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Background. Tingli Dazao Xiefei decoction (TDXD) has been shown to have a therapeutic effect on heart failure (HF). Nev-
ertheless, its molecular mechanism for treating HF is still unclear. Materials and Methods. TDXD and HF targets were collected
from the databases, and protein-protein interaction (PPI) analysis and enrichment analysis were performed on the overlapping
targets. Then, AutoDock was employed for molecular docking. Finally, we used the left anterior descending coronary artery (LAD)
ligation to induce HF model rats for in vivo experiments and verified the effect and mechanism of TDXD on HF. Results. Network
pharmacological analysis showed that the main active components of TDXD in treating HF were quercetin, kaempferol, beta-
carotene, isorhamnetin, and beta-sitosterol, and the core targets were IL-6, VEGFA, TNF, AKTI, and MAPKI1. Multiple gene
functions and signaling pathways were obtained by enrichment analysis, among which inflammation-related, PI3K/Akt, and
MAPK signaling pathways were closely related to HF. Furthermore, the molecular docking results showed that the core targets had
good binding ability with the main active components. Animal experiments showed that TDXD could effectively improve left
ventricular ejection fraction (EF) and left ventricular fractional shortening (FS), decrease left ventricular internal diastolic di-
ameter (LVIDd) and left ventricular internal systolic diameter (LVIDs), reduce the area of myocardial fibrosis, and decrease serum
BNP, LDH, CK-MB, IL-6, IL-18, and TNF-« levels in HF rats. Meanwhile, TDXD could upregulate the expression of Bcl-2,
downregulate the expression of Bax, and reduce cardiomyocyte apoptosis. At the same time, it was verified that TDXD could
significantly decrease the expression of PI3K, P-Akt, and P-MAPK. Captopril showed similar effects. Conclusions. Combining
network pharmacological analysis and experimental validation, this study verified that TDXD could improve cardiac function and
protect against cardiac injury by inhibiting the activation of PI3K/Akt and MAPK signaling pathways.

1. Introduction

Heart failure (HF) is the terminal stage of most cardio-
vascular diseases with high morbidity and mortality [1].
With the increase in the aging population, the incidence of
HF has also been growing year by year [2]. The latest re-
search data have shown that the prevalence of HF in Chinese
adults is about 0.9%, and the number of HF patients has
reached 4.5 million, thus becoming a major public health

problem [3]. Despite great advances being made in the
treatment of HF, the 5-year survival rate of HF is still
comparable to that of malignant tumors [4]. HF is the
dominant disease in traditional Chinese medicine (TCM)
prevention and treatment. TCM syndrome differentiation
and treatment of HF can not only play the role of multitarget
and multilevel intervention but also has the advantages of
fewer side effects, higher safety, and better effectiveness
[5, 6].
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Tingli Dazao Xiefei decoction (TDXD) originated from
Zhang Zhongjing’s “Synopsis of Golden Chamber” and has
been widely used in clinical practice for more than 1000 years.
TDXD, composed of Tinglizi (Semen Lepidii) and Dazao
(Jujube), is a classic prescription for the treatment of HF with
a definite curative effect [5]. Recent pharmacological studies
have shown that Tinglizi can be diuretic, protect myocardial
cells, enhance myocardial contractility, and inhibit ventricular
remodeling [7, 8]. Dazao has antioxidant, anti-inflammatory,
and hypolipidemic effects [9]. Animal studies confirmed that
TDXD could inhibit the course of myocardial fibrosis and
delay the progress of HF [10]. However, the active ingredients
and specific molecular mechanisms of TDXD in the treat-
ment of HF are still unknown.

Network pharmacology integrates systems biology and
computer technology to construct the multidimensional
“components-targets-pathways” network to reveal the
pharmacological effects of TCM and the molecular mech-
anism of disease treatment, which is the research hotspot of
TCM [11]. The study used network pharmacology to predict
the molecular mechanism of TDXD in the treatment of HF
and further verified through in vivo experiments, which will
contribute to the clinical application of TDXD.

