Many factors, such as a
person’s movements or hardware issues, can affect the signal quality and make some parts of the PPG
signal unsuitable for reliable peak detection. Therefore, a robust HRV estimation algorithm should
not only detect peaks, but also identify corrupted signal parts. We introduce such an algorithm in this
paper. It uses continuous wavelet transform (CWT) for peak detection and a combination of features
derived from CWT and metrics based on PPG signals’ self-similarity to identify corrupted parts. We
tested the algorithm on three different datasets: a newly introduced Welltory-PPG-dataset containing
PPG signals collected with smartphones using the Welltory app, and two publicly available PPG
datasets: TROIKAand PPG-DaLiA. The algorithm demonstrated good accuracy in peak-to-peak
intervals detection and HRV metric estimation.

Keywords: photoplethysmography; heart rate variability; signal processing; wavelet transform;
signal quality

1. Introduction

Heart rate variability (HRV) is the physiological phenomenon of variation in the time
interval between heartbeats [1]. Typically, HRV is estimated using electrocardiography
(ECG). R peaks, the upward deflections in ventricular depolarization complexes in ECG [2]
are detected, and the distances between consecutive R peaks, called RR intervals, are
analyzed. There is a substantial body of research that detects R peaks in ECG using various
signal processing methods [3], as well as time series classification tools such as interval
feature transformation [4].

Photoplethysmography (PPG) is a non-invasive and low-cost optical measurement
technique that provides important information about the cardiovascular system [5,6]. PPG
tracks blood volume changes in peripheral blood vessels by illuminating the skin and
measuring changes in light absorption. In practice, PPG signals are often collected using
wrist-worn devices with optical sensors, such as smartwatches [7,8], or using a smartphone
camera attached to a user’s finger [9,10] (we will refer to such signals as smartphone PPG).
PPG signals are used to estimate heart rate [7,8,10,11], as well as blood oxygen saturation,
blood pressure [6,10], etc.

Research [12–15] shows that, if a PPG signal is collected from a healthy subject at rest,
then the intervals between consecutive major peaks in PPG can serve as a substitute for RR
intervals in ECG for various heart rate variability metrics. At the same time, PPG signals
collected during or right after exercise or from a patient with cardiovascular disease can
have peak-to-peak intervals that differ significantly from RR intervals in ECG and cannot
be used for HRV estimation [12,15].

In practice, PPG signals collected in an uncontrolled environment often suffer from
measurement artifacts that can corrupt sufficiently long parts of the signals and make
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these parts unsuitable for reliable peak detection. Figure 1 shows three common types of
smartphone PPG signals that we encounter in practice:
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Figure 1. Examples of PPG signals: (a) a clean signal with clearly visible peaks; (b) a noisy signal
where peaks associated to cardiac cycles still can be recognized; (c) a corrupted signal where no
accurate peak detection is possible.

While it is easy to perform well on signals like Figure 1a, a reliable algorithm must
also distinguish corrupted parts like Figure 1c to exclude them from the analysis. For the
signal parts such as Figure 1b, a reliable algorithm should choose peaks corresponding to
cardiac cycles rather than the noise in the signal.

Several algorithms were developed for peak-to-peak interval detection in PPG using
slope analysis [16,17], automatic multiscale peak detection [18,19], neural networks [20],
adaptive threshold peak detection [21,22]. Existing algorithms filter out erroneous intervals
using outlier detection based solely on the lengths of detected intervals. In our algorithm,
we propose to analyze the signal during the detected intervals to estimate their reliability.
A real-time algorithm for peak detection and signal quality estimation in smartphone PPG
was proposed in [9]. As a real-time algorithm, it was restricted in computational complexity
and the variety of methods that can be used. Therefore we propose a new offline algorithm
that uses continuous wavelet transform (CWT).

CWT is a tool that provides a representation of a signal in the time-scale domain. It is
used for time-frequency localization [23] and pattern matching [24]. CWT was successfully
used for the analysis of ECG signals [25], electroencephalogram (EEG), and other time series
data [26]. Peak detection using continuous or discrete wavelet transform was performed in
various contexts in [24,27–32].

The main features of CWT that we use in the proposed algorithm are the ridge lines,
i.e., curves consisting of points of local maxima at fixed scales in the time-scale domain.
Using the correspondence between peaks in the signal and the ridge lines in CWT with the
Mexican hat mother wavelet (see Section 2.3), our algorithm uses the ridge lines lengths
to detect the peaks in PPG that correspond to the heartbeats. The algorithm also uses
the shape of the ridge lines and signal self-similarity characteristics as features to identify
corrupted parts in PPG signals. We describe the proposed algorithm in detail in Section 3.
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We evaluate the accuracy of the proposed algorithm on three different publicly avail-
able datasets: Welltory-PPG-dataset, TROIKA [7] and PPG-DaLiA [8]. Note that, since
PPG signals during exercise cannot be used for HRV estimation according to [12,15], for
validation using TROIKA [7] and PPG-DaLiA [8] we only used parts of the signals that
were collected before any labeled physical activity. Welltory-PPG-dataset is a new publicly
available dataset that we introduce in this paper. It consists of smartphone PPG mea-
surements with simultaneously collected ground truth RR intervals from the Polar H10
chest strap device. We introduce this dataset, since most publicly available PPG datasets
(such as TROIKA [7] and PPG-DaLiA [8]) are collected using wrist-worn devices and are
aimed at heart rate detection during physical activity, and the existing smartphone PPG
dataset [33] consists of 10-second signals which are too short for a reliable HRV assessment.
We describe the dataset structure and data collection process in Section 2.1.1.

While CWT is used for various signal types, including ECG, EEG, etc., it has not been
used before for peak detection in PPG. In contrast with existing PPG analysis algorithms,
our algorithm filters out unreliable peak-to-peak intervals by detecting corrupted parts
in the signal. Our algorithm demonstrated good accuracy in basic HRV metrics on three
publicly available datasets containing PPG from different sources. Thus, we conclude that
the algorithm should generalize well to various PPG signals of different origins, be robust
to signal corruption, and can be able to be used for reliable HRV estimation from PPG
signals collected in an uncontrolled environment.

The paper is organized as follows. The datasets used for algorithm validation are
described in Section 2.1. HRV metrics used for accuracy estimation are described in
Section 2.2. Section 2.3 contains a discussion about CWT and the ridge lines. A detailed
description of the proposed algorithm is given in Section 3. Section 4 contains tables with
HRV metrics estimation errors on the used validation datasets. Section 5 provides addi-
tional discussion. It contains a justification of the methods used in the proposed algorithm,
its limitations, and its comparison with previously developed algorithms. Moreover, it
contains a justification of the choice of the ground truth labels in Welltory-PPG-dataset.
Section 6 contains concluding remarks.

2. Materials and Methods
2.1. Datasets
2.1.1. Welltory-PPG-Dataset

This is a newly introduced dataset. It is publicly available at https://github.com/
Welltory/welltory-ppg-dataset (accessed on 1 July 2021). The dataset consists of 21 records
containing three time series: red, green, and blue channel PPG signals, and simultaneously
collected RR intervals. RR intervals were collected using a Polar H10 chest strap and
manually examined by an expert to ensure their accuracy. PPG data were obtained via a
smartphone camera using the Welltory app. Signal lengths vary from 68 to 112 s.

Data Collection

Each participant put their index finger over a smartphone camera, which recorded a
video. For each frame in the video stream, we record its capture time and three numbers: r,
g, b, which are the average values of red, green, and blue components of the frame pixel
colors. Each participant was simultaneously wearing the Polar H10 chest strap. After
each measurement was complete, the RR intervals detected by the Polar device during the
measurement were collected. Each dataset record consists of the following arrays:

• Time: moments of camera frame capture times in milliseconds elapsed from the
measurement start;

• R, G, B: arrays of numbers r, g, b for all captured frames;
• RR: sequence of RR intervals collected from the Polar device during the measurement.

https://github.com/Welltory/welltory-ppg-dataset
https://github.com/Welltory/welltory-ppg-dataset
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Participants

Thirteen healthy volunteers between the ages of 25 and 35 participated in the data col-
lection. Each participant made one or two measurements using their Android smartphone.
All participants provided written informed consent for publication.

2.1.2. Previously Published PPG Datasets

In addition to Welltory-PPG-dataset, we used two publicly available datasets:
TROIKA [7] and PPG-DaLiA [8] for algorithm validation. These datasets were intro-
duced for heart rate estimation and contain simultaneous PPG and ECG signals and
accelerometer readings collected during exercise and other labeled physical activity.
Since PPG signals collected during exercise are unsuitable for HRV estimation [12,15],
we used signal parts not labeled with physical activity. In TROIKA these parts are the
initial 30-second chunks of the signals. In PPG-DaLiA these are the intervals that are
labeled as “sitting”.

2.2. HRV Metrics

We use two basic metrics of heart rate variability: SDNN, and RMSSD. For a sequence
of normal RR intervals rr1, . . . , rrn, its SDNN is defined as the standard deviation:

SDNN(rr1, . . . , rrn) =

√
1
n

n

∑
i=1

(rri − rr)2, rr =
1
n

n

∑
i=1

rri. (1)

RMSSD, the root mean square of the successive differences of RR intervals, is defined as

RMSSD(rr1, . . . , rrn) =

√√√√ 1
n− 1

n−1

∑
i=1

(rri+1 − rri)2. (2)

The latter metric has a geometric interpretation in terms of the Poincaré plot of the
sequence rr1, . . . , rrn: for the distribution of pairs (rri, rri+1) of consecutive RR intervals,
RMSSD is proportional to the standard deviation of the distance from the points (x, y) =
(rri, rri+1) to the main diagonal x = y.

2.3. Continuous Wavelet Transform

For a mother wavelet function ψ(t) let ψ(a,b) denote its scaled and translated version:

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
(3)

Here a > 0 is the scale parameter, and b ∈ R is the translation parameter. Then for a
function x(t), t ∈ R its continuous wavelet transform (CWT) is defined as [23] ([2.4]):

Xw(a, b) =
∫
R

x(t)ψa,b(t)dt (4)

The coefficients Xw(a, b) show matching between the signal x(t) and the mother
wavelet ψ dilated with scale a and centered at position b. In our algorithm we chose ψ
to be the Mexican hat wavelet function. It is proportional to the second derivative of the
Gaussian function and is defined as:

ψ(t) =
2√

3π1/4
(1− t2)e−t2/2 (5)

It exhibits typical features of a single peak (Figure 2):
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Figure 2. Mexican hat wavelet function y = ψ(t).

We will say that (a, b) is a ridge point if the function t 7→ Xw(a, t) has a local maximum
at point t = b. For a fixed a the ridge points at scale a show the time instants where the
signal x(t) most resembles the peak at scale a. We will consider continuous curves in the
(a, b)-plane that consist of ridge points. Following [24], we will call such curves ridge lines.
So ridge lines indicate the position of peaks in the signal at different scales. We discuss this
in more detail in Section 3.3.1.

3. Proposed Algorithm

In this section, we describe the proposed algorithm. In the rest of the paper, we will
refer to peaks in PPG that correspond to heartbeats as R peaks for brevity. Peak-to-peak
intervals will be referred to as RR intervals. We will use the CWT of the PPG signal with
the Mexican hat function as the mother wavelet as the main tool.