2. Materials and Methods

2.1. Chemicals and Reagents. TDXD dry powder was pro-
vided by the Chinese Pharmacy of Shuguang Hospital Af-
filiated to Shanghai University of Traditional Chinese
Medicine. Captopril tablets (25 mg/tablet) were purchased
from Beijing Jingfeng Pharmaceutical Group Co., Ltd.
(Beijing, China). Hematoxylin-eosin dye (G1003), Masson
dye (G1006), and TUNEL kit (G1501) were purchased from
Wuhan Servicebio Technology Co., Ltd. (Wuhan, China).
BNP ELISA kit (BPE30445), IL-6 ELISA kit (BPE30646), IL-
18 ELISA kit (BPE30419), and TNF-« ELISA kit (BPE30635)
were purchased from Lengton Bioscience Co., Ltd.
(Shanghai, China). LDH assay kit (A020-2-2) was purchased
from Nanjing Jiancheng Institute of Bioengineering
(Nanjing, China). CK-MB assay kit (FSEA3390) was from
Shanghai Fushen Biotechnology Co., Ltd. (Shanghai, China).
BCA Protein Assay Kit (P0012S), protease and phosphatase
inhibitor cocktail for general use (P1045), RIPA Lysis Buffer
(P0013C), SDS-PAGE Gel Quick Preparation Kit
(P0012AC), Bovine Serum Albumin (ST023), and stripping
buffer (P0025) were purchased from Beyotime Biotech-
nology (Shanghai, China). Antibodies against PI3K (4249),
Akt (4691), P-Akt (4060), MAPK (4695), P-MAPK (4370),
GAPDH (5174), and rabbit IgG horseradish conjugate
secondary antibody (7074) were from Cell Signaling Tech-
nology, Inc. (Boston, USA). Antibody against Bax was from
Proteintech Group, Inc. (Wuhan, China). Antibody against
Bcl-2 (40639) was from Signalway Antibody LLC, Inc.
(Maryland, USA).

2.2. Screening of Active Compounds and Gene Targets of
TDXD. The active components of Tinglizi and Dazao were
collected from the Traditional Chinese Medicine Systems
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Pharmacology Database and Analysis Platform (TCMSP,
http://Isp.nwu.edu.cn/tcmsp.php) [12]. The screening cri-
teria for this study were oral bioavailability (OB) >30% and
drug-likeness (DL) >0.18 [13]. Protein targets related to the
active components were obtained from the TCMSP and
entered into UniProt (http://www.uniprot.org/) [14]. The
species was limited to “Homo sapiens,” so that the protein
targets were converted to the corresponding gene symbols.

2.3. Screening of HF-Related Targets. GeneCards (https://
www.genecards.org/) [15], Therapeutic Target Database
(TTD,  http://systemsdock.unit.osit.jp/iddp/home/index)
[16], Online Mendelian Inheritance in Man (OMIM, http://
omim.org/) [17], and DrugBank database (https://www.
drugbank.ca) [18] were searched using “heart failure” as
the keyword to collect HF-related targets. Then, the retrieval
results from the four databases were merged, and the po-
tential therapeutic targets of HF were obtained after deleting
the duplicate targets.

2.4. Construction of Active Compounds-Disease Targets
Network. The overlapping targets of TDXD and HF were
acquired by the Venny 2.1 online tool (http://bioinfogp.cnb.
csic.es/tools/venny/index.html). The active components in
TDXD that failed to act on HF-related targets were elimi-
nated. Next, the remaining components and overlapping
targets were imported into Cytoscape 3.7.2 to construct the
network of “active components-disease targets” [19]. The
network analyzer plugin cytoNCA in the Cytoscape 3.7.2
was used for network topology analysis [20].

2.5. PPI Network Construction. The overlapping targets of
TDXD and HF were inputted into the STRING 11.0 database
(https://string-db.org/) [21]. The organism was set to “Homo
sapiens,” and the minimum required interaction score was
set to “highest confidence (0.9).” The disconnected nodes in
the network were hidden to obtain PPI data. Subsequently,
these data were uploaded into Cytoscape 3.7.2 for visuali-
zation and drew the PPI network. The topology analysis of
the network was also carried out to acquire the core targets
with the higher-ranking degree value.