In the first step of the algorithm, we perform signal preprocessing that addresses the
two most common problems: abrupt shifts, or steps in signals and signals becoming almost
constant due to hardware issues. A detailed description of preprocessing steps is given in
Section 3.1. Then we perform R peak detection. To detect R peaks in the signal, we will
identify their corresponding ridge lines in the CWT. Our algorithm for R peak detection
is based on two principles that must hold for non-corrupted PPG signals collected from
healthy subjects at rest:

• the R peaks correspond to longer ridge lines, i.e., lines that are present on a larger
scale range (see Section 3.3 for more details).

• PPG signals are almost periodic, so normal R peaks arise approximately at a frequency
determined by the heart rate that varies gradually over time.

Therefore, we use a 2-step process for R peak detection. First, we estimate the heart
rate from the PPG signal using the short-time Fourier transform spectrogram of the signal.
Then, the algorithm uses the estimated heart rate as additional information to choose
ridge lines corresponding to R peaks. Informally speaking, the algorithm chooses the most
persistent ridge lines that arise in the CWT at a frequency corresponding to the estimated
heart rate. Finally, the locations of R peaks are predicted as positions of the chosen ridge
lines at the smallest scale. A detailed description of the R peak detection algorithm is given
in Section 3.3.

After the R peaks are detected, we consider the corresponding RR intervals. We
evaluate the quality of detected RR intervals to identify and discard RR intervals found
in corrupted parts of the signal. Since a non-corrupted PPG signal is almost periodic, the
quality estimation is based on two considerations:

• A signal must have similar shapes inside detected RR intervals;
• The ridge lines in CWT that define the edges of a RR interval must have similar

shapes. In particular, the distances between them should be approximately the same
on different scale levels.

We assign to each RR interval its quality score based on the principles above and then
discard the RR intervals with quality scores below an automatically determined threshold.
We give a detailed description of the quality score calculation and the choice of the quality
threshold in Section 3.4.

Figure 3 shows the proposed algorithm workflow for a single channel PPG:
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Figure 3. Algorithm workflow.

Once the algorithm finishes, we estimate the overall quality of the signal as the
following ratio:

discarded ratio =
ndiscarded

ntotal
(6)

where ntotal is the total number of RR intervals detected by the R peaks detection part of
the algorithm and ndiscarded is the number of detected RR intervals that were discarded by
the filtration part of the algorithm.

In some cases, valleys in the PPG signals can be easier to locate than peaks. Thus, as
a final step, we apply our algorithm to both the PPG signal and the negative of the PPG
signal and obtain two sets of detected RR intervals. Then we choose the result that has the
smallest discarded ratio as the algorithm output.

For a multi-channel PPG signal (e.g., smartphone PPG containing values in the red,
green, and blue channels of the video frames captured by a smartphone camera), we choose
the best channel as the one that has the smallest discarded ratio. Note that research [34]
suggests that channels with shorter wavelength should have the best signal to motion ratio.
We do not make an a priori choice of the channel to avoid issues with device-specific color
representations.

3.1. Signal Preprocessing

Most smartphone cameras provide frames at a rate of 30 frames per second. To increase
accuracy, we interpolate the signal to a uniformly sampled sequence with a sampling
frequency f = 100 Hz, as the upsampling is necessary for accurate HRV estimation [17].
Most cameras produce red, green, and blue channel values in the standard range (0, 255).
If the PPG signal is given in another range, we rescale it to the standard range. Signal
preprocessing aims to identify the following common issues with the signal:

• Step detection. In smartphone PPG signals, removing from or reapplying the finger to
the camera results in abrupt steps in the signal. To detect such steps, we compute the
running amplitude with a window length of 1 s. If the running amplitude exceeds
4 times the median of the running amplitude, a step in the signal is detected. The
threshold value 4 was chosen empirically by examining a number of examples.

• Constant signal detection. Sometimes the signal becomes constant if there are issues
with color rendering in the frame or there is no finger over the camera at all. Analysis
of examples shows that 0.1 is a reliable threshold value for running signal amplitude
to detect a constant signal.

Parts of the signal labeled as having signal steps or constant signal are set to zero.
Then, we split the signal into continuous chunks between the labeled parts and set the
chunks shorter than 2 s to zero. For every remaining chunk, we remove the trend by
subtracting the running average in 2 s windows and apply a low-pass filter with a 10 Hz
threshold to avoid aliasing and remove high-frequency noise.
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3.2. Heart Rate Estimation

In this subsection, we describe the algorithm for heart rate estimation from a PPG
signal. Our approach is similar to the TROIKA [7] in that we are estimating heart rate
by constructing a continuous curve consisting of peaks in the spectrogram columns. Our
context is different from one in [7] in two aspects: firstly, we are interested in PPG collected
at rest, so we expect motion artifacts associated with occasional movement, rather than
intensive physical exercise considered in [7]. Secondly, we do not collect accelerometer
data to estimate the subject’s movements. Therefore we use the following approach:

• First we filter the spectrogram using a convolution with a 2d filter that highlights
curves with a bounded rate of change;

• We consider local maxima in the columns of the filtered spectrogram;
• We find a rough estimate of heart rate frequency and construct a continuous curve

consisting of local maxima that are closest to the estimate.