2.6. Functional and Pathway Enrichment Analysis. The Gene
Ontology (GO) functional and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of the
overlapping targets was performed using the Database for
Annotation, Visualization, and Integrated Discovery
(DAVID v6.8, https://david.ncifcrf.gov/) [22]. With
P <0.05 as the screening criteria, according to the P value
and the number of enrichment genes, the top 20 pathways
were selected for visualization. Pathways related to HF were
obtained by combining the literature search and the first 20
KEGG pathways. Cytoscape 3.7.2 was then used to con-
struct the “compounds -targets-pathways” network
diagram.
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2.7. Molecular Docking. AutoDock 4.2.6 and PyMOL soft-
ware were used to dock the core targets with the main active
ingredients of TDXD [23]. The crystal structures of the core
targets were downloaded from the protein data bank (PDB,
https://www.rcsb.org) [24] and saved in pdb format as the
receptors in molecular docking. PyMOL removed the
original ligand structure in the receptor. The 3D structures
(mol2 format) of active ingredients were obtained from the
TCMSP database and converted into pdb format by PyMOL
as the ligands in molecular docking. The receptors and li-
gands were processed by AutoDockTools (version 1.5.6) and
stored in pdbqt format. After that, the processed receptors
and ligands were molecularly docked through AutoDock.
The parameter of the docking site was set to include the
receptor’s active pocket, and the search parameter was
chosen as “Genetic Algorithm.” The lower the binding en-
ergy is, the better the binding affinity between the receptor
and the ligand [25]. Finally, the conformation of the best
binding energy was visualized by PyMOL.

2.8. Animal Experiments. All animal experiment protocols
involved in this study were approved by the Animal Pro-
tection Committee of Shanghai University of Traditional
Chinese  Medicine with the approval number
“PZSHUTCM210903018” and the experiments were per-
formed in compliance with the guide for “Animal Research:
Reporting of In Vivo Experiments (ARRIVE).” Forty SPF
Wistar male rats (200 + 10 g) were purchased from Beijing
Weitong Lihua Co., Ltd. (Beijing, China) and raised in the
Experimental Animal Center of Shanghai University of
TCM. After 7 days of acclimation to the laboratory, 40 rats
were randomized into four groups (n = 10): the sham group,
the model group, the TDXD group, and the captopril group.
Except for the sham group, the other 30 rats underwent
ligation of the left anterior descending coronary artery
(LAD) to replicate the myocardial infarction (MI) model as
previously described [26]. Briefly, after anesthesia, the rats
were connected to a rodent ventilator, left thoracotomy and
subsequent pericardiotomy were performed to expose the
heart, and the LAD was permanently ligated with 6/0 silk
suture to induce MI. Through the paleness and cyanosis of
the anterior wall of the left ventricle, the immediate elevation
of the electrocardiogram confirmed the success of myo-
cardial infarction modeling [27]. The sham group was only
threaded under LAD without ligation. After the operation,
rats were given penicillin (4 x 10> units/day, intramuscular
injection) for 3 days. During the whole experimental period,
the total mortality of rats that underwent induction of HF
was 30%. Most deaths occurred on the day of or the day after
the surgery, probably due to severe arrhythmia or acute
pump failure.

Administration dosages of TDXD (0.675g/kg-d) and
captopril (4.5 mg/kg-d) in rats were determined according to
the equivalent patient dose [28]. For drug preparation,
TDXD dry powder and captopril were dissolved in distilled
water in doses of 67.5 mg/mL and 0.45 mg/mL, respectively.
Then, according to the weight, the rat gavage volume was
1 mL/100g. Rats in sham and model groups received the

same volume of saline. One day after the surgery, rats were
treated with a daily gastric solution using an oral gavage
needle for 6 weeks.

2.9. Echocardiography. After the last administration, the rats
were fasted for 12 hours and anesthetized with isoflurane
inhalation [27]. The Vevo 2100 imaging system (Visual sonic
Inc., Toronto, ON, Canada) was used to evaluate the cardiac
function of the rats. Two-dimensional images of M-mode
ultrasound were captured from the short axis view. Cardiac
function indices include left ventricular ejection fraction
(EF), left ventricular fractional shortening (FS), left ven-
tricular internal diastolic diameter (LVIDd), and left ven-
tricular internal systolic diameter (LVID).

2.10. Histological Analysis. The heart tissues of rats in each
group were fixed in 4% paraformaldehyde for more than 24
hours, then dehydrated, and embedded in paraffin. Next,
5um slices were cut for hematoxylin-eosin (H&E) and
Masson staining, respectively, to observe the pathological
damage and fibrosis of myocardial tissue [29]. Image]
software (NIH, Bethesda, MD, USA) was used for quanti-
tative analysis.

2.11. Terminal Deoxynucleotidyl Transferase-Mediated dUTP
Nick End-Labeling (TUNEL) Assay. First, the slices were
dewaxed with water, and antigenic repair was performed
with protease K. After room temperature equilibrium,
TUNEL color reaction solution was added and incubated for
2 hours at 37°C. Then, DAPI was added to the slices and
incubated for 10 min. Finally, the slices were sealed with an
antifluorescence quenching agent and observed under a
fluorescence microscope. Image] software was used to count
the number of TUNEL-positive cardiomyocyte nuclei.
TUNEL-positive (%) = apoptotic nuclei number/total nuclei
number x 100% [30].

2.12. ELISA. After the abdominal aorta blood was collected,
it was left standing at room temperature for 2h and
centrifuged at 3000 rpm/min at 4°C for 15min, and the
supernatant was taken. The serum levels of BNP, LDH, CK-
MB, IL-6, IL-13, and TNF-a were detected according to
ELISA kit instructions.

2.13. Western Blotting Assay. The myocardial tissue in the
marginal zone of left ventricular infarction was homoge-
nized, and the total protein concentration was determined
by the BCA protein detection kit. The equivalent protein
samples were separated by 10%-12% SDS polyacrylamide
gel electrophoresis and transferred to a PVDF membrane,
followed by western blotting as previously described [31].
The chemiluminescence system (Tanon Science & Tech-
nology Co., Shanghai, China) was used to obtain protein
bands, and Image] software was used for quantitative
analysis.
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2.14. Statistical Analysis. SPSS 23.0 software (IBM Corp.,
Armonk, NY, USA) was used for statistical analysis, and data
were expressed as mean +standard deviation. One-way
analysis of variance (ANOVA) followed by Bonferroni or
Dunnett’s T3 post hoc test was used for multiple compar-
isons, and value of P < 0.05 was considered to be statistically
significant.

3. Results

3.1. Network Pharmacology Analysis of TDXD in the
Treatment of HF

3.1.1. Active Compounds and Targets of TDXD. With OB
>30% and DL >0.18 as screening conditions, 39 active in-
gredients of TDXD were screened, including 12 compounds
from Tinglizi and 29 compounds from Dazao. Quercetin and
beta-sitosterol were the common active ingredients (Sup-
plementary Materials, Table S1). In all, 221 gene targets were
obtained after eliminating duplications in 39 compounds
(Supplementary Materials, Table S2).

3.1.2. HF-Related Targets and Overlapping Targets of TDXD
and HF. Gene targets of HF were obtained through Gen-
eCards, taking the top 500 targets with the highest corre-
lation according to the “Relevance score,” and then merging
them with the results retrieved from TTD, OMIM, and
DrugBank. After deleting duplicates values, 960 HF-related
targets were identified. The Venn diagram was used to take
the intersection of drug targets and disease targets, and 66
overlapped targets were screened (Figure 1). The over-
lapping targets were the potential targets for TDXD in
treating HF.

3.1.3. Active Compounds-Disease Targets Network. The 66
overlapping targets correspond to 23 active ingredients. In
Cytoscape 3.7.2, the overlapping targets and corresponding
active ingredients were introduced to construct the “active
compounds-disease targets” network (Figure 2). This net-
work included 92 nodes and 258 edges. The topological
analysis showed that the top 5 active ingredients in degree
value were quercetin, kaempferol, beta-carotene, iso-
rhamnetin, and beta-sitosterol (Supplementary Materials,
Table S3). The compounds with the higher degree value may
be the main material basis of TDXD in the treatment of HF.

3.1.4. PPI Network. The 66 overlapping targets were
uploaded to STRING to obtain the interaction diagram, after
which Cytoscape 3.7.2 was used to visualize and construct
the PPI network (Figure 3). A total of 59 nodes and 160 edges
were involved in the PPI network. IL-6, VEGFA, TNF,
AKT1, and MAPKI1 were the top 5 targets of degree, showing
that these targets were the core targets of TDXD in the
treatment of HF. Topological parameters of the top 10
targets in the PPI network are shown in Supplementary
Materials, Table S4.
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ABCG2, ADRAILD, ADRAch
ADRBI, ADRB2, AKT1, ALB,
ALOX5, AR, CACNALS, CAT,
CAV1, CCL2, CD40LG, CHRM2,
COLI1AL, COL3A1, CRP, CXCLS,
CYP3A4, EGFR, ESRI, F2, F3,
F7, FOS, GJA1, HIF1A, HMOXI,
155 IFNG, IGF2, IL10, IL1B, IL6,
INSR, KCNH2, LTA4H, MAPKI,
MMP1, MMP2, MMP3, MMP9,

drug targets

MPO, NFE2L2, NOS3, NR3C2,
PDE3A, PONI, PPARA, PPARG,
PTEN, PTGS2, PYGM, RAF1,
SCN5A, SERPINEL, SOD1, SPP1,
STAT1, TGFB1, THBD, TNE