We describe our approach in detail below. Suppose that xn is a discrete signal obtained
by a uniform sampling with frequency f from a function x(t) with a discrete step ∆t:

xn = x(tn), tn = n∆t, ∆t = 1/ f , n = 1, 2, . . . N (7)

3.2.1. Sliding Window Spectrogram

As a feature, we use the signal spectrogram computed with a sliding Dirichlet window
of 5 s in length. The spectrogram is computed as the squared magnitude of the short time
Fourier transform (STFT) for frequencies fk, k = 1, . . . 80 uniformly sampled between 0.5
and 3.3 Hz, with stride = 0.5 s:

Spectrogram[k, j] =

∣∣∣∣∣∣
sj+5 f

∑
n=sj

xne−2πi fktn ∆t

∣∣∣∣∣∣
2

, sj = 0.5 ∗ f ∗ j (8)

While peaks in a spectrum of a single window may be associated with measurement
artifacts, the heart rate corresponds to a continuous curve in the spectrogram. An example
of the spectrogram is given in Figure 4.
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Loading [MathJax]/extensions/MathMenu.jsFigure 4. The PPG signal (top) and its corresponding STFT spectrogram (bottom), part of the PPG
signal of subject 01 in the TROIKA dataset. Heart rate frequency is growing from 1.2 Hz to 1.9 Hz.
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As we can see in Figure 4, the heart rate frequency in that example gradually grows
from 1.2 Hz at the beginning to 1.9 Hz at the end. The curve is clearly seen for the first 30 s
and, after that, it becomes smudged between 30 and 50. To simplify the curve detection we
convolve the spectrogram with a 2d filter shown in Figure 5, which highlights continuously
evolving curves on the spectrogram:
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Figure 5. Continuity filter highlighting curves with bounded rates of change; the horizontal length is
adjusted to correspond to 10 s of time and the vertical length corresponds to a change in frequency of
0.3 Hz.

3.2.2. Local Maxima in the Spectrogram Columns

After the filtration, let us consider the points of local maxima in the columns of the
spectrogram. We will construct the curve associated with heart rate frequency by following
these points of local maxima in a continuous manner. To find the initial point on the curve,
we need to choose between the local maxima in the first column of the spectrogram. In
some cases, the point of the highest local maximum does not necessarily correspond to the
actual heart rate. Therefore, we find a rough estimate of the heart rate and then choose
the peak that is closest to this estimate. To find a rough estimate, we consider a bandpass
filtration of the PPG signal with a narrow bandwidth and count the number of peaks and
the number of zero crossings in the filtration. For more in detail, we use Algorithm 1. It
takes i, an index of the spectrogram column as an input, and returns the frequency of a
peak in the i-th spectrogram column, such that this frequency is the closest to the rough
heart rate estimate.

Algorithm 1 Rough estimate of heart rate frequency in the i-th spectrogram column

1: s = i-th column in spectrogram
2: t_start = 0.5 ∗ i . start time of the i-th sliding window with stride 0.5 s
3: test_len = min(10, signal duration− t_start)
4: x = part of the signal between t_start and t_start + test_len seconds
5: fmax = frequency corresponding to the maximum value of s
6: if fmax > 2 then
7: threshold = 2.5
8: else if fmax < 1 then
9: threshold = 1.5

10: else
11: threshold = 2
12: end if
13: xsm = bandpass filtration of x with cutoff frequencies 0.1 and threshold
14: n_zero_cross = number of times xsm crosses the zero level
15: n_loc_max = number of local maxima in xsm
16: upper_estimate = 1/test_len ∗ n_loc_max
17: lower_estimate = 1/test_len ∗ 0.5 ∗ n_zero_cross
18: estimate = 0.5 ∗ (lower_estimate + upper_estimate)
19: F = frequencies corresponding to 3 highest peaks in s
20: fhr = arg min f∈F | f − estimate|

return fhr



Sensors 2021, 21, 6798 9 of 21

Now we construct a curve in the spectrogram plane showing heart rate frequency
during the measurement. First, we choose the initial frequency using Algorithm 1 for
the 0-th column of the spectrogram. Then we construct the continuous curve following
along local maxima in columns of the spectrogram. If at some step we cannot proceed
continuously, then we perform Algorithm 1 again to find the point of local maximum in
the spectrogram column that is closest to the rough estimate. Along the way, we apply
exponential smoothing to the obtained curve for a more robust estimate. In more detail,
we use the Algorithm 2:

Algorithm 2 Construction of the heart rate frequency curve

1: n = number of columns in spectrogram
2: hrf[0] = output of Algorithm 1 for the 0-th column
3: for i in range(1, n) do
4: F = frequencies corresponding to 3 largest local maxima in the i-th column of

spectrogram
5: fcl = arg min f∈F | f − hrf[i− 1]|
6: if | fcl − hrf[i− 1]| < 0.1 then
7: hrf[i] = fcl
8: else
9: fnext = output of Algorithm 1 for the i-th column

10: hrf[i] = 0.95 ∗ hrf[i− 1] + 0.05 ∗ fnext
11: end if
12: end for

Now let us demonstrate the work of Algorithm 2. Figure 6 shows the filtered version
of the spectrogram of Figure 4, the curves consisting of local maxima in the columns, and
the heart rate frequency curve constructed by Algorithm 2. It correctly identifies the heart
rate frequency change during the measurement.

0 10 20 30 40 50 60 69 79 89

0.5

0.8

1.1

1.4

1.6

1.9

2.2

2.5

2.8

3.1

local maxima in columns

heart rate frequency estimate

0.14

1.81

3.47

value

time, s

fr
e
q
u
e
n
c
y
, 

H
z

Figure 6. Filtered spectrogram. Black lines show the curves consisting of local maxima in the
spectrogram columns.

3.3. R Peak Detection
3.3.1. Signal Scalogram and Ridge Lines

Recall our notation for the signal xn that is uniformly sampled from function x(t) with
frequency f :

xn = x(tn), tn = n∆t, ∆t = 1/ f , n = 1, 2, . . . N
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where variable t represents time measured in seconds. Let ψ denote the Mexican hat wavelet
function given from Equation (5). Consider scales ak evenly spaced on a logarithmic scale:

ak = 0.05 ∗ (1.0376)k−1, k = 1, . . . , 50 (9)

Define the scalogram of the signal xn as the finite sum approximation to the integral
that defines CWT of the function x(t) in Equation (4):

Scalogram[k, n] =
N

∑
m=1

xmψak ,tn(tm)∆t, n = 1, . . . , N, k = 1, . . . , 50 (10)

The chosen scales range from a1 = 0.05 to a50 = 0.3. This range was chosen empirically
to accurately reflect the position of R peaks on the smallest scale and provide enough
smoothing to remove noisy peaks on the large scale.