@3, VCAMI, VEGFA, XDIy

FIGURE 1: Venn diagram of TDXD targets and HF targets.

3.1.5. GO Functional and KEGG Pathways Enrichment
Analysis. GO function analysis included three parts: biological
process (BP), cell component (CC), and molecular function
(MF). There were 294 BP entries, including aging, positive
regulation of nitric oxide biosynthetic process, response to
hypoxia, response to the drug, and so on; 30 CC entries, in-
cluding extracellular space, extracellular region, plasma
membrane, lysosome, and others; and 47 MF entries, including
enzyme binding, protein binding, cytokine activity, and protein
homodimerization activity. According to the sequencing of P
values, the top 10 GO pathways in each category were selected
to plot the bar chart (Figure 4(a)). A total of 87 pathways were
obtained by KEGG enrichment analysis, which were sorted
according to the number of enriched genes. The top 20
pathways are shown in Figure 4(b).

Based on the results of the literature search and KEGG
pathway enrichment, there were 8 pathways related to HF in
the first 20 pathways (Supplementary Materials, Table S5). The
key pathways were PI3K/Akt, MAPK, TNF, HIF-1, and the
Toll-like receptor signaling pathway, which mainly regulate
complex biological metabolic processes such as cell prolifer-
ation, apoptosis, and inflammation. The targets enriched in
these pathways and the active components corresponding to
the targets were collected and uploaded to Cytoscape 3.7.2 to
construct the “components-targets-pathways” network dia-
gram (Figure 4(c)), which intuitively illustrates the charac-
teristics and advantages of multicomponent, multitarget, and
multipathway in HF treatment with TDXD.

3.1.6. Molecular Docking. The top 5 core targets (IL-6,
VEGFA, TNF, AKT1, and MAPK]1) in the PPI network were
docked with the main active components (quercetin,
kaempferol, beta-carotene, isorhamnetin, and beta-sitos-
terol) of TDXD in treating HF and the positive drug
(captopril) for HF. Because beta-carotene has no free hy-
drogen bond, it cannot stably bind to the target through
hydrogen bond, so it is eliminated. It is generally believed
that when the binding energy of ligand and receptor is
<—4kcal/mol, there is potential binding activity between
them; binding energy <-5kcal/mol suggests a significant
binding ability between them [32]. Our docking results
showed that the binding energy of the receptor proteins and
the active ingredients were all lower than —5kcal/mol,
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FIGURE 2: Network of active compounds-disease targets. Green regular triangle nodes represent the Tinglizi and Dazao. Purple round nodes
represent the active components of TDXD. Red inverted triangle node represents HF. Yellow rhombic nodes represent the gene targets.
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indicating that the receptor proteins and the active ingre-
dients were well bound, which further provides evidence
support for TDXD treatment of HF (Table 1). The con-
formation with the best binding energy during docking was
downloaded and visualized using PyMOL (Figure 5).

3.2. Animal Experimental Study

3.2.1. TDXD Improved Cardiac Function in Rats with HF.
As shown in Figures 6(a)-6(e), compared with the sham
group, the EF and FS of the model group were reduced, and

the LVIDd and LVIDs were increased, suggesting that the
HF rat model was successfully established. While after
treatment with TDXD and captopril, the levels of EF and FS
were significantly upregulated, accompanied by the declined
levels of LVIDd and LVIDs . In addition, the heart-to-body
weight ratio (HW/BW) was also measured, as shown in
Figures 6(f) and 6(g). The HW/BW ratio of the model group
increased markedly, and TDXD could attenuate the HW/
BW ratio to reduce the expansion of the ventricular cavity
and myocardial hypertrophy. No significant differences in
the above indexes between the TDXD group and the cap-
topril group were noted.