So the scalogram is a discretization of the CWT, thus the rows of the scalogram
represent similarities of the signal with a typical peak shape on the corresponding scales.
The ridge lines in CWT will correspond to ridge lines in the (k, n) plane consisting of
points of local maxima in the scalogram rows Scalogram[k, :] Note that convolution with
the scaled wavelet performs bandpass filtration, with wider bandwidth for smaller scales
and narrower bandwidth for larger scales, as we can see in Figure 7. Thus, we can consider
rows of the scalogram as filtration, or smoothing of the initial signal, and the ridge lines
indicate locations of peaks in the signal at different levels of smoothing. The R peaks in
the signal are the more persistent peaks, which exist at different levels of smoothing, and
therefore R peaks are tips of longer ridge lines that are present on a larger scale range.
Figure 8 shows a typical example that illustrates this idea:
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Figure 7. Scaled Mexican hat wavelet and its frequency spectrum for the smallest scale a1 and the
largest scale a50 in the chosen scale range.

As we can see in Figure 8, there are more ridge lines in the upper part of the scalogram,
corresponding to noisy peaks in the signal, but we are able to distinguish ridge lines that
correspond to R-peaks by choosing the longer lines and using our previous estimates of
heart rate as a heuristic that suggests how often the actual ridge lines are expected to appear
on the scalogram plane. In the next section we will discuss in detail the Algorithm 3 that
chooses the ridge lines that correspond to R peaks.
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Figure 8. PPG signal, the corresponding scalogram computed with the Mexican hat wavelet for the
scale range a1, . . . a50, and the ridge lines in the scalogram. This signal is a part of the red channel
PPG from subject 01 in the Welltory-PPG-dataset. The R peaks in the signal are detected as top points
of the ridge lines chosen by the filtration Algorithm 3.

3.3.2. Choosing Ridge Lines Associated to R-Peaks

Recall that we defined scalogram in Equation (10) as a matrix of shape (50, N) For a
ridge line curve and a scale ak, k = 1, . . . , 50 denote by curve[ak] the time coordinate of the
point on curve with scale level ak (if such a point exists):

For a given set of ridge lines curve1, . . . , curvem sorted according to their top points
curvei[a1] define their RR intervals as the distances between the top points:

rri = curvei+1[a1]− curvei[a1] (11)

We will use these RR intervals to determine which curves to choose. First, we choose
all the ridge lines that stretch from the bottom to the top of the scalogram. These are the
curves corresponding to the most persistent peaks in the signal that are likely to be R-peaks.
Some of the remaining curves are added to the set of chosen curves based on the likelihood
of observing the corresponding set of RR intervals given the previously estimated heart
rate frequency.

We estimate the likelihood of a set of potential RR intervals as follows. According
to [35], the length of RR intervals can be modeled as Inverse Gaussian distribution. In
practice, the Inverse Gaussian distribution can be approximated by log-normal distribu-
tion [36], thus we may assume that logarithms of RR intervals are normally distributed,
so the average log-likelihood of a set of RR intervals given the heart rate frequency is
proportional to

estimated-likelihood(rr, hr f ) = −1
k

k

∑
i=1

(log(rri)− log(expected_rri))
2 (12)

where hr f = (hr f1, . . . , hr fk) and hr fi the expected heart rate frequency during interval
rri, and expected_rri = 1/hr fi is the expected length of RR interval. We use this esti-
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mate of likelihood to finally choose the ridge lines associated to R-peaks, as described in
Algorithm 3:

Algorithm 3 Choosing ridge lines in the scalogram

1: hr = estimated heart rate frequency given by Algorithm 2
2: chosen_curves = ridge lines with lowest point below the scale level 0.244 and highest

point over the scale level 0.069
3: candidate_curves = ridge lines with lowest point between the scale 0.244 and 0.069 and

highest point over the scale level 0.069.
4: Sort candidate_curves by the height of the lowest point in the increasing order
5: for curve in candidate_curves do
6: proposed_set = chosen_curves ∪ {curve}
7: rr_current = set of intervals between curves from chosen_curves
8: rr_proposed = set of intervals between curves from proposed_set
9: current_likelihood = estimated-likelihood(rr_current, hr)

10: proposed_likelihood = estimated-likelihood(rr_proposed, hr)
11: if proposed_likelihood > current_likelihood then
12: chosen_curves = proposed_set
13: end if
14: end for
15: return chosen_curves

3.4. RR Intervals Filtration

PPG signals often contain corrupted parts where no accurate R-peak detection is
possible, so these parts must be discarded to ensure robust HRV estimation. To identify
such parts we use the following method. After we have detected RR intervals, we assign to
each detected interval a number between 0 and 1 (its quality) that reflects the likelihood
that the found interval is accurate and reliable. Then a quality threshold is determined and
the RR intervals with the quality below the threshold are discarded.

To develop a quality estimate, we use the following principles:

• Parts of the signal inside the neighbor intervals must have similar shapes and ampli-
tudes;

• The distance between ridge lines defining the neighbor R-peaks must be approxi-
mately the same on different resolution levels.

Let us consider the example shown in Figure 9 to illustrate the principles above:
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Figure 9. Part of the S3 signal of the PPG-DaLiA dataset.
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As we can see, in the corrupted part of the signal starting from 35 s, the signal parts
inside RR intervals often can be weakly correlated, their amplitudes can be significantly
different, and also the corresponding ridge lines do not repeat the same shape, and they
bend in different ways, so the distance between varies on different scale levels more than it
does for ridge lines in non-corrupted part of the signal. In the following discussion, we
will describe our algorithm that filters out the RR intervals in the corrupted parts of the
signal. For the signal shown in Figure 9 it produces the result shown in Figure 10:
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Figure 10. Filtration of the RR intervals of Figure 9. Green intervals are kept by the algorithm and
red intervals are discarded.

To define the quality of the RR intervals, we introduce two auxiliary quality measures:
similarity-based quality and CWT-based quality. In the following discussion, we denote by
σ(x) = 1/(1 + exp(−x)) the sigmoid function.

3.4.1. Similarity-Based Quality

Let x = (x1, . . . , xn) and y = (y1, . . . , yk) be two signal chunks. Let xr and yr denote x
and y resampled to vectors of size 50. Define the correlation similarity between x and y as
the correlation coefficient between xr and yr, limited by 0 from below:

scorr(x, y) = max(corr(xr, yr), 0) (13)

Let amp(x) = max(x)−min(x) and amp(y) = max(y)−min(y) denote the ampli-
tudes of signals x and y. Suppose that amp(x) is greater than amp(y) and denote their
quotient by ramp = amp(x)/amp(y). Define the amplitude similarity as

samp(x, y) = σ(2(3.5− ramp)) (14)

The formula (14) is chosen empirically to assign low values to pairs of signals where
amplitudes are different by 4 times and more. Finally, define the similarity score between x
and y as the geometric mean of its correlation similarity and amplitude similarity:

ssim(x, y) =
√

scorr(x, y)samp(x, y) (15)

Now, if rr1, . . . , rrn is a sequence of detected RR intervals with R-peaks located at
indices k1, . . . , kn+1, then the similarity quality of the i-th RR interval rri is defined as the
geometric mean of its similarities with the neighbor RR intervals (using a single neighbor
for i = 1 or i = n):

qsim(rri) =
√

sisi+1, si = ssim(x[ki−1 : ki], x[ki : ki+1]), i = 2, . . . n− 1 (16)

3.4.2. CWT-Based Quality

Suppose that curve1 and curve2 are two ridge lines. Consider a sequence rr[ fk] =
|curve1[ fk]− curve2[ fk]| for all 1 6 k 6 50 where both curve1[ fk] and curve2[ fk] are defined.
Let
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rrstd(curve1, curve2) = std(rr[ fk])/ f ∗ 1000 (17)

be the standard deviation of distances between points on curve1 and curve2 measured in
milliseconds. Now suppose that ends of some rri intervals were detected using curves
curve1 and curve2 in the scalogram. Then we define the CWT-based quality of the interval
rri as

qCWT(rri) = σ((rrstd(curve1, curve2)− 50)/5) (18)

3.4.3. Filtration

Suppose rr1, . . . , rrn is the sequence of detected RR intervals. Define the quality of
each of the RR intervals as the product of similarity- and CWT-based quality:

q(rri) = qsim(rri)qCWT(rri) (19)

Now we filter intervals by quality using an automatically determined threshold as
follows:

• Select all intervals rri with quality q(rri) greater than 0.8
• Sort the qualities of the selected intervals in descending order. Denote the resulting

sequence by
q′1 > q′2 > . . . > q′n′

• Set the quality threshold as q′i0 where the index i0 maximizes the product iq′i :

qcuto f f = q′i0 , i0 = arg max
i=1,...,n′

iq′i (20)

The initial rigid threshold of 0.8 is chosen empirically based on a number of signals
examined. The final choice of the threshold value allows us to cut off the intervals that
have substantially smaller quality than the rest of the intervals while trying to maximize
the number of remaining intervals.

3.4.4. Outlier Detection

In addition to quality-based filtration, we apply outlier detection in the sequence of RR
intervals based on their lengths. We use the following algorithm similar to one introduced
in [37]. Suppose that rr1, . . . , rrn is the sequence of detected RR intervals lengths. We
then mark certain RR intervals as outliers and discard them from the final answer using
Algorithm 4:

Algorithm 4 Algorithm to check if the i-th interval in rr1, . . . , rrn is an outlier

1: p10, m, p90 = 10-, 50-, and 90-percentile of [rri−13, . . . rri+13]
2: rrmax = max(rri, rri+1)
3: rrmin = min(rri, rri+1)
4: if (rrmin < min(m− 50, p10 − 0.2 ∗ amp))
5: and (rrmax > max(m + 50, p90 + 0.2 ∗ amp))
6: and (p10 < (rrmax + rrmin)/2 < p90) then
7: mark rri and rri+1 as outliers
8: end if
9: if rri < m ∗ 0.7 and rri+1 < m ∗ 0.7 and p10 < rri + rri+1 < p90 then

10: mark rri and rri+1 as outliers
11: end if
12: if rri > 1.6 ∗m then
13: mark rri as an outlier
14: end if
15: if rri < min(0.7 ∗m, p10) then
16: mark rri as an outlier
17: end if
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4. Results

We tested our algorithm’s accuracy on three datasets: Welltory-PPG-dataset, TROIKA,
and PPG-DaLiA, using two HRV metrics: SDNN defined by Equation (1) and RMSSD
defined by Equation (2). For each PPG signal and a sequence of reference RR intervals, we
compute the following quantities:

• Discarded ratio: ratio of the number of RR intervals that were discarded by the
filtration part of the algorithm to the total number of RR intervals detected by the
algorithm peak detection part, c.f. Equation (6).

• SDNN ae (RMSSD ae): the absolute error of estimation of SDNN (RMSSD), i.e., the
difference between SDNN (RMSSD) derived from the sequence of intervals detected
by the algorithm in PPG, and SDNN (RMSSD) derived from the sequence of reference
RR intervals.

• RR mae: the mean absolute error in RR interval detection, i.e., the mean absolute
difference between an interval detected by the algorithm and the corresponding
reference RR interval.