Under normal circumstances, BNP, LDH, and CK-MB
are located in the cytoplasm of cardiomyocytes. The increase
of their levels in serum is usually considered as the diag-
nostic markers of HF and is positively correlated with the
severity of HF [33]. The results showed that, compared with
the sham group, the BNP, LDH, and CK-MB levels in the
model group were significantly upregulated, while TDXD
and captopril treatment reversed these changes. Moreover,
captopril had a more significant effect on reducing serum
CK-MB levels (Figures 6(h)-6(j)). The abovementioned
results indicate that TDXD has a protective effect on heart
function and structure.

3.2.2. TDXD Reduced Myocardial Fibrosis in Rats with HF.
Ventricular remodeling caused by myocardial fibrosis is the
main pathological mechanism of HF [34]. H&E and Masson
staining were performed to determine whether TDXD could
alleviate interstitial fibrosis in post-MI HF rats. The results
showed that the cardiomyocytes in the sham group were
normal in shape and orderly manner, without inflammatory
infiltration and a very small amount of scattered collagen
fiber tissue. In the model group, myocardial cells were
degenerated, necrotic, and arranged disorderly, with a large
number of inflammatory cells infiltration and collagen fibers
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deposition. Compared with the model group, myocardial
tissue lesion, myocardial cell necrotic hypertrophy, and
collagen fiber deposition were distinctly reduced in the
TDXD group and the captopril group. There was no sig-
nificant difference in myocardial fibrosis area between the
TDXD group and the captopril group (Figures 7(a) and
7(c)).

3.2.3. TDXD Inhibited Cardiomyocyte Apoptosis and Re-
duced the Level of Serum Inflammatory Cytokines.
Cardiomyocyte apoptosis is one of the important patho-
logical mechanisms of myocardial injury, which is closely
related to the severity of HF, inflammation, and myocardial
fibrosis [35]. To identify whether TDXD can protect car-
diomyocytes from apoptosis, TUNEL staining and western
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TaBLE 1: The binding energy of molecular docking (kcal/mol).

Quercetin Kaempferol Isorhamnetin Beta-sitosterol Captopril
IL-6 (1iL6) —-6.09 -6.17 —-6.36 -8.72 —6.64
VEGFA (4KZN) -5.34 -5.61 -5.86 -5.91 -4.96
TNF (60P0) —6.95 -8.15 -7.54 -8.36 -5.38
AKT1 (1UNP) -6.27 —-6.46 —6.49 -7.18 -6.33
MAPKI1 (4FV3) —6.68 —-6.07 —6.68 -7.04 -6.74
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FIGURE 5: Molecular docking structure diagram. (a) IL-6-quercetin, (b) IL-6-kaempferol, (c) IL-6-isorhamnetin, (d) IL-6-beta-sitosterol, (e)
VEGFA-quercetin, (f) VEGFA-kaempferol, (g) VEGFA-isorhamnetin, (h) VEGFA-beta-sitosterol, (i) TNF-quercetin, (j) TNF-kaempferol,
(k) TNF-isorhamnetin, (I) TNF-beta-sitosterol, (m) AKT1-quercetin, (n) AKT1-kaempferol, (o) AKT1-isorhamnetin, (p) AKT1-beta-si-
tosterol, (qQ) MAPKI1-quercetin, (r) MAPK1-kaempferol, (s) MAPK1-isorhamnetin, and (t) MAPKI-beta-sitosterol.

blotting were used to detect the level of apoptotic bio-
markers. TUNEL results showed that the apoptotic rate of
cardiomyocytes in the model group was dramatically higher
than that in the sham group. However, TDXD and captopril
treatment could notably reduce the apoptotic rate
(Figures 8(a) and 8(b)). Western blotting further confirmed
the antiapoptotic characteristic of TDXD. The results
showed that, compared with the sham group, the expression
of Bcl-2 was downregulated and the expression of Bax was
upregulated in the model group, while TDXD and captopril

could increase the expression of Bcl-2 and reduce the ex-
pression of Bax. In addition, the expression of Bax in the
captopril group reduced more significantly (Figures 8(c)-
8(e)).

Moderate regulation of the inflammatory response
after MI is very important for the prognosis of HF. IL-6,
IL-18, and TNF-a are all inflammatory factors with
multiple effects in the body, which are closely related to
the occurrence and development of HF. The ELISA results
showed that compared with the sham group, the serum
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F1Gure 6: TDXD improved cardiac function in rats with HF. (a) Representative echocardiography images in each group, (b) EF%, (c) FS%,
(d) LVIDd, and (e) LVIDs, n=5. (f) Representatlve pictures of whole heart in each group, (g) HW/BW, n =5. (h-j) Serum BNP, LDH, and
CK-MB levels, n=5. * P <0.05 vs. sham group, #P <0.05 vs. model group, 4P > 0.05 vs. captopril group, and P < 0.05 vs. captopril group.
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Figure 7: TDXD reduced myocardial fibrosis in rats with HF. (a) Representative images of H&E staining in different groups, n = 5. Scale bar:
3 mm/200 ym. (b) Representative images of Masson staining 1n different groups, n=5. Scale bar: 3 mm/200 ym. (c) Quantitative analysis of
the myocardial fibrosis area, n=5. * <0.05 vs. sham group, #P <0.05 vs. model group, and 4P > 0.05 vs. captopril group.

levels of IL-6, IL-16, and TNF-« in the model group in-
creased significantly, suggesting a severe inflammatory
response in HF. TDXD and captopril treatment reduced
the levels of these inflammatory cytokines. Furthermore,
compared with captopril, TDXD showed no significant
difference in inhibiting IL-6, IL-18, and TNF-« levels in
HF rats (Figures 8(f)-8(h)).

3.2.4. TDXD Inhibited the Activation of PI3K/AKT and
MAPK Signaling Pathways. On the basis of network
pharmacology analysis and literature research, in order to
explore the underlying mechanism of TDXD in HF, PI3K/
Akt, and MAPK signaling pathways were investigated. The
PI3K/Akt signaling pathway can affect cardiac function
through various mechanisms such as regulation of
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Ficure 8: TDXD inhibited apoptosis and reduced the level of inflammatory cytokines. (a) Representative images of TUNEL staining in
different groups, scale bar: 20 ym. (b) Quantitative analysis of TUNEL-positive, n =3. (c-e) Representative western blotting pictures and
quantitative analysis of Bcl-2 and Bax, n = 5. (f-h) Serum IL-6, IL-1f3, and TNF-« levels, n=5. * P < 0.05 vs. sham group, #P <0.05 vs. model
group, 4P >0.05 vs. captopril group, and 2P <0.05 vs. captopril group.

cardiomyocyte apoptosis, energy metabolism, oxidative
stress, inflammatory response, and autophagy [36]. The
MAPK signaling pathway can inhibit endoplasmic reticulum
stress to regulate cardiomyocyte apoptosis. It can also
regulate the expression of various inflammatory factors, such
as IL-6 and TNF-q, so as to relieve the inflammatory re-
sponse [37, 38]. Both of them play important roles in HF.
According to the results, the expressions of PI3K, P-Akt, and
P-MAPK in the model group were enhanced. TDXD and
captopril could inhibit the activation of PI3K/Akt and
MAPK pathways and reduce the expression levels of PI3K,
P-Akt, and P-MAPK. Furthermore, the effect of captopril on
reducing the expression of P-Akt was more significant
(Figures 9(a) and 9(d)).

4. Discussion

HF has always been a hot and difficult problem in the field of
cardiovascular research because of its high morbidity and
mortality [39]. Recent studies have supported that TCM could
treat diseases via acting on multiple targets, multiple signaling
pathways, and multiple physiological functions, which have
been clinically validated as a good means to treat HF [40]. This
study revealed the material basis and potential mechanism of
TDXD anti-HF through network pharmacology and con-
ducted preliminary verification through in vivo experiments.

Network pharmacology can reveal the material basis of
TCM’s ability to treat diseases and provide a reference for
follow-up research. The results showed that quercetin,
kaempferol, beta-carotene, isorhamnetin, and beta-sitosterol
were the most important compounds. Studies have found
that quercetin can downregulate the TLR4/NF-«B inflam-
matory pathway to inhibit the inflammatory response of
cardiomyocytes and directly regulate the metabolism of NO
in the heart to alleviate myocardial injury [41, 42].
Kaempferol has a cardioprotective role by regulating
AMPK/Nrf2 and NF-«B/MAPK pathways to prevent cardiac
dysfunction and fibrosis [43]. Previous studies have con-
firmed that isorhamnetin can block the activation of the
PI3K/Akt signaling pathway and reduce the process of

cardiac hypertrophy and HF [44]. Beta-carotene has proved
to have an obvious antioxidant effect and can reduce the
oxidative stress level of tissues during HF to improve cardiac
dysfunction [45]. Beta-sitosterol can reduce the area of
myocardial infarction and cardiac cell apoptosis by mod-
ulating PPARy/NF-«B signals to delay myocardial damage
[46]. The abovementioned studies confirmed that the main
active compounds have a cardioprotective effect mainly
from regulating inflammation, antiapoptosis, and improving
energy metabolism, which is consistent with the results of
animal experiments in this study.