The values of SDNN ae, RMSSD ae, RR mae are given in milliseconds. Table 1 shows
the error values for samples in Welltory-PPG-dataset:

Table 1. Algorithm performance on the Welltory-PPG-dataset.

Subject Discarded Ratio SDNN ae (ms) RMSSD ae (ms) RR mae (ms)

01 0.762 3.683 4.058 24.667
02 0.121 2.784 6.977 10.436
03 0.540 4.604 3.802 7.043
04 0.092 6.527 5.242 6.586
05 0.050 2.573 3.161 4.509
06 0.030 1.831 4.913 5.320
07 0.700 11.076 11.658 9.733
08 0.165 2.116 4.702 12.906
09 0.089 1.495 6.863 13.255
10 0.446 8.965 10.778 5.657
11 0.400 9.285 12.619 8.095
12 0.449 0.389 11.739 11.492
13 0.265 4.257 13.563 11.773
14 0.267 4.894 6.743 7.258
15 0.127 1.339 1.795 7.053
16 0.000 5.040 4.900 6.990
17 0.051 1.583 3.145 6.477
18 0.030 0.262 1.854 8.374
19 0.186 6.485 10.311 10.649
20 0.096 0.717 3.753 8.784
21 0.111 5.505 0.192 4.379

mean 0.237 4.067 6.322 9.116

Recall that the TROIKA dataset contains PPG from subjects during treadmill exercises
with simultaneous ECG. To verify the accuracy of our algorithm, we chose parts of the PPG
data collected in the first 30 s of each PPG signal when the subjects were at rest according
to the dataset description. Reference RR intervals were derived from ECG signals using a
simple algorithm detecting local maxima of a given minimum height and manually verified
for accuracy. Table 2 shows the error values for samples in the TROIKA dataset:
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Table 2. Algorithm performance on the TROIKA dataset.

Subject Discarded Ratio SDNN ae (ms) RMSSD ae (ms) RR mae (ms)

01 0.167 0.489 3.692 7.667
02 0.805 19.851 23.394 10.625
03 0.688 4.258 11.224 6.267
04 0.659 5.721 0.450 9.214
05 0.396 2.786 6.625 5.250
06 0.389 2.199 0.422 10.545
07 0.234 2.184 1.810 9.611
08 0.282 16.938 21.814 15.679
09 0.100 0.631 11.768 9.694
10 0.548 13.896 32.186 19.286
11 0.364 6.520 8.692 8.857
12 0.306 6.897 25.570 14.029

mean 0.411 6.864 12.304 10.560

The PPG-DaLiA dataset contains simultaneous PPG and ECG signals during anno-
tated physical activity. For our analysis, we used parts of the signals with activity marked
as “sitting”. This gives a signal of approximately 10 minutes for each subject. As in the
previous dataset, reference RR intervals were derived from ECG signals using a simple
algorithm detecting local maxima of given minimal height and manually verified for accu-
racy. For each subject, we cut the signal into non-overlapping 100-second segments. For
each segment, we applied our algorithm and calculated the discarded ratio, SDNN ae,
RMSSD ae, and RR mae metrics. The mean values of the calculated errors per subject are
presented in Table 3. Note that the ECG readings for subjects 8 and 12 contain ectopic beats.
Those beats were excluded from calculations of reference SDNN and RMSSD values.

Table 3. Algorithm performance on the PPG-DaLiA dataset.

Subject Discarded Ratio SDNN ae (ms) RMSSD ae (ms) RR mae (ms)

01 0.141 5.508 7.831 7.998
02 0.229 7.500 2.791 6.902
03 0.246 16.139 4.506 8.054
04 0.439 9.181 5.910 8.245
05 0.215 2.072 0.595 5.187
06 0.147 2.232 1.217 5.313
07 0.083 9.092 11.238 8.294
08 0.601 19.157 15.353 15.151
09 0.387 4.480 8.267 12.926
10 0.150 3.819 5.406 9.754
11 0.215 5.878 4.894 6.480
12 0.348 18.955 10.483 7.594
13 0.053 4.412 3.153 4.876
14 0.088 3.633 4.514 6.883
15 0.109 5.688 5.175 8.135

mean 0.230 7.850 6.089 8.120

5. Discussion
5.1. Justification of the Ground Truth RR Intervals Source in Welltory-PPG-Dataset

The Polar H10 device was chosen as a source of ground truth labels since it uses ECG
for RR interval detection and has demonstrated good accuracy in several studies [38–41].
In particular, the study [38] reports that the difference between ECG RR intervals and
Polar H10 RR intervals has a mean of 0.1 ms and limits of agreement of 2.3 ms at rest, and
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therefore recommends it as the “gold standard for RR interval assessments”. Chest strap
devices were also used as a source of ground truth RR intervals in a number of research
papers [42,43]. Additionally, the collected RR intervals in the Welltory-PPG-dataset were
manually examined by an expert to ensure their accuracy.

5.2. Justification of the Chosen Methods
5.2.1. Signal Preprocessing

We chose the simple preprocessing procedure of Section 3.1 to avoid most basic signal
issues such as vanished signal and abrupt shift. Since CWT with Mexican hat wavelet does
not require baseline removal [24], this simple preprocessing is sufficient and also allows us
to avoid signal distortion with more extensive preprocessing.

5.2.2. Heart Rate Estimation

Non-stationarities in the PPG signals are relatively moderate, as the heart rate changes
gradually for healthy individuals at rest. Therefore STFT provides an adequate estimate of
the time-frequency presentation of the signal and allows us to estimate the moving average
heart rate.

5.2.3. Wavelet Based Peak Detection

We chose the Mexican hat function as the mother wavelet due to its good time–space
resolution [44]. Other commonly used wavelets such as Morlet can provide a better
resolution in the frequency-space, however, they show a less accurate localization in the
time-domain and therefore reduce accuracy in peak detection. Note that the Mexican
hat wavelet is broad in frequency, which can create difficulties when CWT is used for
time–frequency localization, however, for the task of peak detection, it is more important
to provide good localization in the time domain.