HEF is associated with both local and systemic activation
of inflammatory signaling cascades [47]. The inflammatory
response of HF is characterized by the induction and ac-
tivation of a wide range of pleiotropic cytokines and che-
mokines, which lead to the deterioration of cardiac
remodeling and function [48]. Therefore, inhibiting the
body’s inflammatory response will be effective in the
treatment of HF. In the analysis of core targets and KEGG
enrichment pathways, IL-6, TNF, and Toll-like receptor
signaling pathways were related to inflammation. IL-6, IL-
13, and TNF-a belong to the cytokine family, which are
the key regulators of inflammation and injury. Their over-
expression can contribute to the progression of HF by
triggering apoptotic responses, perturbing calcium ho-
meostasis, and damaging the function of endothelial cells
and fibroblasts, among other ways [48]. Current studies have
also supported that anti-inflammatory treatments for HF,
such as IL-1f inhibitors canakinumab and gevokizumab,
could reduce the hospitalization rate of HF and have a
protective effect on HF patients [49, 50]. In this study, the
results showed that TDXD could reduce serum IL-6, IL-18,
and TNF-a levels in HF rats, indicating that the car-
dioprotective effect of TDXD was related to the regulation of
the body’s inflammatory response.

PI3K/Akt is a classical signal transduction pathway, which
can directly regulate the expression of Bcl-2/Bax and plays an
important role in regulating cardiomyocyte survival, myocardial
remodeling, and inflammation [51]. Upon receiving a stimulus,
PI3K converts PIP2 to PIP3, which recruits Akt into the
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FIGure 9: TDXD inhibited the activation of PI3K/AKT and MAPK signaling pathways. (a—d) Representative western blotting pictures and

quantitative analysis of PI3K, p-Akt/AKT, and p-MAPK/MAPK, n=

captopril group, and 2P <0.05 vs. captopril group.

membrane and phosphorylates it for activation [52]. The
phosphorylation level of Akt is one of the most important
markers of the PI3K/Akt signal pathway. Studies have shown
that overactivated P-Akt can lead to pathological hypertrophy of
the heart, induce Bax gene expression, promote cardiomyocyte
apoptosis, and accelerate the deterioration of cardiac function
[53, 54]. MAPK1, also known as ERK, regulates Bcl-2 expression
and activates the caspase cascade. Several studies have revealed
that the MAPK/ERK signaling pathway regulates cell differ-
entiation and apoptosis and participates in the process of
myocardial remodeling [55]. Wohlschlaeger et al. confirmed that
the levels of P-Akt and P-ERK in the myocardium of patients
with HF increased. After treatment with the left ventricular assist
device, the expression of P-Akt and P-ERK decreased signifi-
cantly, and the cardiac function improved [56]. Chen et al. also
found that inhibiting the phosphorylation of MAPK and PI3K/
Akt pathways in vivo and in vitro can attenuate Ang II-induced
cardiac hypertrophy [57]. The results of this study found that
TDXD can significantly reduce the expression of P-Akt and
P-MAPK in the cardiac tissue of rats with HF, suggesting that

5. * P <0.05 vs. sham group, #P <0.05 vs. model group, 4P > 0.05 vs.

the role of TDXD in improving cardiac function, inhibiting
cardiomyocyte apoptosis, and reducing the level of inflamma-
tory cytokines is related to the regulation of PI3K/Akt and
MAPK signaling pathways.

5. Conclusion

In summary, this study clarified the therapeutic effect and
underlying mechanism of TDXD against HF through net-
work pharmacology and in vivo experiments. It verified that
TDXD inhibits the phosphorylation of PI3K/Akt and MAPK
signaling pathways, thereby alleviating myocardial inflam-
mation, fibrosis, apoptosis, and improving heart function in
rats with HF. The results of this study provide a theoretical
basis for further research and clinical application of TDXD.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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