The scale range for the CWT from 0.05 to 0.3 is chosen empirically. The smallest scale
0.05 provides enough small-scale details of the initial signal, and decreasing the smallest
scale does not give any accuracy improvements of R-peak detection.

5.3. Relation to Previous Work

In the heart rate detection part, we estimated heart rate by constructing a continuous
curve consisting of peaks in the spectrogram. This approach is similar to one used in [7].
The difference is that in our context we do not expect heavy motion artifacts, as the data
are collected at rest, and we do not have access to accelerometer data to filter out the
motion impact. However, as we expect our PPG signals to be collected in an uncontrolled
environment, we also do not have an initialization period as in [7], where we can safely
choose the location of the highest peak in the periodogram as the heart rate estimate.
Instead, we use a rough estimate using counting of peaks and zero crossings in a sufficiently
smooth approximation to the signal as a prior estimate and then choose peaks in the
periodogram that are closest to the prior estimate.

Ridge lines in the CWT with the Mexican hat mother wavelet were also used for peak
detection in [24]. The novelty in our approach is that we use the length of the ridge lines
as a feature to choose the right peaks, rather than the signal-to-noise ratio used in [24].
Another difference is that in our context we can use almost-periodicity of PPG signals as a
heuristic when choosing the ridge lines. Moreover, in our approach we use the similarity
in the ridge lines shapes to estimate the PPG signal quality.

5.4. Accuracy Comparison with Other Algorithms

Among the variety of algorithms proposed for automatic heart rate variability esti-
mation from PPG [13,14,17,19,20,22] only [20] was tested on publicly available data. The
algorithm of [20] was tested on the TROIKA dataset, reporting sufficiently large errors
in HRV metric estimations (with SDNN error on average −37.29 and standard deviation
of 59.67 ms). However, the test was run on entire signals, including treadmill exercise,
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where inter-beat intervals derived from PPG (even if detected correctly) cannot be used
as substitutes of RR intervals for HRV estimation as shown in [12,15]. Therefore it is not
possible to directly compare the results of our algorithm with the results reported in [20].

5.5. Limitations

To give more insight into algorithm accuracy, let us consider a typical example where
SDNN of the algorithm-detected RR intervals is slightly different from reference intervals’
SDNN. The signal shown in Figure 11 is the first 100 s segment from subject S3 in the
PPG-DaLiAdataset:

In the example of Figure 11 the heart rate was decreasing during the first 20 seconds.
At the same time, the first 20 seconds of PPG contained a lot of noise and were discarded
by the algorithm (the red region on the plot). As a result, the PPG-derived SDNN of 96.66
shows the estimate of the SDNN during the last 80 seconds of the measurement, rather
than the whole signal. The reference RR intervals SDNN during the last 80 seconds are
100.80, and due to the non-stationarity of the signal, it is slightly smaller than the whole
signal reference SDNN of 136.98.

This example demonstrates one limitation of our algorithm: as the algorithm detects
RR intervals in non-corrupted parts of the PPG signal, in the case when the characteristics
change slightly over time (as heart rate in the previous example), the HRV estimation
produced by the algorithm will be accurate for the non-corrupted interval but may slightly
differ from the overall HRV estimates.

0 10 20 30 40 50 60 70 80 90
−200

−100

0

100

200

0 20 40 60 80
800

1000

1200

1400

PPG signal

Reference RR-intervals

time, s.

interval nr.

P
P
G

 i
n
t
e
n
s
it

y
R

R
 i
n
t
e
r
v
a
l,
 m

s
.

Figure 11. PPG-DaLiA, Subject S3, interval 0 to 100 s.

5.6. Directions for Future Research

The Empirical Wavelet Transform [45] (EWT) is an adaptive method that was suc-
cessfully applied for EEG signals [46]. As a direction for future research, it would be
interesting to see if EWT can be used instead of CWT to improve algorithm accuracy or
execution speed.

6. Conclusions

We propose an algorithm that can accurately detect peak-to-peak intervals in PPG
signals and identify corrupted parts in the signal where such detection is not possible.
These requirements are necessary for the algorithm to be suitable for automatic analysis
of PPG signals collected in an uncontrolled environment. The algorithm was tested on
three publicly available datasets with PPG signals from different sources. The algorithm
is able to recognize corrupted parts of PPG signals and the detected intervals provide
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accurate estimates for the most common HRV metrics: for SDNN, the mean absolute error
is 4.07 ms on the Welltory-PPG-dataset, 6.86 ms on the TROIKA dataset and 7.85 ms on the
PPG-DaLiAdataset; for RMSSD, it is 6.32 ms on the Welltory-PPG-dataset, 12.3 ms on the
TROIKA dataset and on 6.09 ms on the PPG-DaLiAdataset. Therefore, we conclude that the
algorithm performs well on various PPG signals; it can be used to automatically analyze
PPG signals obtained in an uncontrolled environment; for PPG collected from healthy
subjects at rest, the detected intervals can be used for accurate and reliable estimates of
basic HRV metrics. The algorithm cannot be used for HRV estimation from PPG signals
collected during or right after exercise since, in that case, the PPG signal does not contain
sufficient information [12,15].
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Abbreviations

The following abbreviations are used in this manuscript:
PPG Photoplethysmography
ECG Electrocardiography
EEG Electroencephalography
RR intervals Intervals between consecutive R peaks
STFT Short-time Fourier transform
CWT Continuous wavelet transform
HRV Heart rate variability
SDNN Standard deviation of RR intervals, cf. Equation (1)
RMSSD Root mean square of the successive differences of RR intervals, cf. Equation (2)
MAE Mean absolute error
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